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A deep learning model 
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The analysis of human facial expressions from the thermal images captured by the Infrared Thermal 
Imaging (IRTI) cameras has recently gained importance compared to images captured by the standard 
cameras using light having a wavelength in the visible spectrum. It is because infrared cameras work 
well in low-light conditions and also infrared spectrum captures thermal distribution that is very useful 
for building systems like Robot interaction systems, quantifying the cognitive responses from facial 
expressions, disease control, etc. In this paper, a deep learning model called IRFacExNet (InfraRed 
Facial Expression Network) has been proposed for facial expression recognition (FER) from infrared 
images. It utilizes two building blocks namely Residual unit and Transformation unit which extract 
dominant features from the input images specific to the expressions. The extracted features help to 
detect the emotion of the subjects in consideration accurately. The Snapshot ensemble technique 
is adopted with a Cosine annealing learning rate scheduler to improve the overall performance. The 
performance of the proposed model has been evaluated on a publicly available dataset, namely 
IRDatabase developed by RWTH Aachen University. The facial expressions present in the dataset are 
Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. The proposed model produces 
88.43% recognition accuracy, better than some state-of-the-art methods considered here for 
comparison. Our model provides a robust framework for the detection of accurate expression in the 
absence of visible light.

According to Mehrabian et al.1, 55% of the messages are conveyed through facial expression, 7% through linguis-
tic language (verbal), and 38% through paralanguage like intonation (vocal) for the communication of human 
beings feelings. Owing to the wide range of applications, Facial Expression Recognition (FER) is considered an 
important research topic in the research fraternity. The Facial Action Coding System (FACS), introduced by 
Ekman and  Friesen2 and Ekman et al.3 in the field of Psychology, refers to a set of muscle movements known 
as Action Units (AUs) that correspond to the specific emotions. These emotions can be decoded manually 
by observing the muscle movements with the naked eyes from a video taken with visible light. This kind of 
facial expression analysis by using FACS-AU depends on human observation through naked eyes and has no 
mathematical evidence of the expressions related to the facial expressions. Hence, FACS-AU is considered as a 
qualitative approach and has many ambiguities, like neutral face, and smiling face may be identified as the same 
facial expression.

Recently, researchers are showing their interest in developing systems for FER using machine learning (ML) 
and deep learning (DL) approaches, which is not only paving the way for the development of robust FER systems 
but also discovering new parameters used for FER. Generally, the images used for the classification of facial 
expressions are taken by the cameras using visible light, because these cameras are easily available not only as 
handheld cameras but also in attachment with portable devices like phones and tablets, which are cheap. Though 
there are many works available on the recognition of facial expressions from images captured by cameras that 
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use ordinary light in the visible  spectrum4–8, the classification of expressions becomes a tough job because of 
daily conditions like a shadow, reflection, and darkness (or low-light). Moreover, other objects like background 
pictures, scenery, and many other things exist along with the face. Therefore, it becomes an overhead to extract 
the face from the image to analyze the facial expressions. Working with thermal images helps to solve these issues 
as it considers the thermal distribution in facial muscles and provides better facial expression classification.

Due to its various advantages, thermal imaging is used in different real-life applications. A few of such 
applications are mentioned in this section. Authors  in9 have shown that thermal imaging can play an important 
role to facilitate Human-Robot Interaction. Goulart et al.10 have provided a new perspective to the application 
of IR imaging which can be utilized to understand physiological signals to make them significant in social 
interactions. The suggested method also helps to recognize the cognitive processes by involuntary expressions. 
Clay-Warner et al.11 have highlighted how IR imaging can be used to quantify the amount of arousal by detecting 
the expressions. It also helps the robot to identify the emotion of humans during an interaction. Owing to the 
recent outbreak of the coronavirus (COVID-19) virus, thermal cameras are used to detect the skin temperature 
of passengers, which in turn helps to detect fevers, in the airport and other such places, helping in disease control.

In the present study, we have proposed IRFacExNet, a DL-based model for the classification of facial expres-
sions from thermal images. IRFacExNet extracts features with the help of residual and transformation units. The 
generated features are passed through a fully connected layer, which is finally used for the classification of facial 
expressions into eight different emotions namely, Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and 
Surprise. The concept of snapshot ensemble has also been used in the present work to achieve better recognition 
accuracy in comparison to the existing works on the IRDatabase.

The key contributions of the current work are as follows: 

1. Proposed IRFacExNet can classify the facial expressions from the thermal images more accurately.
2. The applied snapshot ensemble technique (which is based on cosine annealing) can enhance the prediction 

capability.
3. The model outperforms many existing FER methods on the IRDatabase.

The rest of the paper is organized as follows: “Literature survey” section discusses the recent works related to 
FER on both thermal and normal images. “Data analysis” section provides a brief discussion on the  IRDatabase12 
used in the current experimentation. “Proposed methodology” section elaborates the proposed methodology 
used for the FER with the details of the architecture, snapshot ensembling, and training process. “Results and 
discussion” section describes the obtained outcomes by the proposed model with exhaustive analysis. Finally, 
“Additional experiments” section concludes the work with the pros and cons of the proposed architecture and 
also highlights the future scope of the work.

Literature survey
As stated earlier, research on building FER systems from images captured by cameras using visible light has been 
popular due to the easy availability and low cost of such cameras. Hammal et al.13 classified facial expressions 
from videos by fusing facial deformation using a rule-based decision with the help of the framework known as the 
transferable belief model (TBM), which considers simple distance coefficients based on simple facial features like 
eyes, mouth, and eyebrows, etc. Ojo et al.14 classified two facial expressions, fear, and sadness using a local binary 
pattern histogram on two databases. One database is the Japanese female facial expression (JAFFE) database 
and the other one is the Cohn cade database. Kyperountas et al.15 developed a multi-step two-class classification 
problem for facial expressions and reported results on the JAFFE and MMI databases. During each step of the 
process, among many two-class classifiers, the best classifier is identified. This helped the authors to come up with 
a better FER system. Ali et al.16 proposed a two-step method for classifying facial expressions. First, the facial 
features were extracted using a histogram of oriented gradients (HOG), and then a sparse representation classifier 
(SRC) was used to classify the facial expressions. Bartlett et al.17 used a combination of Adaboost and Support 
vector Machine (SVM) to recognize facial expressions to be used in the human-robot interaction assessment. 
With the advent of deep learning architecture, the need for manually extracting features is no longer important, 
as techniques like convolution and max-pooling can be used as a part of a model, stacked in layers, to extract 
features and feeding the features into classifiers. Authors  in18 have shown a DL-based method that exploits the 
spectral correlation and the spatial context to extract more relevant features used in their experiment. Rodriguez 
et al.19 proposed a DL-based architecture called Deep Pain, to detect pain automatically by classifying facial 
expressions. Here, instead of manually extracting the facial features, the face is directly fed into a Convolution 
Neural Network (CNN) linked to Long Short-Term Memory (LSTM) to remove long-term dependencies. From 
the classified facial expressions, the model can predict the type of pain a patient experiences. One of the simplest 
processes is to detect FACS-AU by passing facial features to models like the Hidden Markov Model (HMM) to 
decode the emotions. Similar work has been performed by Lien et al.20 by extracting facial features using three 
modules and feeding them into a discriminant classifier or HMM to classify them into FACS-AUs.

As stated earlier, due to other objects and conditions, it becomes too difficult to classify the facial expressions 
as there is an overhead for face detection at different poses and also due to the qualitative nature of FACS-AU, 
there are ambiguities in classifying facial expressions as these vary from the person to person depending on the 
angle of viewing. So, to make only the face part visible, thermal images are used. Thermal images allow only the 
skin of the human to be exposed when the emissivity value is set to near  121. Moreover, in thermal images, the 
thermal distribution in facial muscles is detected. This fact allows better facial expression classification and leaves 
no room for ambiguity as it is not dependent on external factors like human viewing through naked eyes and 
inconvenient lighting conditions. In contrast, the fact that IRTI cameras are less affordable by the common people 
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due to cost, database consists of thermal images of facial expressions is not in abundance. As a result, only a few 
research works have been performed in this area, and hence there is a greater room for research in this domain. 
Jiang et al.22 used geometric characteristics to recognize facial expressions. Yoshitomi et al.23 used a 2-dimensional 
method to detect temperature distribution in the face and passed the features into a neural network to classify 
the facial expressions. Authors have dealt with four expressions (Neutral, Happy, Surprise, and Sad) and achieved 
90% recognition accuracy. Bijalwan et al.24 proposed a principal component analysis (PCA) and distance classifier 
to classify facial expressions. Shen et al.25 used a FER system using video data. Primarily, horizontal and vertical 
temperature differences are used to extract sequential features, and then they have used an FS-technique to find 
the most relevant features for the classification purpose. Eventually, the selected features are passed to the Ada-
boost algorithm using the K nearest neighbors (KNN) classifier to classify the facial expressions. The database 
used for the experiment is Natural Visible and Infrared facial Expression (USTC-NVIE) database, and the authors 
have achieved 75.3% and 76.7% classification accuracies between high versus low arousal and valence. Goulart 
et al.26 used visual and thermal image processing for recognition of facial emotions in child-robot interaction. 
Authors have concentrated on the recognition of five emotions (disgust, fear, happiness, sadness, and surprise) 
and shown mean accuracy of 85.75%. Khan et al.27 developed a FER system based on infrared measurement of 
facial skin temperature variations. Authors have obtained 66.28% cross-validation accuracy and 56% person-
independent classification accuracy, respectively. Prabhakaran et al.  in28 proposed a model for emotion detec-
tion by predicting facial expressions using ResNet152 on NVIE dataset. In this experiment, authors have shown 
that Residual networks are easier to optimize and produce good recognition accuracy by increasing the depth. 
Authors  in29 have shown that facial expression can widely be used in biometric and security applications. They 
have utilized the efficiency of deep learning methods for disguise invariant face recognition by incorporating a 
noise-based data augmentation method. The authors have reported 98.19% recognition accuracy on the DFW 
dataset. Bodavarapu et al. built a method called FERConvNet_HDM for the recognition of facial expressions 
applied on FER2013 and LRFE  datasets30. The proposed mechanism combines Gaussian, Bilateral and Non-local 
means denoising Filter that helps to increase the performance of the CNN in turn by achieving 85% and 95% 
accuracies in FER2013 and LRFE datasets, respectively. Reddy et al.  in31 proposed a technique that combines 
hand-crafted and deep learning features to recognize facial expressions on the AffectNet database. The authors 
have extracted hand-crafted features from facial landmark points and XceptionNet was used for the extraction 
of deep features. The authors have achieved 54%, 58%, and 59% accuracies using their proposed model on three 
sets of data distributions (Imbalanced set, Down-sampled set, and Up-sampled set). Looking into the various 
applications of facial expression recognition and the volume of works presented in the literature, it is clear that 
there is a great scope to work in this field.

Data analysis
For the current work, we have used the database published by Kopaczka et al.12. The images of this database 
were recorded using an Infratec HD820 high-resolution thermal infrared camera with a 1024 768 pixel-sized 
microbolometer sensor with a thermal resolution of 0.03 K at 30 ◦ C and equipped with a 30-mm f/1.0 prime lens. 
Subjects were filmed while sitting at a distance of 0.9 m from the camera, resulting in a spatial resolution of the 
face of approximately 0.5 mm per pixel. A thermally neutral backdrop was used for the recordings to minimize 
background variation. To build the database, video recordings of the subjects acquired with a frame rate of 30 
frames/s were manually screened and images were extracted. The database contains a total of 1782 sample images 
with eight classes of  expressions12 namely, Fear, Anger, Contempt, Disgust, Happy, Neutral, Sad, and Surprise. 
The number of sample images belonging to each class has been shown in Table 1. A few sample images from the 
considered database have been shown in Fig. 1.

In the proposed work, as a pre-processing step, we have converted the input images into grayscale images 
and reshaped them into a uniform size of 200 × 200 pixels before feeding to the network.

Table 1.  Counts of each facial expression in the IRDatabase. Bold value indicates total number of samples 
used in the experiment.

Expression Number of samples

Angry 231

Contempt 189

Disgust 225

Fear 210

Happy 234

Neutral 231

Sad 231

Surprised 231

Total 1782
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Proposed methodology
The present study deals with Human Facial Expression Recognition (HFER) using thermal infrared images 
acquired from the database mentioned  in12. Several studies exist in the literature for the processing of facial 
expressions when the image is taken in the visible spectrum. However, these systems are not directly applica-
ble for infrared facial processing, rather we can utilize the ideas after a certain amount of tailoring to obtain 
competent results for the infrared  images33. It is to be noted that there exist some limitations when dealing with 
infrared images for HFER that include lack of colors for the distinction of facial features, obscure skin folds, and 
wrinkles that are formed on the forehead or cheeks indicating specific expressions like happiness or anger. The 
hotspot is a relatively common problem with infrared imaging which is a blurry bright spot in the center of the 
image. The presence of a hotspot makes the expression detection task more challenging.

Recently, it has been observed that the rise of CNNs greatly influenced the building of efficient HFER systems. 
It has proved its extraordinary success when working with RGB images. Here we try to exploit the strengths of 
deep CNN architecture for feature extraction which in turn will help to recognize different facial expressions 
more accurately. The proposed IRFacExNet architecture is specially designed to work with infrared images. This 
network efficiently extracts useful information from the input images for the detection of facial expressions. To 
make the predictions more accurate an efficient ensemble strategy (known as Snapshot Ensemble)34 has been 
adopted. It is to be noted that this ensemble technique helps to achieve better performance with no computa-
tional  overhead35. During the training process, any CNN model gets converged to several local minima along 
the optimization path. In this approach, we save the corresponding models at regular intervals (known as snap-
shots). In the later stage, these snapshots are combined by an aggregation rule to create an ensemble classifier. 

Figure 1.  Sample images representing all eight expressions, happiness, sadness, surprise, fear, disgust, anger, 
contempt and neutral for males and females. Image is developed using Draw.io32.
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The detailed architecture of the proposed model and the snapshot ensemble technique are explained elaborately 
in the following subsection.

Proposed architecture. Instead of using traditional convolution units, the proposed IRFacExNet utilizes 
depth-wise convolutions, where each input channel is convolved by each filter channel separately. This is fol-
lowed by a point-wise convolution of a 1x1 window to merge the channel-wise extracted features. The standard 
convolution does channel-wise and spatial convolution in one step. On the other hand, depth-wise convolution 
used in the proposed model splits this into two steps, which helps to lower the number of trainable parameters 
and thus reduces the chances of overfitting. These depth-wise convolutions have been used with varying dilation 
rates for a global perspective and to capture the spatial and cross-channel correlations of the inputs.

The proposed IRFacExNet model shown in Fig. 2 is divided into two structural units, namely Residual Unit, 
and Transformation Unit. Dilated convolution is the primary innovation incorporated in these units to extract 
variegated features from the entire image. The working procedure of dilated convolutions, Residual Unit, and 
Transformation Unit has been mentioned below.

For accurate classification of facial expressions, it is important to extract distinctive features that are unique 
to an expression while covering the complete image from different perspectives. Dilated convolutions broaden 
the receptive field and help to bring diversity to the feature maps with no increase in trainable  parameters34. 
Figure 3 shows the working procedure of the dilated convolutions.

In the proposed structural units, an input image first goes through a point-wise convolution which projects 
the inter-channel information into a broader space. It is then propagated through several depth-wise convolu-
tions with varying dilation rates from 1 to m which broaden the receptive field for feature extraction and help 
to find the localized features as well as the features that are distributed over the wide area. Thus it helps to find 
spatial and cross-channel features from different perspectives. Finally, these varied features are merged using 
the point-wise convolutions. In the Residual Unit, the output of the mapping scheme is merged with the input 
features itself known as residual learning proposed by He et al.36. If the input is termed as U and the residual 
mapping function as R(), then the output can be defined as F: U [U + R(U)]. This allows us to build a deeper 
network without overfitting and helps the dominant features to propagate deeper into the network without much 
distortion. It also avoids vanishing gradient problems and the skip connection technique helps to build a much 
deeper network that is easier to train. After all the internal processing inside the residual block, the output shape 
is maintained equal to the input shape. The basic block diagram of the Residual Unit has been shown in Fig. 4.

Figure 2.  A schematic diagram of the proposed IRFacExNet model used for HFER. Image is developed using 
Draw.io32.
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Figure 3.  Schematic representation of dilated convolutions with dilation rate l, l = 1 (left), l = 2 (Middle), l = 4 
(Right).

Figure 4.  The basic block diagram of the Residual Unit of the proposed IRFacExNet model. Image is developed 
using Draw.io32.
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The Transformation Unit can be considered as a substitute for the pooling layers. Here, we have tried to 
avoid the greedy technique of Max-pooling because it usually causes the loss of diffused features and positional 
information. The Transformation Unit has been designed similarly to the Residual Unit i.e., point-wise–depth-
wise–point-wise convolutions. Here, the first point-wise convolution extends the number of channels four times 
its input to complement the depth-wise convolutions. Next, the spatial dimensions are halved using the stridden 
depth-wise convolutions. This helps to eliminate unnecessary details and makes it suitable for further operations. 
The depth of the output feature map is doubled in the final point-wise convolution to increase the filtering opera-
tions in later stages. The basic block diagram of the Transformation Unit has been shown in Fig. 5.

In a nutshell, the working strategy of the proposed IRFacExNet model is mentioned as follows:
The initial input is processed by some traditional convolutions with larger-sized kernels to produce an ade-

quate number of channels and spatial dimensions. The major part of the network is stacked with residual blocks 
of depth (d) to produce a deeper network followed by transformation blocks which are introduced to bring 
dimensional transformations and to improve the generalization performance. The dilation rate (m) depends on 
the input size of the feature map. For processing larger sized feature maps, a higher dilation rate is preferred as 
it makes the receptive field wider which helps to extract both generic as well as complex features. Finally, the 
feature maps are passed through the global average pooling layer followed by some fully connected layers and 
the classification layer. All the layers are ReLU (Rectified linear unit) activated to bring the non-linearity. Batch-
normalization is used to make the convergence faster and to provide a modest generalization effect. It also helps 
to decrease the internal covariate  shift37.

Snapshot ensemble. An ensemble-based classification model has been adopted to leverage the special-
ties of several classifiers to achieve better prediction. It helps to build a robust model with better generalization 
performance, higher accuracy, and lower error  rate35. There exist several methods involving different aggrega-
tion rules to aggregate the predictions from different classifiers. Depending on the aggregation rule adopted, the 
performance of the ensemble model varies. Some commonly used techniques to combine the predictions from 
the base classifier are Horizontal Voting Ensemble, Weighted Average Ensemble, Stacked generalization, etc. All 
these methods work pretty well when the base classifiers have learned from the training data in different ways, 
thus have different generalization errors. However, everything has a cost, and when using traditional ensemble 
strategies there is an additional computational overhead of training several base learners from scratch with 
parameter tweaking to achieve the best performance.

As opposed to the usual approach of training different base learners incurring additional computation power 
and time, Huang et al.35 proposed a method to produce many base learners having different generalization errors 
from a single training run known as Snapshot ensemble. Stochastic Gradient Descent (SGD) and its extensions 

Figure 5.  The basic block diagram of the Transformation Unit of the proposed IRFacExNet model. Image is 
developed using Draw.io32.
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are widely used for optimizing neural networks. It is capable of avoiding and escaping saddle points and local 
minima that are considered a great deal. It is advantageous to converge the models to local minima with flat 
basins. Different models that might have converged to different local minima can have very similar error rates 
but tend to make different mistakes which is the exact requirement for creating a robust ensemble classifica-
tion model. With the increase in the number of trainable parameters, the number of possible local minima also 
increases exponentially. Therefore it is not surprising that two networks having the same architecture with dif-
ferent initialization and mini-batch ordering will converge to different solutions. These models with variegated 
convergence can be exploited using ensembling in which multiple neural networks can be trained from different 
initialization which is combined with horizontal voting. Instead of building (M) models from the scratch, SGD 
optimizer allows to converge to unique local minima M times and saving the corresponding models which are 
known as snapshots. After saving the snapshot models, the learning rate is increased to bring the optimizer out 
of the basin and again converging it to other local minima. Note that the model has different initializations when 
the learning rate is increased again and it reaches a different local minima. Repeating these steps for M times 
will provide M base learners having different biases. This cyclic nature of learning rate can be achieved by the 
method known as Cosine Annealing proposed by Loshchilov et al.38, in which the learning rate is abruptly raised 
and then quickly lowered following a cosine function.

Training process. When experimenting with numerous hyperparameters for training a deep neural net-
work, it is required to check the effect of the tuning and to draw justification from therein about the perfor-
mance. However, an optimized model might fail to fit the training data and thus cannot extract useful informa-
tion from the input data. To cope up with this, we have performed the experiment with architecture depth (d) 
starting from 1 to 4 and assessed the performance of the model. The architecture depth (d) can be understood 
as the number of Residual Units to be stacked on each other to make the proposed network deep or shallow. 
We have achieved the best result for d=2 and similar results for others. To reduce the complexity of the model, 
a depth of 2 units is used for all the residual blocks. Training DCNN with limited data and without overfitting 
can be considered a very challenging task. To solve this task Dropout and Batch Normalization is generally used 
throughout the network that helps to decrease the misclassification rate. Grayscale images of (200 × 200) resolu-
tion are feed to the network for training purposes. The details of the database have already been mentioned in 
“Data analysis” section. The 85% sample images from this database have been used for training the network and 
the performance is evaluated on the rest 15% of the database.

Firstly, the proposed IRFacExNet is trained using Adam optimizer for 100 epochs having a batch size of 16 
samples. Then the Adam optimizer is replaced by SGD as it works best with a cyclic learning rate scheduler. 
An efficient Snapshot ensemble requires an aggressive cyclic learning rate scheduler to converge to different 
minima for even minor fluctuations in the learning rate. We have utilized Cosine Annealing as the scheduler 
with the slight modification that varies the learning rate by following a cosine function. Instead of using abrupt 
restart after reaching the  minima13, we have applied a gradual rise in the learning rate that allows the optimizer 
to explore around the local minima and find a better optimization path. Eq. (1) is the mathematical expression 
of the scheduler.

where α0 lower bound of learning rate (10−5) , �α the difference between upper bound and lower bound of 
learning rate (10−5

− 10
−2) , e current epoch number (1− 500) , h the range of half-cycle of the cosine function 

(100 epochs).
This scheduler considers the parameters like total training epochs, maximum learning rate, minimum learning 

rate, range of half-cycle, and the epoch number. Figure 6 shows the variability of the learning rate for the training 

(1)lr = α0 +
�α

2
×

(

1+ cos

(

π × e

h

))

Figure 6.  Line plot of the cosine annealing learning rate scheduler used in the training process.
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span of 500 epochs. In the present study, we have used the upper bound and lower bound of the learning rate 
for the scheduler as 10−2 and 10−5 , respectively. The range of half-cycle has been set to 100 epochs. The snapshot 
of the model is taken at an interval of 100 epochs and thus producing a total of 5 snapshot models throughout 
the training process. Due to the cyclic nature of the learning rate, for each snapshot, the model reaches a local 
minimum having a lower error rate and thus fitting the training data totally (means it has a very high variance). 
Again, when the model is saved during the rise of the learning rate, it has a comparatively higher error rate and is 
biased. Such diversity of the model brings a better generalization performance on the unseen data. These devel-
oped five snapshot models are combined in all possible combinations for testing purposes and the performance 
has been estimated on the test data.

Such a type of ensemble model helps to build a robust system and to produce better recognition accuracy. 
The summary of hyperparameters used for training the model can be found in Table 2.

Results and discussion
HFER is considered one of the challenging research problems in the field of computer vision. It is because 
of the close similarity of human faces among the correlated expressions (like Disgust and Anger). The naive 
model (without using the snapshot ensemble technique) successfully recognizes the human facial expressions 
from thermal infrared images with 82.836% classification accuracy, as shown in Table 3. To improve the overall 
performance of the prediction model, we have employed an ensemble strategy known as Snapshot Ensemble, as 
stated earlier in “Training process” section. This technique uses the strength of different snapshot models having 
different biases and helps to predict the final results that improve the performance of the system on unseen data.

As stated earlier, during the training of the Snapshot ensemble model, an aggressive learning rate scheduler 
has been used that allows the model to reach a new local minimum each time when there is a drop in the learn-
ing rate. When it tries to reach a local minimum, it extracts variegated information from the training data which 
is dissimilar compared to other local minima and such property is well-suited for the building of an efficient 
ensemble classifier. We have saved five snapshots, namely S1, S2, S3, S4, and S5 during the complete training 
process. The snapshots were combined using the voting aggregation rule to generate various ensemble classifiers. 
For example, snapshot models S1 and S2 are combined to generate (S1, S2), models S1, S2, and S3 are combined 
as (S1, S2, S3), and so on. The performance of the individual snapshot model (S1 to S5) and all possible combina-
tions are evaluated on the test database. The observed outcomes are reported in Table 3 (Fig. 7).

During the training process of the model by using the cosine learning rate scheduler, the first half cycle of the 
cosine function is completed in 100 epochs (Fig. 6), and the first Snapshot (S1) is generated. During this phase, 
there is a gradual decrease in the learning rate that helps the optimizer to find local minima. This makes the 
model perform better for the data similar to the training samples. However, it may not provide good predictions 
on unfamiliar images. Hence, the learning rate starts increasing gradually and reaches its upper bound, which 
takes another 100 epochs to produce the second Snapshot S2. This allows the optimizer to explore around the 
minima and rises along the hill having a gentle slope. The variation of loss during training of the model can be 
seen in Fig. 8. It helps to decrease the variance of the model and thus improves the overall predictive performance. 
Therefore, the alternating nature of the learning rate allows the SGD optimizer to bring the models having dif-
ferent properties. The ensemble works best if the base models incorporated in the ensemble have low test errors 
and do not overlap in the set of examples they fail to  classify35. Cyclic learning rate scheduler helps to visit several 
local minima before converging to a final solution. At an interval of 100 epochs, the Snapshots (S1 to S5) are 
successively considered and are used for the development of the ensemble classifier in the current experimenta-
tion. The change in accuracy during the training process can be seen in Fig. 9. All possible combinations of the 
Snapshot models are assessed on the test data for the performance evaluation. Among all possible combinations 
of the snapshot models, the best performance has been achieved by the ensemble system when (S1, S2, S3, and 
S5) are combined to produces 88.433% recognition accuracy as shown in Table 3 and Fig. 7. The possible reason 
for achieving the best recognition performance when (S1, S2, S3, and S5) are combined is that the considered 
snapshot models have low test errors and do not overlap in the set of examples.

The naïve model has a recognition accuracy of 82.836% and after adopting the ensemble strategy, the model 
produced 88.433% recognition accuracy and thereby, increases 5.597% prediction accuracy.

In this section, we have also tried to interpret the working procedure of the model used for the facial 
expressions classification. The interpretation of the model is required as facial expressions depend on different 

Table 2.  Summary of hyperparameters and their values used during the training process.

Hyper-parameter Value

Type of input images Grayscale

Resolution of input images 200 × 200

Learning rate optimizer SGD optimizer with Cosine annealing scheduler

Learning rate 10
−2 to 10−5

Training epochs 500 epochs

Snapshot interval 100 epochs

Batch size during training 16

Residual unit depth (d) 2
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Table 3.  Performance of Naïve Model and the snapshot ensemble after combining various snapshots on the 
test database. Bold value indicates highest result among all the snapshot conditions.

Combinations Accuracy (%)

Naïve model 82.836

S1 86.16

S2 72.39

S3 87.69

S4 87.69

S5 85.08

(S1, S2) 84.328

(S1, S3) 87.313

(S1, S4) 87.313

(S1, S5) 88.060

(S2, S3) 87.313

(S2, S4) 86.567

(S2, S5) 85.075

(S3, S4) 86.940

(S3, S5) 88.060

(S4, S5) 87.687

(S1, S2, S3) 87.313

(S1, S2, S4) 87.687

(S1, S2, S5) 86.194

(S1, S3, S4) 88.060

(S1, S3, S5) 88.060

(S1, S4, S5) 87.687

(S2, S3, S4) 88.060

(S2, S3, S5) 86.567

(S2, S4, S5) 87.313

(S3, S4, S5) 88.060

(S1, S2, S3, S4) 87.687

(S1, S2, S3, S5) 88.433

(S1, S2, S4, S5) 88.060

(S1, S3, S4, S5) 87.687

(S2, S3, S4, S5) 87.687

(S1, S2, S3, S4, S5) 87.313

Figure 7.  Graph showing the performance of various combinations of Ensemble classifier.
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Figure 8.  Graph represents loss during the training of IRFacExNet model.

Figure 9.  Graph represents the variation of accuracy during the training of IRFacExNet model.

Figure 10.  Outcome of the Grad-CAM analysis on an IR image for the proposed model—IRFacExNet. Image is 
developed using Draw.io32.
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combinations of facial landmarks like eyebrows, nose, and lips, etc. Interpretation helps to verify the model 
whether it is detecting the correct areas of an image before making a decision. Selvaraju et al.39 have introduced 
a Gradient Weighted Class Activation Mapping (Grad-CAM) technique that helps to visualize the explainability 
of any deep learning model. Figure 10 pictorially demonstrates the functionality of Grad-CAM applied in our 
model. The process takes an image as input. The detection technique is applied to the image using the proposed 
model. After the successful calculation of the predicted class, Grad-CAM is applied to any of the convolution 
layers. In our case, we have considered the last layer for Grad-CAM analysis.

The gradient information flow the last convolution layer of the proposed deep learning model is used by 
Grad-CAM. The information is useful to interpret the decision of each neuron. This in turn helps to interpret 
the whole deep learning model. To calculate the class discriminative localization map of width w and height 
h for any class c, we first compute the output probability, yc , of the class c. This probability is calculated before 
the softmax function. Then the gradient of yc is calculated with respect to Ak , the feature maps of a convolution 
layer. These gradients are then global average-pooled to obtain the neuron importance weights αk for the target 
class, as shown in Eq. (2).

After calculating αk of the target class c, a weighted combination of activation maps is performed. Then it is 
followed by an activation function. The activation function used is ReLU (Rectified linear unit) as shown in Eq. 
(3). ReLU is applied because we are only interested in the visualization of the features having a positive influence 
on the class of interest. If ReLU was not used, then other features would have been considered for visualization 
contributing negatively to the prediction of the class. This results in a coarse heatmap of the same size as that of 
the convolutional feature maps. We have applied ReLU to the linear combination because we are only interested 
in the features that have a positive influence on the class of interest. Without ReLU, the class activation map 
highlights more than it requires and hence achieves low localization performance.

Figure 11 illustrates Grad-CAM output of different expressions of IR facial images.
It can be observed that for each facial expression, the Grad-CAM output highlights the facial structure most 

prominently. This visualization confirms that the feature extracted by IRFacExNet are prominent and focuses 
on various facial landmarks. Then using the combination, it classifies the facial expressions. In the expression of 
fear, the two eye-brows can be seen blue-colored. But the space around the face is blue. This means that it uses 
the features of eyebrows that are most important. Similarly, for the disgust expression, the whole facial landmarks 
including nose, eye-brows, and mouth have been used as the most important features to classify the expression 
as disgust (Fig. 12).

From the confusion matrix shown in Fig. 13, it can be observed that the model gets confused for a similar 
type of expressions a human makes while feeling different emotions. For example, the highest misclassification 
has been observed between the expressions Disgust and Fear, which are strongly correlated to each other. These 
expressions are really confusing to create a distinction between them. The second highest wrong estimation has 
been found for the expressions between Anger and Disgust. An interesting phenomenon can be observed that 
expression of Fear has the lowest recognition rate of 76.47% and is mostly detected as the expression of Anger, 
Contempt, Disgust, and Sadness. Figure 12 highlights the most confusing pairs of facial expressions owing to 
which they get misclassified.

As discussed above, many times, humans make indistinguishable faces during expressing these emotions, 
and this causes the model to mislead. Also, it is to be noted here that the dataset we consider here for evalua-
tion is comparatively a new one, and hence we have not found many works which also considered this dataset. 
However, there is still a lot of improvement in the recognition rate compared to the classification rate reported 
by Kopaczka et al.12. Table 4 compares the efficiency of the proposed method with some previously developed 
methods for the considered  database12. It can be seen that our technique outperforms the previous recognition 
systems by achieving 88.433% classification accuracy. The key reasons for higher accuracy are:

• The proposed IRFacExNet model is very deep which helps to extract the dominanat features from the input 
images leading to better classification accuracy.

• Due to the presence of depthwise convolution operations in model, it extracts features over a wider area.
• The inclusion of snapshot ensemble strategy helps to improve the performance and robustness of the model.
• Besides, the IRDatabase used is fairly balanced. It ensures that the model is not biased towards a particular 

class.

The obtained confusion matrix from the proposed methodology when compared with confusion matrix (Fig. 14 
) obtained from Kopaczka et al.12 indicates the improvements in recognition accuracy in both class-wise and 
overall. This rise in recognition accuracy is the result of using DL methods. In the case of Neutral and surprise 
expressions, the precision is improved by almost a factor of 2. The lowest recognition accuracy reported was for 
expression of contempt and in our case, it is for Fear. These two expressions are highly correlated due to which 
two input samples of contempt are misclassified as fear in our study. Due to the lack of benchmark results on 
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the employed database using DL methods, we have implemented the technique proposed  in28 on the considered 
database which produces an accuracy of 79.54%. 

Additional experiments
To establish the generalizability of the proposed approach, we have conducted a similar experiment on another 
database called Tufts Face  Database41. The database includes over 10,000 images from 113 individuals from more 
than 15 different countries, belonging to different genders, ages, and ethnic backgrounds. We have considered 
only the infrared thermal images for thermal FER purposes. This dataset contains a total of 565 images from 
113 participants with 5 images per participant for each expression. Images of this database are of five types—(a) 
neutral expression, (b) smile, (c) eyes close (sleepy), (d) exaggerated shocked expression, and (e) with sun-
glasses. We have maintained all the previously used hyperparameters and ran our experiment on this database. 
The obtained accuracy is 97.06%. The result so obtained is competitive when compared to existing study like 
 TERNet42 which reported an accuracy of 96.2%. Kamath et al.42 developed the TERNet model for the FER corre-
sponding to thermal images. They eliminated the last class corresponding to images with sunglasses. Several kinds 
of preprocessing techniques were utilized like adaptive histogram equalization, guided filtering, and intensity 
adjustment techniques. Along with these, they employed data augmentation to improve the model’s performance. 
On the other hand, we have not utilized any kind of image processing techniques or synthetic data to get better 
results. The IRFacExNet model itself extracts distinctive features using the Residual and Transformation units, 
and provides satisfactory results. This proves the robustness of the proposed approach. The summary of results 
on the Tufts database can be found in Table 5.

Figure 11.  Grad-CAM output on IRFacExNet for IR images having different expressions. Image is developed 
using Draw.io32.
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Figure 12.  Some confusing facial expressions. The original expressions are marked in green color and the 
corresponding misclassified pair is marked in red. Image is developed using Draw.io32.

Figure 13.  Confusion matrix of the IRFacExNet model.
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Conclusion
HFER is an active research area in the domain of computer vision. In this paper, we have proposed an efficient 
deep learning model, called IRFacExNet for the recognition of human expressions from thermal images. Going 
by the current research trend, to develop this model, we have relied on a DCNN architecture. We have used two 
structural units namely, Residual Unit and Transformation Unit having their distinct strengths and these are able 
to extract useful features from the human faces used for the detection of the various expressions. This naïve model 
is able to achieve a recognition rate of 82.836%. To make the recognition system more robust, we have employed 
the Snapshot ensemble technique that has been trained using a cyclic learning rate scheduler. The predictions of 
the multiple models obtained after the Snapshot ensemble are combined to achieve a better prediction model. The 
ensemble system is able to achieve a state-of-the-art accuracy of 88.433% on the considered database. Although 
the proposed ensemble model produces a good recognition accuracy, however, there are some scopes for further 
improvement.The training of IRFacExNet model is computationally expensive compared to the naive model. The 
long training time can be reduced by the model’s architectural optimization which may reduce its complexity. 
Apart from that some attention mechanism in the CNN architecture can be added which might help to reduce 

Table 4.  Performance comparison of the proposed FER method with some past methods evaluated on 
IRDatabase. Bold value indicates result of the proposed methodology.

Work references Method Accuracy (%)

Kopaczka et al.12 HOG-SVM 46.7

Kopaczka et al.40 HOG features with Random Forest classifier (Neutral, Happy, Sad and Surprised) 65.7

Prabhakaran et al.28 ResNet152-V2 79.54

Proposed method IRFacExNet 88.433

Figure 14.  Confusion matrix of the compared method presented by Kopaczka et al.12.

Table 5.  Summary of results for Tufts face database. Bold value indicates name and accuracy of the proposed 
methodology.

Work references Method used Accuracy (%)

Kamath et al.42

VGG-16 93.4

ResNet-18 94.2

VGG-19 94.8

VGG- Face 96.2

Proposed method IRFacExNet model 97.06
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the misclassification among similar types of expressions. To enhance the robustness of the proposed model, the 
recognition framework can be aided with multimodal sensors that may help to find facial  features43,44. Again, 
towards making the model more explainable several strategies can be adopted to decipher the decision-making 
process of deep learning  models45. It might help to make high-level decisions and be confident as the decisions 
are driven by combinations of data features specifically selected to achieve the desired results. To obtain the most 
relevant features, some feature selection algorithms can also be employed that might decrease the computational 
overhead. Apart from that the proposed model can be evaluated on other large-sized databases which would 
help us to ensure the robustness of the proposed model.
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