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Distinct spatio‑temporal 
and spectral brain patterns 
for different thermal stimuli 
perception
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Understanding the human brain’s perception of different thermal sensations has sparked the interest 
of many neuroscientists. The identification of distinct brain patterns when processing thermal 
stimuli has several clinical applications, such as phantom‑limb pain prediction, as well as increasing 
the sense of embodiment when interacting with neurorehabilitation devices. Notwithstanding the 
remarkable number of studies that have touched upon this research topic, understanding how the 
human brain processes different thermal stimuli has remained elusive. More importantly, very intense 
thermal stimuli perception dynamics, their related cortical activations, as well as their decoding 
using effective features are still not fully understood. In this study, using electroencephalography 
(EEG) recorded from three healthy human subjects, we identified spatial, temporal, and spectral 
patterns of brain responses to different thermal stimulations ranging from extremely cold and hot 
stimuli (very intense), moderately cold and hot stimuli (intense), to a warm stimulus (innocuous). Our 
results show that very intense thermal stimuli elicit a decrease in alpha power compared to intense 
and innocuous stimulations. Spatio‑temporal analysis reveals that in the first 400 ms post‑stimulus, 
brain activity increases in the prefrontal and central brain areas for very intense stimulations, whereas 
for intense stimulation, high activity of the parietal area was observed post‑500 ms. Based on these 
identified EEG patterns, we successfully classified the different thermal stimulations with an average 
test accuracy of 84% across all subjects. En route to understanding the underlying cortical activity, 
we source localized the EEG signal for each of the five thermal stimuli conditions. Our findings reveal 
that very intense stimuli were anticipated and induced early activation (before 400 ms) of the anterior 
cingulate cortex (ACC). Moreover, activation of the pre‑frontal cortex, somatosensory, central, and 
parietal areas, was observed in the first 400 ms post‑stimulation for very intense conditions and 
starting 500 ms post‑stimuli for intense conditions. Overall, despite the small sample size, this work 
presents novel findings and a first comprehensive approach to explore, analyze, and classify EEG‑brain 
activity changes evoked by five different thermal stimuli, which could lead to a better understanding 
of thermal stimuli processing in the brain and could, therefore, pave the way for developing a real‑
time withdrawal reaction system when interacting with prosthetic limbs. We underpin this last point 
by benchmarking our EEG results with a demonstration of a real‑time withdrawal reaction of a robotic 
prosthesis using a human‑like artificial skin.
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Over the last decades, the quantification of noxious sensations using neuroimaging techniques has been widely 
studied and  investigated1–3. Despite the significant number of studies in this  context3–6, understanding nocicep-
tive processing in the human brain is still very  challenging3,6,7. This is due to the complex mechanisms involved 
in processing very intense stimuli. Similarly, such stimuli perception and processing are likely to be harbored 
in different regions in the  brain6,8. En route to analyzing and unraveling the underlying processes within the 
human body that can lead to the unpleasant sensation perception, understanding intense thermal sensation, 
in particular, has recently gained  momentum9–11. Neuroscientists have been relying on various neuroimaging 
techniques, including functional magnetic resonance imaging (fMRI)12, Positron emission tomography (PET)13, 
and invasive  recordings14, to investigate exogenous pain processing. Kwan et al.12 investigated in their study 
using fMRI the ACC’s role in sensory, motor, and cognitive functions when perceiving four thermal stimuli 
categorized into innocuous (cool, warm) and noxious conditions (cold, hot). However, the correlation between 
EEG evoked changes and different nociceptive thermal stimuli have been minimally  studied11,15. Overall, EEG 
offers a better temporal resolution and has not been extensively studied in this context. In the study by Mulders 
et al.11, noxious heat and innocuous cool stimuli were applied to the forearm of healthy subjects. Particularly, 
they focused on both heat- and cold-evoked steady-state response. They reported and concluded that both 
stimuli were associated with a periodic EEG response at 0.2 Hz and its harmonics, and the EEG response related 
to cool stimulation had a much lower magnitude and shorter latency compared to the EEG response elicited by 
warm stimulation. In tonic pain stimulation generated by thermal  stimuli16, Backonja et al. analyzed EEG power 
spectra changes and reported an increase in alpha [8–12 Hz] and beta [13–25 Hz]  power16. Along the same lines, 
Ploner et al.17 investigated the different early temporal event-related waves, as well as frequency responses in the 
Gamma band [25–140 Hz]. Interestingly, another  study16 reported a significant difference between painful and 
non-painful stimulations, which was detected in both parietal and frontal areas. Thus, this could be explained 
by motor withdrawal responses. In the same  study16, an EEG frequency domain analysis was performed and 
alpha-band’s event-related desynchronization (ERD) was detected when performing hand immersion into cool 
and extremely cold water (noxious). This initial decrease of alpha-band was followed by an increase in bilat-
eral frontal and posterior regions. Similarly, in Chen et al.18, a pronounced decrease of alpha magnitude in the 
central areas was detected in EEG recordings during an experimental ice-cube cold pressor test. In a different 
study, Hu et al.19 studied the relationship between EEG brain responses and Aδ - and C-fibre skin nociceptors. 
By investigating Aδ - and C-fiber laser evoked potentials, they could provide quantitative analysis about latency 
responses of these fibers and the underlying perception-response functions depending on the stimulus as well 
as the exact stimulated area. Along the same lines, Lv et al.20 used EEG signals to study the effects of stimulus 
mode and ambient temperature on cerebral responses during local thermal stimulation on hand. Interestingly, 
the authors reported an alternation of EEG recordings between thermally stimulated periods and the baseline 
in all the four EEG frequency bands. The study concluded that neural responses in different EEG frequency 
bands were sensitive to different factors when thermally stimulating subjects’ hands. Furthermore, the study by 
Wang et al.21 studied changes in EEG rhythms, after laser-induced heat thermal stimulation of 33–41 ◦ C. The 
authors reported a decrease in EEG power topographic patterns as a result of the laser-induced heat stimulation. 
In another study by Breton et al.22, they focused on power modulation of different oscillatory components and 
its sensitivity to thermal comfort variations using EEG recordings. The authors showed the direct modulation 
of EEG in different frequency bands and the thermal conditions, as well as the direct correlation with thermal 
comfort modulations. Power in the theta band increased in the heat stress phase, compared to the pre-stimulation 
and the recovery phases. In this study, we fill the gap by identifying spatial, spectral, and temporal brain patterns 
that can be used to distinguish a wider spectrum of thermal stimulations (five thermal stimuli) ranging from 
very cold to very hot stimuli. Additionally, we developed an offline system for classifying the different conditions 
from recorded EEG responses.

Unlike previous studies, EEG is also used to quantify brain changes for each of the five thermal stimulations. 
For that, brain activity is investigated at the source level, reporting new findings on the brain anticipatory activity 
of such stimuli and their connections to motor withdrawal preparation. To the best of our knowledge, despite 
the limited number of subjects, this work is the first study to provide such a comprehensive analysis and take 
advantage of the EEG’s temporal resolution to investigate brain responses to a wide range of thermal stimuli, as 
well as to accurately (84%) classify them based on the identified brain patterns. The ultimate goal of this study is 
to use these patterns to develop a real-time withdrawal reaction system when interacting with neurorehabilitation 
 devices23. The benefits of using EEG signals instead of using the robot’s internal reaction would be to reduce the 
reaction latency to a couple of milliseconds (thanks to the high EEG temporal resolution), increase the sense of 
ownership, and enhance the intuitiveness of the prosthesis’ control. More importantly, the identification of such 
brain patterns has various clinical applications, including the prediction of phantom-limb pain and boosting the 
sense of agency for amputees when controlling their prostheses. Similarly, this could provide a tool for objective 
acute and chronic pain assessment for impaired patients, as well as monitor the effect of analgesic drugs. An 
overview of the proposed system is illustrated in Fig. 1.

Results
Thermal stimuli elicit a decrease in EEG alpha power. Five thermal stimuli (very cold, cold, very 
hot, hot, and warm) were delivered to three healthy subjects’ right hands using a customized thermal stimulator. 
Based on the collected behavioral data, these five conditions were clustered into three categories: very intense 
conditions denoted by NOX (very cold and very hot stimuli), moderately intense conditions denoted by MOD 
(cold and hot stimuli), and an innocuous stimulus denoted by INNO (warm stimulus). Throughout the experi-
ment, a thermal sensation scale was used. The NOX stimulations were reported by all the three participants as 
uncomfortable, the MOD stimulations were reported as slightly less noticeable/intense compared to the NOX 
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stimulation, and the INNO was reported as pleasant. The mean± SD subjective responsivity of very cold, very 
hot, cold, hot, and warm was 6.6± 0.48 , 5.9± 0.83 , 4.5± 0.5 , 3.9± 0.3 , 2.6± 0.48 , respectively, on a thermal 
sensation scale from 0 to 9, with 9 being an intolerable noxious sensation. EEG signal was used to quantify brain 
activity during each thermal stimulation and to understand oscillatory neural responses en route to identifying 
specific brain patterns for very intense thermal stimuli processing in the brain. For that, averaged EEG alpha 
power (8–12 Hz) across all trials was analyzed. Our results reveal a suppression of alpha oscillatory activities 
characterized by a significant and consistent decrease in the alpha frequency band power [P < 0.001 , Kruskal–
Wallis test was combined with the post-hoc (Tukey HSD tests)].

It should be noted that this power decrease is detected ipsilaterally and contralaterally but is dominantly 
observed at contralateral-central electrodes (as presented in Fig. 2). Our analysis reveals a weak correlation 
between alpha power and the stimulation condition’s discomfort level (Pearson’s correlation r = − 0.386) at 
contralateral-central electrodes (left side of the brain) (P < 0.05 ). Thus, the more intense the condition is, the 
higher and more visible the decrease is (as shown in Fig. 2).

Spatial‑temporal patterns for thermal stimuli processing in the brain. The aforementioned alpha 
power topography analysis was extended by aiming to identify distinct brain patterns distinguishing between 
the five thermal stimuli and to investigate spatial and temporal brain responses for each stimulus. For both NOX 
stimulations, we find out, as shown in Fig. 3d,e that the highest brain activation is detected at the pre-frontal 
cortex, contralateral somatosensory area, and the central cortex compared to the other three thermal stimula-
tions. For MOD conditions (cold and hot stimuli), the highest brain response is observed in the parietal area, 
mainly on the right parietal electrodes, with a central and frontal deactivation compared to NOX conditions 

Figure 1.  Overview of the thermal sensations processing and analysis system.

(a) (b) (c) (d) (e) (f)

Figure 2.  EEG alpha power topographic maps. (a), (b), (c), (d), (e), and (f) represent topographic scalp maps of 
the EEG alpha power for pre-stimulus, INNO (warm), MOD (hot and cold), and NOX (very hot and very cold) 
stimuli, respectively, using the average of all trials for each condition and across all three subjects. Suppression 
of alpha oscillatory activities was found in MOD and NOX conditions (c,d,e,f), whereas no decrease in alpha 
power was detected for the pre-stimulus and INNO conditions (a,b). The discomfort level represents the average 
of all subjects’ rating of each condition on a thermal sensation scale from 0 to 9.
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(Fig. 3b,c) [p < 0.001 , Kruskal–Wallis test was combined with the post-hoc (using Tukey HSD test) for multiple 
group comparison]. No significant activation is detected for the warm condition, which was reported as a pleas-
ant sensation.

Additionally, as depicted in Fig. 4d,e, the highest activation for NOX conditions is localized at the vertex elec-
trode in the middle of the scalp (Cz) when compared to MOD and warm stimuli (Fig. 4a–c) with relatively high 
activation also being detected in C3 and C5 electrodes. Thus, Cz activity increases with the condition’s discomfort 
level as shown in Fig. 4 with the highest detected Cz activity is for the very cold stimulus. Our results reveal 
that the highest activation for NOX conditions was detected in the interval of the first 450 ms post-stimulation 
([0– 450 ms]) as shown in Fig. 3d,e, whereas the highest activation for the other two groups was observed in the 
interval of [500–1000 ms] post-stimulation as presented in Fig. 3b,c. Based on our findings, we postulate that the 
NOX stimulations lead to high and continuous activation of the central lobe in the brain, which is responsible 

Peak
Peak

Peak Peak

Peak
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(b) (c)

(d) (e)

Figure 3.  Spatial-temporal EEG features for all five thermal conditions. (a), (b), (c), (d), (e), and (f) represent 
topographic scalp maps of the EEG amplitude response for warm, hot, cold, very hot, and very cold stimuli, 
respectively, using the average of all trials for each condition and across all subjects. All topographic maps are 
plotted for the first three-second post-stimulation time window (average across each condition’s trials). Peaks 
are detected at 0.3 s, 0.45 s, 0.65 s, 0.95 s, and 0.8 s, for very cold, very hot, hot, cold, and warm, respectively. 
The get_peak algorithm in the MNE  software24 is used to compute and detect the amplitude of the maximum 
EEG response (local maxima) for NOX as well as the location (EEG channel) and latency of the detected peak 
amplitude. Time courses of NOX stimulation, identified and found using the get_peak algorithm were used 
thereafter for analysis and benchmarking with the other two conditions. The global field power (GPF) is plotted 
for each stimulation condition.
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for motor movement planning. We wish to mention that no specific spatial-temporal patterns were found in the 
pre-stimulus phase whose results are presented in the Supplementary Fig. S2.

Classification of the five different thermal stimulation conditions. After investigating spectral, 
and spatio-temporal patterns for the five different stimuli, we sought to classify them.

Unlike previous  studies15,25, where the focus was either on classifying hot and cold stimuli or distinguishing 
between pleasant and noxious stimuli, the novelty of this study resides in the ability to distinguish between five 
different temperature levels. We wish to mention that the focus of this study was not to do a multi-class clas-
sification task but rather to distinguish between specific pairs of thermal stimuli, which are difficult to classify 
and have not been addressed before in the literature. In the present study, we are able to achieve a mean balanced 
accuracy (bACC) of 86.89%± 3% , 78.16%± 6.66% , 84.53%± 3% , 70.5%± 3.1% , and 100% , when classifying very 
hot and hot, very cold and cold, warm and cold, warm and hot, and very hot and very cold stimuli, respectively, 
yielding an average validation accuracy of 87.4% within all classified conditions and across the three subjects. 
Classification results are summarized in Fig. 5. A mean bACC of 84% is obtained in the test phase within all 
sub-classes and across all the three subjects. For that, data were split into 80% and 20% where stratified ten-fold 
cross-validation was performed on 80% of the data (validation phase) and the saved model was used to predict 
correct labels on the remaining 20% of the trials in the test phase. Principal component analysis (PCA) was 
performed on the extracted features, which resulted in a clear separation between the different classes as shown 

EEG (Cz channel) Activity for the 5 Thermal Stimuli

(a) (b) (c) (d) (e)

Figure 4.  Cz activity for all five thermal conditions. (a), (b), (c), (d), and (e) represent EEG activity in Cz for 
warm, hot, cold, very hot, and very cold stimulus, respectively. The plot shows that the lowest Cz activity is 
detected for INNO and the highest for the NOX stimulation condition.

Very Hot
Very Cold

Cold
Warm

Very Cold
Cold
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Figure 5.  2D feature space after performing PCA highlights a clear separation between the different sub-classes. 
× 1 and × 2 represent the first two components after performing PCA. (a), (b), (c), and (d) represent the feature 
space when classifying (very hot, very cold), (very cold, cold), (cold, warm), and (very hot, hot), respectively. (e) 
shows the validation accuracy for the three subjects (S1, S2, S3) and for the classification tasks using a polar bar 
plot. This circular plot shows the accuracy range mean± SD achieved by the three different subjects. The three 
horizontal bars represent the min, median (black bar), and max accuracy values.
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in Fig. 5. Figure 5 shows that very hot and very cold are easily classified, whereas very cold and cold are hardly 
distinguishable. It should also be noted that warm and hot are very close to each other, and hence we did not 
obtain a high accuracy (70.5%) when differentiating between the two conditions using EEG signals. By analyzing 
each individual subject’s performance, we observe a high variability between the three subjects. The third subject 
(S3) clearly outperforms the others (Fig. 5e) with an average accuracy of 88.5% for all the four classification tasks, 
whereas S2 and S1 reach an average validation accuracy of 83.4% and 80.15%, respectively.

Very intense stimuli induce high and early activation of the ACC . To extend our findings and 
analysis, we studied brain activity at the source level for the five stimulation conditions, grouped into the three 
classes: NOX, MOD, and INNO.

Localized sources using EEG signals were used to gain insights into thermal stimulus processing in the brain 
and the different activated regions involved in the perception of each of the three groups. All five conditions were 
investigated as shown in Fig. 6. For that purpose, we reconstructed EEG source dynamics using distributed source 
 modeling26,27 based on realistic head  models28,29. As illustrated in Fig. 6, only NOX conditions show activation 
of the mid-frontal cortex, including the ACC. Interestingly, this activation does not persist over time and is only 
detectable in the 100 ms post-stimulus. Particularly, very cold stimulus elicits an early response of the ACC at 
29 ms and is followed by stronger activation at 53 ms post-stimulus, which diminishes over time. Similarly, as 
shown in Fig. 6, the very hot stimulus, which was rated less intense than the very cold, elicits activation of the 
ACC at around 29 ms post-stimulus and solely persisted for the first 50 ms. For the remaining conditions, no 
ACC activity is detected and a parietal activity is clearly visible in the first 100 ms post stimulation. Although the 
latencies of activations are not compatible with conduction velocities of nociceptive and thermal nerve fibers, we 
interpret this as an anticipatory brain behavior, given that subjects knew in advance (with the sound beep that 
was played 5 s prior to the actual stimulation) that they might be exposed to a very intense stimulus. Overall, 
the increase in ACC activation under the extreme conditions presents direct evidence of ACC’s role in activating 
the brain’s autonomic functions and attention circuitry, as well as an important role in external sensory stimuli 
 perception30,31. Thus, this is in accordance with previous studies using different types of stimuli. As the highest 
and earliest ACC activation is found for the most NOX condition, the time snippets for it are used as a reference 
when analyzing the other conditions.

Very intense stimuli elicit high activation of the pre‑frontal, frontal and central cortex, soma‑
tosensory areas, as well as the parietal lobe. Next, we attempted to characterize changes in cortical 
activity during perception of the five different thermal stimuli. For our extended source localization analysis, we 
solely focused on the most NOX condition (very cold) en route to understanding the brain circuitry involved 

Figure 6.  ACC-EEG activity analysis for the NOX stimuli, as well as for INNO stimulus in the first 100 
ms (medial view). The dynamic statistical parametric maps (dSPM)  technique32 is used to compute the 
reconstructed sources. The used scale represents the EEG amplitude activity in uV. Continuous and high EEG 
activity in the ACC starting 20 ms post-stimulus for NOX stimuli which is only detected for the first 100 ms. 
MOD and INNO conditions elicit an activation of the parietal lobe.
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in very intense thermal sensation processing. Overall, we observed that brain activity associated with NOX 
condition activates more brain regions when compared to to MOD and INNO stimulations (Fig. 6). Our results 
reveal that NOX sensations elicit high activation of the pre-frontal, frontal and central cortex, somatosensory 
areas, as well as the right parietal cortex. Similarly, we observe that, for NOX conditions, contralateral activity is 
significantly higher than the ipsilateral one, which is aligned with the  literature16. These activated regions seem 
to form a complex interconnected circuitry for very intense stimulus perception and processing as was reported 
in the  literature16. Figure 7 (left) summarizes the main activated brain regions for NOX conditions using EEG 
localized sources, whereas the right side of Fig. 7 highlights the time response of those activated regions. Over-
all, as shown in Fig. 7, the most NOX stimulus induces activation of the parietal areas, which is followed by an 
activation of both frontal (23 and 242 ms) and central area (76 and 292 ms). Despite the incompatibility with 
conduction velocities of nociceptive and thermal nerve fibers, these early activations could be explained by an 
anticipatory brain activity.

The robotic application: a reflex system in robotic hands that can mimic the natural human 
hand when reacting to the same five thermal stimuli. The ultimate goal of our study is to develop a 
real-time withdrawal reaction when amputees interact with their prosthetic limbs, which can first protect these 
devices from damaging stimuli, but particularly, increase the sense of  agency33, the intuitiveness of  control34,35, 
and more importantly, reduce the withdrawal reaction time using the effective identified EEG neuronal features. 
As a first step, we benchmarked our findings and compared the effectiveness of using the identified EEG patterns 
when interacting with prostheses with the device’s internal reaction without the proposed human-in-the-loop 
approach. By investigating this other side of the equation, we developed a withdrawal reaction system in a UR-10 
robot arm alongside an attached prosthetic hand with no human-in-the-loop. The robotic hand equipped with 
human-like skin, so-called robot  skin36, can distinguish between the same above-mentioned five thermal stimuli 
with a validation accuracy of 92.6% and real-time test accuracy of 84%. It should be noted that when running 
this experiment for a long time, very cold and very hot were confused with hot and cold, as objects’ temperature 
changed when performing long-time recordings, which could explain the performance (accuracy) decrease in 
the real-time setup as shown in Fig. 8b. Overall, based on the object’s temperature and the classified type of 
thermal stimulus (INNO, MOD, and NOX), the robot arm withdraws at different speeds: delayed (very slow) for 
INNO, slow for MOD, and fast for NOX stimuli. The system and the main results are illustrated in Fig. 8. A video 
of a successful live demo is available in the Supplementary Information section. As shown in the demo video in 
the Supplementary Information, the withdrawal reaction time could be reduced, when using EEG neuronal pat-
terns, from 3 s to 750 ms, and hence allowing for an immediate reaction system in prostheses. Ultimately, using 
real-time EEG patterns, robotic prostheses will mimic the actual human hand while substituting the role played 
by the reflexive motor neurons in the spinal cord.

Discussion
In this study, temporal, spatial, and spectral EEG changes for five different thermal stimuli were character-
ized using brain signals collected from three healthy subjects. EEG was used to quantify brain changes and to 
develop distinct patterns for five different thermal stimuli because of its good compromise between the level 
of invasiveness and high temporal  resolution37. Overall, the main findings of this work concur with previous 
reports of brain-related activation for noxious-evoked stimuli. To the best of our knowledge, this study is the 
first to propose a comprehensive analysis of brain activity using non-invasive EEG recordings for five thermal 
stimuli ranging from extremely cold to extremely hot sensations. Similarly, this study presents new findings on 
how five thermal stimulations are processed in the brain and uses the identified patterns to distinguish between 
the different sensation levels, showing the potential of such an approach for real-time human–robot interaction.

Neural patterns of thermal stimuli‑evoked activity. As shown in Fig. 2, EEG-alpha power was found 
to be associated with stimulus intensities. Overall, a pronounced decrease of alpha power in the central areas was 

Figure 7.  Main activated region for the very intense stimuli after performing EEG source localization. ACC, 
central cortex, pre-frontal and parietal areas are the main activated brain regions for NOX conditions (left). 
NOX condition localized sources with brain time responses in the first 300 ms window of post stimulation.
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identified for NOX conditions. Although this decrease was detected contralaterally and ipsilaterally, it was sig-
nificantly higher on the contralateral side of the stimulation. We postulate that this significant power difference 
is explained by an  ERD38,39, which is usually evoked by phasic endogenous or exogenous stimulation, frequently 
applied in visual, auditory, and movement experimental  paradigms40. As this decrease was mainly detected in 
central electrodes, overlapping with somatosensory regions, we hypothesize that for NOX conditions, subjects 
had the intention to move their limbs away from the very intense stimulus, which potentially resulted in a motor 
imagery  movement41,42, and led to a clear ERD pattern similar to the one widely used in brain–computer inter-
faces. Overall, our results concur with most previous studies investigating the relationship between EEG-alpha 
power and noxious  stimuli16,43, as well as further extend upon these studies by analyzing five distinct thermal 
conditions. In another  study16 where only two conditions (cold and cool water) were investigated, Backonja et al. 
reported an initial decrease in alpha power in the first minute post-stimulus, which was thereafter followed by 
an alpha power increase in bilateral frontal and posterior electrodes. Similarly, they reported that cool (warm) 
stimulation produced less alpha power change than the cold condition. Along the same lines, the pronounced 
decrease of alpha amplitude in the central areas was also detected in Ref.18, where subjects participated in an ice-
cube cold pressor experiment. It should be noted, however, that in some previous studies noxious stimulations 
were instead associated with an increase in alpha  activities44. This discrepancy is likely to be explained by the 
chosen stimulation type or subject’s age difference, as reported in the  study44, where transcutaneous electrical 
nerve stimulation (TENS) was used to elicit unpleasant sensations and was tested for both young and elderly 
people. When analyzing the other EEG frequency bands, we also observed power decrease (as in alpha power) in 
the theta and beta frequency bands, as was also reported in previous related studies, whereas an overall increase 
in the power of gamma-band was  observed5,45–47. As no statistical significance was found when analyzing theta, 
beta, and gamma frequency bands, their corresponding results are presented in the supplementary materials. As 
depicted in Fig. 3, our results reveal that NOX conditions generated high activity around Cz central electrode 
compared to MOD and INNO conditions. Additionally, as shown in Fig. 3, NOX stimuli generated higher brain 
activity in the first 450 ms post-stimulus, whereas MOD and warm conditions showed higher brain activity 
starting 500 ms post-stimulus. We hypothesize that only the NOX conditions trigger a withdrawal reaction, 
reflecting the subjects’ intention to escape the potential source of very intense thermal sensation. The latter 
heavily involves central brain areas, and hence explains the higher activation of Cz electrode for NOX stimuli 
compared to the other stimulation conditions. This result is in accordance with previous studies where high 
activation Cz was also reported when using different NOX stimuli with  amputees48 and  infants49.

Neuronal responses to varying thermal stimulus tolerability: relation with Aδ‑skin nocicep‑
tors. Even though the interpretation of the exact mechanisms responsible for the detected latency difference 
when responding to different tolerable and intolerable thermal sensations remains unclear, we postulate that 
there seems to be a strong correlation with the Aδ-skin nociceptors’ time responses. Noticeably, the brain time 
response for NOX stimuli (as shown in Fig. 3) matches the response time of Aδ , as reported in this previous 
 study19. Aδ-fibres, which are ‘fast’ myelinated nociceptive nerve fibres that respond to noxious thermal stimuli 
by carrying rapid nervous messages from the skin to the  brain50 and play an important role in the ascending 

Figure 8.  Overview of the real-time robotic experiment, showing a robot arm that can feel, distinguish, and 
react to the same five thermal stimuli. (a) shows the confusion matrix for the real-time experiment when 
classifying the five thermal stimuli. (b) shows the whole work flow, the sensing part using the robot skin, stimuli 
classification, and the robot control framework using the robot operating system (ROS).
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pain-control  pathway51, were shown in Hu et al.19 to have a strong brain response in the first 400 ms after noxious 
stimulation. Thus, this could present evidence of their involvement in processing NOX conditions and explain 
the observed latency when processing the two NOX stimuli.

ACC’s strong and early activation reveals its role in thermal sensation anticipation and focal 
attention. The role of ACC in thermal stimuli processing and their related cognitive functions has been 
widely investigated in the  literature12,52,53. Overall, its role is believed to be associated with stimulus perception, 
as well as prediction and avoidance of very intense stimuli, with a particularly significant response when process-
ing heat  stimuli12,54,55. In the present study, we observe strong and early activation of the ACC for NOX stimuli 
in the first 100 ms post-stimulation (Fig. 6). Noticeably, this activation does not seem to persist after 100 ms (as 
shown in Supplementary Fig. 3 in the Supplementary Information). Unlike NOX stimuli, this early high ACC 
activation was not detected when processing the other thermal conditions. Our results reveal the important 
role of the ACC in the central processing of thermal  stimuli56,57. It is worth noting that during the experiment 
a warning beep was used before each trial (with a fixed time), and hence the subjects knew in advance that the 
stimulation would happen in a few seconds following the beep. This could explain the anticipatory pattern, as 
the identified latencies of brain responses are not compatible with thermal fibers conductivity. Additionally, 
recordings were performed in two different sessions, when the subjects were exposed to one of the two NOX 
stimuli (either very hot of very cold), which were randomized with the MOD and INNO stimuli. As a result, 
we hypothesize that the subjects had expectations preceding the very intense thermal stimuli and this triggered 
activation of certain brain regions even before the stimulation’s occurrence, so-called “anticipation”. This seems 
to provide an explanation to this early ACC activation (29 ms) shown in Fig. 6, further demonstrating its role in 
perceptual-anticipation of NOX stimuli, and could provide an evidence that this stimulus anticipation triggered 
the salience  network58. Such network pre-activates particular brain  regions59 whose the ACC is one of the central 
nodes. Our findings are also in accordance with the literature, where other studies showed, using invasive neu-
roimaging techniques, an ACC activation 2600 ms prior to the  stimulus59. Interestingly, as our results reveal that 
this ACC activation was generally associated with high fronto-central activity, this could be further explained 
by a fear-induced activity that the subjects had during the experiment. Although fear processing seems to be 
harbored in different brain regions, it was shown in a previous  study8 that a fear-induced pattern was associ-
ated with a fronto-central activation stemming from the ACC. Similarly, as this activation persists for the 100 
ms post-stimulus and solely for NOX conditions, this highlights its role not only in anticipation but also in the 
second phase of sensory processing and focal attention to NOX stimuli. Hence, this clear ACC activity (at 53 and 
88 ms) shown in Fig. 6 could be linked to the subjects’ inhibitory intention and withdrawal behavior when being 
exposed to very intense thermal  conditions60. One intuitive reason why this activation was only present for NOX 
conditions is that the other stimuli (INNO and MOD) did not present any potential risk and were not considered 
by the subjects as harmful or damaging stimuli. Additionally, as this activation was only detected for NOX condi-
tions, we postulate that this could be explained by an internal brain model that is anticipating these stimuli and 
only reacting to the most intense ones. Overall, using a high-temporal resolution neuroimaging technique, our 
results solidify and extend upon previous findings on the essential role of the ACC as an early warning system 
to alert humans about potential risks, and could further explain its involvement in autonomic functions, such as 
body preparation to process external thermal sensations.

Interpretation of central role of prefrontal, parietal, central, and somatosensory areas in ther‑
mal stimuli processing. In this study, we report strong brain activation of pre-frontal, frontal, somatosen-
sory, and central areas for NOX conditions [p < 0.0001 ], whereas high activation of the right parietal cortex was 
found for MOD and INNO conditions [p < 0.001 ] as was illustrated in Figs. 6 and 3. Overall, the involvement 
of these cortical areas in very intense thermal sensation perception has been previously confirmed in different 
neurophysiological  studies16. Particularly, Pardo et al.2 showed, using PET techniques, the specific role of the 
right posterior parietal cortex in focal attention and processing of sensory input, regardless of whether it is 
noxious or not. It is also proven that the parietal area is part of a larger network of sensory stimuli processing, 
which involves attentional allocation, orientation and preparedness for withdrawal reactions. This could pro-
vide an explanation of the observed right posterior parietal activity when processing MOD and INNO stimuli. 
Interestingly, this seems to involve more regions when perceiving NOX sensory stimuli, mainly bilateral pre-
frontal, medial frontal, pre-motor cortex and the ACC, forming a complex attention  circuitry2. The activation 
of the frontal area reflects “vigilance”13, focal attention, and action  planning61. Similarly, it could be also linked 
to its connection to the basal ganglia which has different roles in noxious stimuli processing, including sensory 
discrimination, information gating, and warning input to different motor  areas62,63. We postulate that this could 
reveal the subjects’ intention to either move their arms when being exposed to very intense thermal stimuli (a 
motor imagery function) or an internal suppression and inhibition of these NOX sensations, given that they 
were strictly instructed not to move their limbs throughout the recording sessions. As the frontal area is heavily 
connected to the ACC, their observed simultaneous co-activation for very cold and very hot stimuli could be 
further interpreted as a stimulus evoked fear avoidance which may lead to motor initiation or suppression, and 
hence activate the pre-motor cortex.

Very intense thermal sensation predictivity for engineering and clinical applications. In our 
study, the five thermal stimuli ranging from extremely cold to extremely hot were recognized using EEG signals 
with an average validation accuracy of 84% across the three subjects. To the best of our knowledge, this high clas-
sification accuracy of five distinct thermal stimuli, using non-invasive brain recordings, has not been reported 
before in the literature and presents clear evidence of the uniqueness and novelty of this study. Aside from real-
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time human–robot interaction applications, such a classification system could be used to predict unpleasant 
sensations even before they occur, since our ACC analysis has shown that a clear anticipation pattern in the first 
100 ms post noxious stimuli could be detected. Thus, this can be used for clinical applications, such as phantom-
limb pain  mitigation64 and chronic pain  treatment65. As was shown in our results, inter-subject performance dif-
ferences were clearly identified. We postulate that this could be explained by the fact that people tend to perceive, 
behave and react differently to NOX, MOD, and INNO stimulations, depending on many external uncontrolled 
factors, such as age, country of origin, and gender. Hence, further improvement of the classification system and 
its robustness should be performed.

Towards a real‑time withdrawal reaction system in robotic prostheses. The scope of this study 
goes beyond understanding the underlying mechanisms of thermal stimuli processing and perception in the 
brain, as well as the identification of brain features. Thus, our ultimate goal is to develop a real-time withdrawal 
system in embodied  prostheses48 en route to increasing the sense of embodiment and  agency66. Here, we propose 
a new and low-latency system of detecting thermal sensation in the brain based on EEG signals. Additionally, 
we underpin the potential of this system from a robotic perspective, by demonstrating a robotic prosthesis that 
can sense, distinguish, and react to the same five thermal stimuli. The purpose of the robotic experiment is to be 
able to compare the usefulness of the human-in-the-loop reaction  system23 with one relying on the robot’s low-
level reaction controller, which uses machine learning without the human involvement when perceiving external 
stimuli. As this EEG system seems to offer a lower latency and could even anticipate very intense stimuli, our 
next step would be to connect the EEG part to the robotic approach by investigating the use of the developed 
brain features in real-time with the robotic prosthesis’ reaction system using the high sensitive robot skin, and 
validate the withdrawal reaction system when interacting in real-time with an embodied  prosthesis23. Nonethe-
less, we are aware that one of the limitations of this study is the few subjects who participated in the experiment. 
Hence, generalizing the main finding of this work, including all comprehensive analyses, the identified patterns, 
as well as the high classification accuracy of the five different stimuli still needs to be further investigated and 
solidified. Nevertheless, we overcome this limitation by showing that most of our findings concur with the litera-
ture and previous studies whose purposes, goals, and used imaging techniques were different. Overall, this study 
provides initial significant findings supporting the efficacy of our paradigm.

Methods
Subject recruitment and sensory stimulation. EEG data were recorded from three healthy volunteers 
(males) aged 29.66± 10.27 mean± SD, range[18−−43]years) . All five thermal stimuli were delivered using 
customized thermal stimulators. It is worth noting that a sixth stimulation condition was recorded, where the 
three subjects were exposed to both NOX stimuli simultaneously. The results of this condition were investi-
gated and presented separately in the Supplementary Information. Participants were asked to score the stimulus 
intensity on a well-validated thermal sensation scale-the visual analog  scale67 ranging from 0 to 9 (9 being least 
tolerable). The average thermal sensation scoring across all subjects for the five thermal stimuli is depicted in 
Fig. 9b. All participants were right-handed, and hence all sensory stimulations were performed on their right 
arms. Temperature range for each stimulation condition is as follows: [10 ∼ 14.99] , [16 ∼ 24.99] , [25 ∼ 33] , 
[35 ∼ 40] , [40.99 ∼ 44.99]5 ◦

C , for very  cold68,  cold69, warm (room temperature in Singapore),  hot70, and very 
 hot70, respectively, as illustrated in Fig. 9d.

Research governance. This study was carried out in accordance with the Declaration of Helsinki. All 
experimental protocols were approved by the Institutional Review Board of the National Health Group, Sin-
gapore. All subjects were informed orally and in writing about the aims of the study, and a written consent for 
participation was sought and documented.

EEG data recording and experiment. The study of brain activity evoked changes by five thermal stimuli 
was investigated using 64-channel EEG recorded data. To make sure that the subject was not substituting/antici-
pating the stimuli by sight, all subjects were blindfolded during the recordings. All recording sessions took place 
at the lab and were set up as shown in Fig. 9A. For each subject, two recording sessions were performed on two 
different days when each of the two NOX stimuli (very cold and very hot) were delivered on separate days. In the 
first recording session (day 1), very hot, hot, and warm stimuli were delivered for each subject (10 trials for each 
condition) yielding a total number of 30 trials. In the second recording session (day 2), very cold and cold stimuli 
were delivered for each subject, yielding 20 trials (10 trials for each condition). At the end of the second session 
of day 2 and in a separate investigation, each subject was exposed to both stimuli (very cold and very hot) simul-
taneously with a total number of 10 trials. Overall, 60 trials were recorded from all conditions, 50 trials for NOX, 
MOD, and INNO stimulations were processed and analyzed, whereas the remaining 10 trials for both hands 
stimulation conditions were analyzed separately and whose obtained results are presented in the Supplementary 
Information. Each trial consisted of three stages: baseline, stimulation, and recovery. It had a total duration of 
40 s (10 s baseline and 30 s stimulation) where subjects were exposed to one of the five thermal stimulations 
separated by 2-min recovery breaks. Before each run, the surface temperature of the subject’s hand, as well as 
the thermal stimulator, were measured using an infrared thermometer. On each day, the total experiment lasted 
approximately 1.5 h. A Python script was used to display an automated visual cue informing the experimenter 
which thermal stimulus must be delivered. Each time, cues were pseudorandomized and were chosen from a 
discrete uniform distribution. An auditory warning beep preceded the cue display and was delivered five sec-
onds before the commencement of the trial. Participants were asked to score the stimulus intensity during the 
recovery break at a scale from 0 to 9, as shown in Fig. 9c. During the experiment, participants were seated in a 
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comfortable chair in a silent, temperature-controlled room and were instructed to not execute any movements. 
EEG data were collected using a 64 channel EEG device (Neuroscan system) with a 512 Hz sampling rate. The 
montage was in accordance with the 5% 10/20 system. Electrode impedance was kept below 10 kOhm in at least 
95% of derivations throughout the experiment. The experimental paradigm is made publicly available with the 
gumpy software  toolbox71. An animation video demonstrating the whole experiment and the main obtained 
results is available in the Supplementary Information.

EEG signal processing and classification. The reference electrode was chosen on the vertex and the 
ground electrode was located on the forehead. Data were processed with custom designed Jupyter notebooks in 
Python using both  gumpy71 and  MNE24,72 toolboxes. For data analysis, 60 trials in total for the six stimulation 
conditions were considered. It should be noted that only 50 trials were used as the 10 trials that correspond to 
the both hands stimulation (very cold and very hot simultaneously) were analyzed separately and their results 
were presented in the Supplementary Information. EEG signals were band-pass-filtered between 0.5 and 70 Hz 
using a fourth-order Butterworth filter and notch filtered thereafter at 50 Hz. The cutoff frequencies Wc = (low 
= 0.0019, high = 0.273) were expressed as the fraction of half the sampling frequency (the Nyquist frequency) 
and the band corner frequencies. All signals were extracted from the recordings in 3000 ms epochs and used 
for further analysis. Epochs were baseline-corrected to the pre-stimulus  mean38. Muscle artifacts were rejected 
by the Automatic Artifact Rejection (AAR)73 and independent component analysis (ICA) was used to remove 
eye movement  artifacts74. Additionally, epochs containing high-amplitude artifacts or high-frequency muscle 
noise (visually inspected) were rejected from the analysis using a threshold-based  method75. For that, EEG data 
beyond 100µV  were removed, whereas recognized EMG artifacts (characterized by a high frequency component 
ranging from 50 to 200 Hz and high amplitude between 1 and 10  mV76) were manually eliminated. All EEG scalp 
topographies were plotted using the MNE toolbox, by matching channel location with its value given the defined 
latency. Topographies are color coded, where the green or yellow present null values, blue color presents negative 
values, and red encodes positive values; with the color intensity correlating with the channel value. Chosen time 
latencies in the topographic maps were based on an  algorithm24 that computes and finds the highest peaks at 
each time point from all electrodes. For feature extraction and classifying the five conditions clustered in differ-
ent binary groups from EEG, we implemented and tested a wide range of classical machine-learning approaches 
that are based on hand-crafted features. The common spatial patterns (CSP)77 was used as a feature extraction 
method. Linear Discrimination Analysis (LDA) was selected to classify the extracted features from EEG data. A 
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Figure 9.  Experimental paradigm and data recording. (a) An example of a recording session of EEG during the 
thermal stimulation task. (b) A violin-plot presenting the average thermal sensation scoring of the five thermal 
stimuli across all the three subjects. (c) Experimental recording session starting with stimulus and concluded by 
a thermal sensation rating task during the recovery inter-trial break period. (d) A bar plot describing the mean 
and the standard deviation of the used temperature interval for each of the five thermal stimuli.
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PCA with only two components was used for dimensionality reduction, and the two components were fed there-
after to the different classifiers resulting in the presented 2D feature space (Fig. 5). During the test phase, data 
were divided into 80% for training and 20% for testing. As the total number of 50 trials was small when splitting 
the data into validation and test sets (only a few trials remained for each condition during the test phase), a data 
augmentation was  performed39 for the classification task. The data augmentation formula is shown in equa-
tion 2. This yielded 10 separate trials from each one of the initial 50 trials (by using the whole 30 s and splitting 
them into a 3-s trial length), thus forming a total number of 500 trials. The 3-s trial length does not include the 
data before stimulation and the 3-s pre-stimulus phase were extracted separately from the baseline. It should be 
mentioned that the 500 trials (after data augmentation) were only used when performing the PCA, splitting the 
data, computing the test accuracy, as well as when doing the spectral analysis. Overall, 10-fold cross-validation 
was performed on training data to validate the model (validation accuracy) and the remaining 20% were used 
for the test phase. It should be noted for all analyses, bACC (shown in Eq. 4) was chosen as an evaluation metric 
for the trained models. bACC is calculated as the average of the proportion corrects of each class individually, 
where the same number of examples in each class was used.

Source localization. MNE  toolbox24 combined with  gumpy71 Python toolbox were used for EEG process-
ing and for source localization. First, cortical surface reconstruction using  FreeSurfer80. Second, the forward 
solution and the forward model were computed using the boundary-element model (BEM)81. Thereafter, the 
regularized noise-covariance matrix, which gives information about potential patterns describing uninteresting 
noise source, was computed and estimated. Afterward, we computed the singular value decomposition (SVD) 
of the matrix composed of both estimated noise-covariance and the source covariance matrix. Finally,  dSPM32 
was computed and used for source localization and reconstruction. For dSPM, an anatomical linear estimation 
approach is applied. This assumes the sources are distributed in the cerebral  cortex82. A linear collocation single-
layer boundary-element method (BEM)83 is used to compute the forward solution which models the generated 
signal pattern at each location of the cortical surface. A noise-normalized minimum norm estimate is estimated 
at each cortical location resulting in an F-distributed estimation of the cortical current. Overall, dSPM identifies 
the locations of statistically increased current-dipolar strength relative to the noise level.

Robotic experiment. Temperature level classification. Here, we develop a temperature level classifier ca-
pable of using the measured thermal data to predict the temperature range of any object in contact with the 
human-like  skin84. For that, a robot skin  patch84 consisting of two HEX-O-SKIN modules was used throughout 
the experiments as well as in the data gathering process. During the collection, the update rate of the robot skin 
patch was set to 250 Hz. In order to record temperature profiles, one of the five temperature levels was each 
time chosen randomly from a uniform distribution. Five everyday objects, each at a different temperature, were 
chosen for the experiment. All recording sessions were conducted at a room temperature of around 28 ◦

C with 
all windows closed in order to keep the ambient temperature as consistent as possible throughout the recording 
sessions. For feature extraction and classifying the five conditions from EEG, we implemented and tested a wide 
range of classical machine learning approaches that are based on hand-crafted features. Five different classifiers 
from the gumpy.classification  module71 were used and evaluated: K-Nearest Neighbor (KNN), Support vector 
machine (SVM), Naive Bayes (NB), LDA and Quadratic Linear Discrimination Analysis (QLDA). Five different 
feature extraction methods were initially investigated, namely mean absolute value (MAV), root mean square 
(RMS), variance (VAR), simple square integral, slope sign change, waveform length (WL), and Willison ampli-
tude (WA). A feature selection  algorithm85 was performed to select the most discriminating subset of features. 
The best features chosen for this classification task were MAV (formula is shown in 5) and VAR (formula is 
shown in 6) and the best classifier in terms of performance was QLDA. Data were split into 80% for training and 
20% for the test phase. The classifier requires 3 s of contact between the robot skin and an object to predict one 
of the 5 different temperature classes based on the sensor measured data from this contact.

Data analysis and statistics. All relevant information related to the obtained results is presented along-
side their corresponding figures. For all statistical analyses, a normality check was first performed as well as data 
independence before choosing the adequate statistical test. The data normality (for the five thermal stimulation 
conditions) was checked using one-sample Kolmogorov–Smirnov test, which is a strict normality test, and as was 
suggested in the study by Strauss et.al86. Afterwards, the independence was checked using the Mann–Whitney 
U Test was used (frequently used when data is not normally distributed) and we found that the conditions are 
statistically independent (p < 0.001 ). As two conditions were not normally distributed, we applied a Kruskal–
Wallis test instead of  ANOVA86. The Kruskal–Wallis test was combined with the post-hoc test for multiple group 
(pairwise) comparison. The software for the statistical analysis was implemented in python using the scipy and 
stats libraries. The Kruskal–Wallis H statistic was assumed to have a chi square distribution. No Tukey–Kramer 
correction for multi-group comparison was applied. Details are available in https:// github. com/ maxim trp/ scikit- 
posth ocs and https:// scipy. stats. krusk al. html. For all the obtained results, we considered p < 0.05 statistically 
significant to reject the null hypothesis. To study the correlation between alpha power decrease and stimulus 
intensity, the Pearson’s correlation coefficient (r) was applied (the formula is shown in Eq. 3). For that, the pear-
sonr() SciPy python function was used. The coefficient returns a value between − 1 and 1 that represents the 
limits of correlation from a full negative correlation to a full positive  correlation87.

Formulas and equations. GFP computation. The computed GFP shown in Fig. 3 is the standard devia-
tion of the potentials at all EEG channels of an average given reference  map78. The GFP formula is shown below 
in Eq. (1):

https://github.com/maximtrp/scikit-posthocs
https://github.com/maximtrp/scikit-posthocs
https://scipy.stats.kruskal.html
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where µi is the voltage of the map µ for a given electrode i, µ is the mean voltage of all EEG electrodes of the 
map u and N is the number of electrodes of the map µ . High GFP is explained by peak EEG activities as well as 
steep gradients. In Fig. 3, GFP shows the amount of activity at each time point in the field considering the data 
from all the 64 recording electrodes  simultaneously79.

Data augmentation formula. For data augmentation, crops were created using a sliding window with a fixed 
length of, given the sampling frequency of 512 Hz. The sliding window shifts by n timesteps to create next crop 
until the end of the trial. Formally, given an original trial X j ∈ R

E·T with E electrodes and T timesteps, the slid-
ing window generates crops Cj with size T ′ as slices of the original trial as follows:

where j is the trial index.

Pearson’s correlation coefficient (r) formula. The Pearson’s correlation coefficient (r) formula is shown below in 
equation 3:

where: n is sample size, xi,yi are the individual sample points indexed with i, and x̄ =

∑n
i=1

xi
n .

Balanced accuracy (bACC) formula. 

where Sensitivity = True Positive/(True Positive + False Negative) and Specificity = True Negative/(True Negative 
+ False Positive).

Statistical features formulas. Mean absolute value (MAV) formula:

Variance (VAR) formula:

Code availability
Accession codes All software codes will be made publicly available at https:// github. com/ gumpy- bci/ gumpy.
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