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Quantifying protein abundance 
on single cells using split‑pool 
sequencing on DNA‑barcoded 
antibodies for diagnostic 
applications
Jenny Sheng1,2, Eldad A. Hod2, George Vlad2 & Alejandro Chavez2*

Proteins play critical roles across all facets of biology, with their abundance frequently used as 
markers of cell identity and state. The most popular method for detecting proteins on single cells, 
flow cytometry, is limited by considerations of fluorescent spectral overlap. While mass cytometry 
(CyTOF) allows for the detection of upwards of 40 epitopes simultaneously, it requires local access 
to specialized instrumentation not commonly accessible to many laboratories. To overcome these 
limitations, we independently developed a method to quantify multiple protein targets on single 
cells without the need for specialty equipment other than access to widely available next generation 
sequencing (NGS) services. We demonstrate that this combinatorial indexing method compares 
favorably to traditional flow-cytometry, and allows over two dozen target proteins to be assayed at 
a time on single cells. To showcase the potential of the technique, we analyzed peripheral blood and 
bone marrow aspirates from human clinical samples, and identified pathogenic cellular subsets with 
high fidelity. The ease of use of this technique makes it a promising technology for high-throughput 
proteomics and for interrogating complex samples such as those from patients with leukemia.

Cell surface proteins, which make up the surfaceome, have been extensively cataloged for their role in 
development1,2, cell–cell interactions3, and signal transduction4. Surfaceomes are known to change in disease 
states and are important for not only disease identification, but also for understanding their biological basis5,6 
and to identify target therapies7. In a clinical context, the ability to distinguish the quantity of important pro-
tein markers on patient cells with precision and accuracy is critical for disease diagnosis8,9. Furthermore, the 
importance of cell surface proteins is highlighted by the fact that ~ 60–70% of modern pharmaceuticals target 
cell surface proteins and over a quarter of human genes code for membrane-associated proteins10,11. Though 
studies have been undertaken to catalog the bulk composition of cell surfaceomes, such population-averaged 
measurements often fail to detect rare cell types or states which may play meaningful biological roles. Thus, the 
ability to comprehensively measure the surface proteomes on single cells in heterogeneous populations remains 
an important goal12.

Traditionally flow cytometry has been the method of choice for analyzing proteins present on single cells 
because of its high throughput capacity and well-benchmarked standards8,9. However, flow cytometry has limita-
tions stemming from the spectral overlap of fluorescent conjugates, requiring custom built antibody panels with 
the ability to interrogate only a limited number of protein targets at a time. This can be particularly problematic 
in situations where sample cells are scarce, allowing only a limited number of proteins of interest to be examined. 
Additionally, even in cases where the cell sample is plentiful, relationships between proteins are often incomplete, 
as not all antigens can be assayed at the same time, limiting studies to only known relationships and potentially 
missing novel associations predictive of disease outcome or indicative of novel biological processes12. Though 
mass cytometry overcomes some of these barriers, it has not seen wide adoption because of the need for highly 
specialized equipment13,14.
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More recently, new techniques have been developed to push the envelope of multiplex protein detection 
in single cells15–19. Many of these techniques seek to leverage the emerging accessibility and sensitivity of next 
generation sequencing (NGS) for accurate biomolecule (DNA, RNA, protein) detection in single cells. Previous 
methods aimed at leveraging NGS for detection of proteins on single cells have shown that staining cells with 
DNA-barcoded antibodies allows for quantitative readouts of protein abundance on single cells using NGS15–19. 
However, a large barrier to adoption of these techniques is the use of proprietary commercial reagents and 
microfluidics instrumentation necessary for obtaining information from single cells, which adversely affects 
both cost and accessibility.

Here we present a method for protein detection on single cells using DNA-barcoded antibodies and split-pool 
sequencing to quantify protein abundances on single cells, similar in concept to the quantum barcoding (QBC) 
technique published by O’Huallachain and colleagues . Our study was inspired by previous works which used 
combinatorial split-pool indexing to quantify other cellular properties including RNA, protein, and chromosomal 
contacts20–25. Our implementation of a modified QBC protocol, hereafter named QBC2, employsNGS to sensi-
tively and quantitatively measure dozens of proteins on single cells using reagents, techniques, and equipment 
familiar and accessible to most molecular biology laboratories. Using peripheral blood or bone marrow aspirates 
from patient samples, we demonstrate that QBC2 stands up to the diagnostic gold standard of flow cytometry 
and that it is well suited to characterize complex cellular samples. Our study serves as an important benchmark 
for future applications of QBC2 to clinical applications. Furthermore, QBC2 is highly scalable, allowing users to 
simultaneously process multiple patient samples at once, cutting down on reagent usage and expediting process-
ing times. By leveraging NGS and widely accessible molecular biology tools, our method provides a cost-effective 
strategy for users to perform high-throughput, multiparameter single cell protein analysis, without the need for 
costly in-house instrumentation.

Results
A quantitative and highly modular method for high‑dimensional proteomic profiling.  Our 
implementation of QBC2 leverages a split-pool method to uniquely identify protein expression levels on single 
cells20,21,24,26. The method uses a panel of DNA-barcoded antibodies, which are incubated with a sample of inter-
est, in order to quantify expression levels of proteins on single cells. After washing away unbound antibodies, 
cells are randomly deposited into a series of wells (Fig. 1A(i)). Within each well, a universal splint primer is used, 
adapted from Rosenberg et al., to facilitate the ligation of a short DNA oligo containing a unique well barcode to 
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Figure 1.   Schematic of QBC2 experimental design. (A) Cells are stained collectively with a curated panel of 
DNA-barcoded antibodies. Stained cells go through a series of split and pool steps where a unique well barcode 
is appended to the 3′ end of the DNA barcode. A single cell (orange) has been highlighted for clarity as it travels 
through the barcoding process. (B) Schematic of the design of the DNA barcode. First round (i) and second 
round (ii) well barcodes are appended to the DNA tag that is conjugated to an antibody during the two initial 
rounds of ligation. During the ligation steps, a splint primer is used to bring the two oligos in proximity to each 
other and to allow T4 DNA ligase to perform DNA ligation21. Third round barcodes (iii) are added through PCR 
before libraries are prepared for sequencing.
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the 3′ end of all DNA-barcoded antibodies within the well (Fig. 1A(ii)21). After first round ligation, a short oligo, 
complementary to the splint primer, is incubated with the cell mixture to block inappropriate ligation during 
future steps. Subsequently, the cells are pooled, gently mixed, and randomly deposited into a new set of wells, 
into which a second unique well barcode is added, using a different splint primer. After the second round of liga-
tion, the splint primer is once again blocked and the cells are pooled and deposited into a new plate. In this final 
plate, PCR is used to amplify and append a third unique well barcode (Fig. 1A(iii)) onto the DNA oligonucleo-
tide coupled to the antibody. The resulting amplicons which are analyzed through NGS each contain an antibody 
barcode and 3 well barcodes (2 from ligation and 1 from PCR). For each amplicon, the antibody barcode is used 
to understand the antigen the antibody was bound to and the well barcodes are used to decipher which unique 
cell the antibody was bound to, as all antibodies interacting with the same cell would be expected to be labeled 
with the same 3 well barcodes. Collision rates are kept low by ensuring that only a small fraction of the total 
tripartite well-barcode combinations is used (as barcode doublet rates can be thought of as a Poisson process). 
By grouping together all antibody sequences with the same trio of well barcodes, a comprehensive profile of the 
proteins present on each single cell can be determined. For QBC2, experimental capacity is limited only by the 
number of wells in each round of barcoding and by the desired number of rounds of split-pool.

In order to benchmark QBC2q, we initially performed a mixed cell experiment with two distinct cell lines, 
Jurkat and HEK293T (Fig. S1). The two cell lines were cultured separately and combined at a 1:1 ratio before 
staining with a carefully selected panel of antibodies (CD56, CD155, CD29, CD4, CD45, CD28, and isotype 
control) that were designed to enable us to readily distinguish between the two human cell lines (Fig. 2A). Cells 
were visualized using the top three components of principal component analysis (PCA) (Fig. S2C, S2D) and 
clustered into four clusters using k-means clustering. Identity of cell populations determined by clustering were 
used to visualize Jurkat- and HEK293T-specific markers (Fig. 2B, S2E). Cells of ambiguous provenance were 
speculated to be from instances of non-specific cell-staining, as identified by their separation along the third 
principal component (Fig. S2C), which corresponds to an eigenvector predominantly characterized by the pres-
ence of IgG and HT3, both markers of non-specific cell labeling.

Jurkat cells spiked in at 5% of the initial pool, stained only with hashtag (HT2, against universally expressed 
proteins CD298 and β2 microglobulin) DNA-barcoded antibodies, were included in this mixed cell line experi-
ment. These cells were designed to serve as controls, to quantify the rate of barcode swapping during PCR ampli-
fication and NGS, along with inappropriate signal caused by antibodies disassociating from their initial target 
cell and binding a new one during the rounds of split-pooling (Fig. S1). These HT2-stained controls showed no 
CD56 or CD4 antibody signal (Fig. 2B), suggesting that the signals we observe from QBC2 are from genuine 
interactions between antibodies and their target cell. As a control for efficient blocking post-ligation, Jurkat cells 
stained only with HT3 (a hashtag antibody with a different antibody barcode) DNA-barcoded antibodies, were 
spiked in at 5% of the total cell count after the first round ligation (Fig. S1). These cells were designed to assay 
the efficiency at which we blocked the first round splint oligonucleotide, before pooling the cells. If the blocking 
of the round 1 splint oligonucleotide was highly efficient we would expect no HT3-stained cells to be detected in 
the final analysis, given that they never received the first round of ligation which is required to be a substrate for 
the second round. As anticipated, no HT3-stained cells (Materials and Methods) were detected in sequencing. 
These data indicate that barcodes are only ligated within their appropriate well and are not being inappropriately 
ligated to the incorrect cell during our subsequent rounds of pooling and further manipulation.

To establish the quantitative nature of QBC2, we compared the center-log-ratio (CLR)-transformed scores 
of antibody counts from QBC2 to the current gold standard for protein quantification, flow cytometry16,27. In 
these experiments, Jurkat cells were co-stained with an antibody cocktail containing both CD4 DNA-barcoded 
antibodies and CD4-FITC antibodies. Cells were first sorted through fluorescent activated cell sorting (FACS) 
based on fluorescent CD4-FITC levels. High, medium, and low CD4-FITC cell populations were then stained 
with hashtag antibodies to mark their FACS sorted population identity before processing via QBC2 (Fig. 2C). 
CLR-transformed scores of CD4 for each sorted population were compared against FACS measurements to show 
that QBC2 can quantitatively differentiate protein expression levels in single cells (Fig. 2D,E).

Detailed benchmarking of this method shows that sequencing coverage per cell is lower than traditional 
single-cell RNA-seq, where 105–106 reads per cell are targeted (Fig. S2)28. However, due to the over three orders 
of magnitude abundance of proteins over RNA, this is expected. Furthermore, for these experiments the lower 
dimensionality of the sample proteome space (only 5 markers assayed) and the use of unique molecular identi-
fiers (UMIs) on each DNA-barcoded antibody, allows us to accurately identify different cell types (Fig. S2e). Even 
cells with as few as 100 UMIs detected could be assayed and identified.

QBC2 can be used to quantify protein expression in complex samples.  In cases where multiple 
samples need to be processed in parallel, DNA-barcoded hashtag antibodies, against universally expressed pro-
teins CD298 and β2 microglobulin, are used to uniquely tag each sample before samples are pooled and stained 
with a panel of DNA-barcoded antibodies against proteins of interest29. In this experiment, we use unique com-
binations of four hashtag antibodies to uniquely label 10 patient samples (Supp. Table 2). After staining, these 
cells are then ready for subsequent ligation and PCR steps.

Clinical flow cytometry demands high fidelity due to its critical role in the diagnostic process. We provide 
initial evidence that not only does QBC2 live up to such data standards, but that it offers advantages by allow-
ing for use of a single antibody panel to simultaneously quantify all antigens of interest, along with multiplexed 
processing of samples. To demonstrate the potential of QBC2, we conducted QBC2 on 10 varied deidentified 
patient samples from the Columbia University Immunogenetics and Cellular Immunology Lab. Individual blood 
and bone marrow samples were uniquely labeled with hashtag antibodies before isolation of peripheral blood 
mononuclear cells (PBMCs) with Ficoll-Paque reagent. Next, hashtag-labeled PBMCs from all 10 samples were 
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then pooled and collectively stained with a panel of 29 DNA-barcoded antibodies. Cells were taken through 
two rounds of split-pool ligation with a third round of barcoding performed through PCR. A total of over thirty 
thousand cells were profiled (Fig. 3).

Visualization of the resulting data in a TSNE plot enabled us to clearly distinguish cells originating from each 
of the ten patient samples (Fig. S3). Examination of the clustering data reveal the existence of large homogenous 
groups of cells originating from one or two patients (Fig. 3A). Prominent examples of this are the cell popula-
tion originating mostly from patient 9 in the upper-left quadrant of the TSNE plot, as well as the population 
of cells in the upper-right quadrant made mostly of cells from patient 1 and 6 (Fig. 3A). To better understand 
the nature of these distinct populations, we layered onto the TSNE plot expression data for each of the markers 
within our panel (Fig. 3B). Examination of the cell surface markers present on the previously mentioned cell 
populations, revealed them to have patterns of expression associated with hematologic malignancies, explaining 
their abundance within particular patients and in agreement with the known patient history (Table 1, Fig. S4, 
and discussed in detail below). Compared to TSNE representations from previous studies that examine single 
cell protein expression, the representation obtained from QBC2 shows less distinct clusters due to the use of 
only protein expression data in constructing the representation whereas previous studies have also utilized tran-
scriptional data from RNA-sequencing21,30. Nonetheless, canonical cell types are still clearly distinguishable.
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Figure 2.   Benchmarking of QBC2 technology. (A) HEK293T and Jurkat cells were stained separately with an 
antibody cocktail containing the antibodies listed. Results from bulk sequencing of DNA-barcoded antibodies 
bound to stained cells are shown here. (B) In a two-cell line mixing experiment where HEK293T and Jurkat 
cells are used, antibody profiles were used to cluster the cells using k-means clustering (with k = 4) on the top 3 
principal components to separate the distinct cell types. As CD56 and CD4 are seen in the bulk measurements 
to be unique to only one cell type, a visual representation of CD4 and CD56 counts on individual cells shows 
expression for only one or the other, as identified by clustering (Fig. S2C). HT2 control cells as expected did not 
stain for either CD56 or CD4. Out of a total of 1262 cells, only 11 were undetermined (0.9%). (C) Jurkat cells 
were co-stained with an antibody mix containing anti-CD4 DNA-barcoded antibody and anti-CD4-FITC. Cells 
were sorted by FACS for CD4 expression level and high, medium, and low populations were obtained. Sorted 
cells from the three populations were then uniquely labeled with different hashtag antibodies before collectively 
passing through QBC2 to quantify CD4 expression through sequencing of anti-CD4 DNA-barcoded antibodies. 
(D) CD4 expression levels are shown as determined by CD4-FITC antibody levels. (E) CD4 expression levels are 
shown as determined by CLR-transformed CD4 antibody-barcode counts.
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The information obtained from QBC2 corroborated clinical testing diagnosis, which included but was not 
limited to flow cytometry (Table 1). Of these, we focus in on two in particular which show intriguing phenotypes 
to showcase the ability of QBC2 to identify common and pathologic cellular subsets. Analysis of sample 1 focuses 
on the expanded B-cell population, characterized by CD19+ CD3− (Fig. 4A). A comparison of lambda to kappa 
light chain ratio indicates an abnormal kappa light chain bias, supportive of the patient history of B-cell chronic 
lymphocytic leukemia (B-CLL) (Fig. 4B). A normal kappa–lambda ratio ranges from 1 to 230. These signatures 
and measured expression levels reflect flow cytometry measurements of the same sample (Fig. 4). Interestingly, 
the T-cell marker CD8, which was not captured in the original flow panel, shows moderate expression on a subset 
of CD19+ CD20+ cells (Fig. 4A). Though this signature has been reported previously in several cases of CLL, 
there is little consensus about its prognostic implications30–32. Because of the low number of cases that show this 
phenotype and lack of consensus about its biological implications, diagnostic panels are not designed to pick up 

Table 1.   Patient diagnosis and monitoring information. Diagnostic information obtained from clinical 
testing including flow cytometry was compared against evidence obtained from QBC2 to support diagnostic 
takeaways.

Patient Diagnosis from clinical tests and flow cytometry Corroborating evidence from QBC2

1 Chronic lymphocytic leukemia (CLL) Kappa–lambda imbalance in B-cells (kappa expansion)

2 Chronic lymphocytic leukemia (CLL) Kappa–lambda  imbalance in B-cells (lambda expansion)

3 Chronic lymphocytic leukemia (CLL) Kappa–lambda  imbalance in B-cells (lambda expansion)

4 Elevated CD4+ CD25+ (low viability/cellularity) N/A due to low cellularity

5 Post-transplant lymphoproliferative disorder (PTLD) and non-Hodgkin lymphoma 
with targeted therapies (low viability/cellularity) N/A due to low cellularity

6 Chronic lymphocytic leukemia (CLL) Kappa–lambda  imbalance in B-cells (kappa expansion)

7 No pathology (remission monitoring) Everything within normal range

8 Anemia Everything within normal range

9 Adult T-cell lymphoma (ATLL) CD4+:CD8+ imbalance; elevated CD25+, CTLA-4

10 B-cell acute lymphblastic leukemia (B-ALL) Proliferation of CD19+ CD20−CD45− cells consistent with expansion of pre-B-I 
cells
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Figure 4.   QBC2 CLR-transformed antibody scores and flow cytometry from patient 1 bone marrow sample. 
(A) Cells from patient 1 are gated for CD45+ expression. Further stratification of B-cells in this population 
shows that CD19+ CD3− gated B-cells show B-cells that have moderate CD8 expression (red) (isotype control 
expression on CD20+ cells in blue for comparison). (B) CD20+ gated B-cells show a pathological expansion of 
the kappa light chain population. (C) Flow cytometry data for the same sample. Monocytes, granulocytes and 
lymphocytes are identified; lymphocytes are gated for downstream analysis. Population proportion of CD19+ 
CD3− as identified in flow cytometry similar to QBC2 (85% and 84%, respectively, from panel A). (D) Bright 
CD20 expression gated to capture B-cell population. Flow cytometry demonstrates a kappa restricted B cell 
population, concordant with clonal expansion identified in QBC2.
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this combination of markers. By using a QBC2 setup, rare cell phenotypes such as these can be comprehensively 
examined without additional effort, to generate new knowledge and drive the field forward.

Scrutiny of sample 9 shows an expanded T-cell population. A comparison of CD3+ CD4+ versus CD3+ 
CD8+ cells reveals a pathological imbalance between CD4+ and CD8+ T-cells (Fig. 5A). A closer examination 
of the CD4+ cell population reveals cells with an irregularly elevated level of PD1 and CD25 consistent with 
the diagnosis of adult T-cell lymphoma (ATLL) originating from peripheral regulatory T-cells (Fig. 5B,C)33,34. 
These signatures are commensurate with the flow cytometric profiles generated for the sample (Fig. 5D). Fur-
ther analysis of the QBC2 data revealed a subset of ATLL cells with moderate CTLA-4 expression, which is not 
commonly observed in ATLL and was not assayed with the original flow panel (Fig. 5C)35. The significance of 
elevated CTLA-4 levels within ATLL remains unknown, although in other T cell malignancies increased amounts 
of CTLA-4 correlates with more advanced disease36,37.

Discussion
QBC2 enables multiplex quantification of expression levels of dozens of cell surface proteins simultaneously 
on individual cells through a sequencing-based cytometry technique. QBC2 relies on having DNA-barcoded 
antibodies to label proteins of interest, before the cells are passed through a series of two ligation-based barcod-
ing steps and a final PCR barcoding stage. Multiplexed analysis of samples from parallel experiments is easily 
accomplished by pre-hashing the samples. Thus, we showed that 10 clinical samples of blood/bone marrow from 
patients could be multiplexed and analyzed using QBC2.

QBC2 can be scaled to increase the number of cells assayed in two ways; first the number of barcoding wells 
at each stage can be increased, second the number of barcoding rounds can be expanded (an almost two order 
of magnitude increase in throughput can be achieved by one additional round of 96-well barcoding). Increasing 
the number of barcoding rounds requires small changes in primer design but can be seamlessly accommodated 
in the protocol without significant loss of efficiency. Thus, QBC2 allows for a cost-effective and versatile way to 
profile dozens of proteins on tens of thousands of cells. As presented, the cost per cell is calculated to be ~ $0.05/
cell (Suppl. Table 1). This is driven largely by the cost of sequencing and price of DNA-barcoded antibodies. 
As sequencing costs have exponentially decreased over the past decade, this technology will likely become 
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increasingly affordable over time. Furthermore, the recent interest in protein detection via DNA-barcoded anti-
bodies has seen an increase in availability of DNA-barcoded antibodies and a reduction in their cost, making it 
possible to construct evermore diverse panels.

We demonstrate that QBC2 can be used on complex patient samples. Our cell staining workflows require little 
modification between what is currently used for flow cytometry making it easily adaptable and familiar to most 
groups. Though studies have previously showcased the potential using a split-pool method to profile protein 
expression19,24, we expand on this principle, demonstrating that it can be used on human clinical material with 
performance on par with the gold standard clinical diagnostic, flow cytometry. We show that by using a minimal 
panel of commercially available DNA-barcoded antibodies, we are able to detect both canonical and pathological 
cell types. By using QBC2, we gain the ability to compare expression levels of multiple proteins directly on the 
same cell, to gain a more comprehensive understanding of cell state and derive novel biological insight. In future 
iterations of the technology, we anticipate that QBC2 can be expanded to the detection of intracellular targets 
using common permeabilization protocols.

While the current ecosystem of single-cell -omics has seen an explosion of development in the sequencing 
technology space, much of the focus has been on quantifying RNA abundances. Studies have documented that 
correlations between bulk RNA and protein levels to be modest in many circumstances, with estimates rang-
ing between R ~ 0.4–0.938–40. On the individual cell level, this moderate correlation completely disappears, with 
evidence showing little to no relationship between RNA and protein levels detected in single cells16,41, further 
cementing the importance of directly probing and assaying protein levels when trying to paint an accurate picture 
of cell state. QBC2 offers an affordable, rigorous, and quantitative method to perform proteomic profiling with 
minimal additional equipment or technical expertise outside of that available within most modern molecular 
biology laboratories, opening the door to easier protein-forward discoveries and diagnostics.

The premise of QBC2 hinges on being able to access and label nucleic acid substrates through ligation, 
which makes it an easy tool to extend and repurpose. While it may seem that an obvious first expansion of this 
technique would be to parallelize it with more traditional single-cell RNA sequencing techniques to profile the 
transcriptome in an unbiased way, previous work points to the low efficiency of split-pool barcoding for unbiased 
RNA profiling making it a poor candidate for tandem multiplexing with QBC242. A more promising extension 
of QBC2 would be to selectively capture nucleic acids of interest13. To capture RNA, an initial reverse transcrip-
tion with a targeted capture primer followed by a second strand synthesis would be necessary to form a stable 
DNA scaffold for the ligation barcoding reactions. Subsequent rounds of barcoding would ligate onto the 3′ end 
of the synthesized strand. Targeted sequencing would also make it possible to use QBC2 to multiplex CRISPR 
screening with the quantification of protein abundance.

A long-sought after goal has been T cell antigen discovery, whereby T cell receptors (TCRs) and their subunit 
pairs can be matched with peptide antigens presented on major histocompatibility complex (MHC) proteins. A 
comprehensive mapping and association between TCR and antigen pairs could enable us to better understand 
how to engineer cells to target molecular pathogens or unique tumor antigens. Recent work towards this goal 
has relied on fluorophore or heavy-metal labeled peptide-MHC (pMHC) ligands presented to libraries of T 
cells to identify specific TCR-pMHC pairs43,44. Instead, by adopting QBC2 techniques, libraries of T-cells can be 
presented to libraries of DNA-barcoded pMHC ligands to enable high-throughput discovery.

QBC2 is a technique for single cell proteomics that is affordable and scalable. We hope that this technique 
will provide wider access for the scientific community to pursue complex proteomic studies.

Materials and methods
Cell culture and general staining procedure.  Jurkat cells (gift from David Ho, Columbia University) 
were cultured in RPMI media (Gibco) with 10% FBS (Gibco) and 1% Pen Strep (100 × concentrated stock, Inv-
itrogen). HEK293T cells (obtained from ATCC) were cultured in DMEM (Gibco) with 10% FBS and 1% Pen 
Strep. Cells were maintained in T225 flasks at 37 °C in a humidified atmosphere with 5% CO2. HEK293T cells 
were harvested by gentle trypsinization with 0.05% Trypsin–EDTA (Gibco) for 2  min at room temperature. 
Cells were counted on a hemocytometer and combined at a 1:1 ratio. A total of 1 million cells were then washed 
with ice-cold PBS before blocking with 1% BSA and Fc-block at manufacturer’s recommended dilution (BD 
Biosciences) for 30 min at 4 °C on a rotator.

Staining of Jurkat and HEK293T cells.  All DNA-barcoded antibodies were obtained from Biolegend 
and are in TotalSeqB format. An antibody cocktail of CD56, CD155, CD29, CD4, CD45, CD28, and isotype 
control was created by mixing the antibodies at equal ratios. Cells were incubated with a total of 1.5 μg of the 
antibody mixture per 1 million total cells in a staining volume of 100 μl of blocking solution at 4 °C for 1 h. 
Stained cells were washed with 1 ml of ice-cold PBS and then centrifuged for 5 min at 300 g. Four more washes 
were then performed under the same conditions. Finally, stained cells were fixed using 4% PFA for 10 min at 
room temperature and washed once with ice-cold PBS before depositing them into wells for their first round of 
well barcode ligation.

Jurkat CD4 expression cell sorting.  Jurkat cells were harvested, counted on a hemocytometer, and resus-
pended at a density of 1 million cells in 100 μl of blocking buffer. Cells were blocked for 30 min at 4 °C on a 
rotator. A total of 10 million cells were stained with an antibody cocktail containing several DNA-barcoded 
antibodies along with anti-CD4 antibodies that were conjugated to either a DNA-barcode or FITC. The antibody 
cocktail was composed of 1 μg of each of the following DNA-barcoded antibodies, anti-CD4, anti-CD155, and 
anti-CD29 as well as 2 μg of non-DNA-barcoded anti-CD4-FITC antibody. Cells were incubated with antibodies 
for 1 h at 4 °C on a rotator and washed 5 times with cold PBS followed by centrifugation. Cells were then sorted 
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based on FITC fluorescence levels into three bins, high, medium and low. After sorting, each population of cells 
were stained with a hashtag antibody to mark their CD4-FITC expression level. Individual cell populations were 
counted and resuspended to a density of 1 million cells in 100 μl of blocking buffer before staining with 0.5 μg 
of the respective hashtag antibodies. Re-stained cells were washed 5 more times to remove unbound antibodies 
before fixing in 4% PFA in PBS and taken through the ligation barcoding steps.

Staining of patient samples.  Whole blood or bone marrow aspirate from de-identified clinical sam-
ples were obtained from the Columbia University Immunogenetics and Cellular Immunology lab (approved 
by Columbia University, IRB AAAO2000). Approximately 2 ml of either whole blood or bone marrow aspirate 
from each sample was first stained with 0.5 μg of hashtag antibody for 30 min at 4 °C on a rotator (Supp. Table 2). 
Peripheral blood mononuclear cells (PBMCs) were then isolated with Ficoll-Paque according to the manufac-
turer’s protocol. Cells were counted using a hemocytometer and combined stoichiometrically by cell number—
of note several samples had low cellularity and were not able to be equally sampled. A total of 1 million cells were 
then blocked with 1% BSA and Fc-block (according to manufacturer’s protocol). Cells were then stained with 
a total of 4 μg of a panel of antibodies (Supp. Table 3) in 100 μl volume of blocking buffer before being washed 
five times by centrifugation at 300 g and 4 °C. Stained cells were fixed using 4% PFA for 10 min and washed once 
before ligation barcoding.

Split‑pool ligation barcoding.  To prevent cells from sticking to the sides of the wells, all PCR plates and 
microcentrifuge tubes used were first blocked with 5% FBS in PBS for at least an hour before use.

Ligation plates were prepared ahead of time and stored until ready to use. Round 1 wells contained 12 μM 
barcode primer and 11 μM splint primer in water for a total volume of 10 μl. Round 2 wells contained 14 μM 
barcode primer and 13 μM splint primer in water for a total volume of 10 μl (all primers can be found in Supp. 
Table 4). Barcoding plates were heated in a thermocycler to 95 °C for 2 min to anneal primers before ramping 
down to 20 °C at a rate of − 0.1 °C/s and a final hold at 4 °C until ready to use.

Twenty microliters of stained cells were aliquoted into each well of a 96 well plate for the first-round ligation, 
which contained the round 1 well barcode oligos and round 1 splint primer. The mixture was gently mixed by 
pipetting up and down several times. Ligation mix containing 1 μl T4 DNA ligase (400,000 units/ml), 5 μl 10 × T4 
ligase buffer, and 14 μl water was added to each well. The ligation reaction was performed in a thermocycler at 
37 °C for 30 min. The round one splint primer was then blocked to prevent promiscuous ligation upon pooling 
the wells by the addition of 2.64 μl of 100 μM blocking primer, 2.5 ul of 10 × ligation buffer, and 4.86 μl water 
to each well. The plate was then incubated in a thermocycler for 30 min at 37 °C to enable the blocking primer 
to anneal to the splint. Cells were then pooled and mixed by gentle inversion before 100 μl of T4 DNA ligase 
(400,000 units/ml) was added to the cell mixture and cells were redistributed into 96 round two ligation reaction 
plates and incubated at 37 °C for 30 min. Round 2 reactions were blocked with termination solution (3.3 μM 
blocking primer, 0.36 M EDTA; final concentrations).

Cells were pooled after round 2 blocking and counted on a hemocytometer via light microscopy. Cells were 
diluted to an appropriate final concentration before final round barcoding by PCR. The dilution factor is calcu-
lated such that 1 μl of input volume contains enough cells per well such that the total number of cells profiled 
across all wells does not exceed 2% of the total barcode capacity (to avoid barcode collision doublets). A single 
round of PCR was performed at 14 cycles. DNA fragments were cleaned up for sequencing through two rounds 
of bead-based cleanup (at a 0.9 ratio of beads to DNA) according to the manufacturer’s protocol (AMPure XP).

Sequencing, demultiplexing, and bioinformatics.  Paired end sequencing was set up to sequence 100 
bases from the 5’ end and 50 bases from the 3′ end. Samples were sequenced on NextSeq 500/550 and sequences 
were demultiplexed in Illumina BaseSpace according to the default quality control settings before subsequent 
processing.

UMI-tools was used to extract well barcodes from the 5’ read and antibody barcodes along with UMIs from 
the 3′ read. Count matrices are generated using custom python scripts (Suppl. Table 5). Counts are transformed 
via center-log-ratio transformation where the CLR scores for cell x are defined as

where g is the geometric mean of the protein counts for the cell. Dimension reduction is performed via TSNE 
on the CLR scores using a PCA initialization.

Data availability
The sequencing data of experiments are available under NCBI BioProject accession no. PRJNA750440.
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