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The mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, 
and medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups 
that provide ancestral information and pedigree relationships. Because of this and the advent of high‑
throughput sequencing (HTS) technology, there is a diversity of bioinformatic tools for haplogroup 
classification. We present a benchmarking of the 11 most salient tools for human mtDNA classification 
using empirical whole‑genome (WGS) and whole‑exome (WES) short‑read sequencing data from 
36 unrelated donors. We also assessed the best performing tool in third‑generation long noisy read 
WGS data obtained with nanopore technology for a subset of the donors. We found that, for short‑
read WGS, most of the tools exhibit high accuracy for haplogroup classification irrespective of the 
input file used for the analysis. However, for short‑read WES, Haplocheck and MixEmt were the most 
accurate tools. Based on the performance shown for WGS and WES, and the accompanying qualitative 
assessment, Haplocheck stands out as the most complete tool. For third‑generation HTS data, we also 
showed that Haplocheck was able to accurately retrieve mtDNA haplogroups for all samples assessed, 
although only after following assembly‑based approaches (either based on a referenced‑based 
assembly or a hybrid de novo assembly). Taken together, our results provide guidance for researchers 
to select the most suitable tool to conduct the mtDNA analyses from HTS data.

The human mtDNA is a circular double-stranded genome of 16,569 base pairs (bp) in the hg38 reference 
sequence, encoding 37 genes for 13 proteins, 22 tRNAs, and 2 rRNAs. Besides its key role in diverse human 
 diseases1–3, distinctive features such as the matrilineal inheritance, the lack of recombination, and a higher 
mutation rate than the nuclear genome, make mtDNA analysis a powerful tool also for population  genetics4–6 
and forensic  studies7,8.

Worldwide human mtDNA diversity has been reconstructed through a genealogy of distinctive lineages, 
representing mtDNA sequences clustered into evolutionarily related haplotypes (a.k.a. haplogroups). They are 
linked to human evolutionary history and allow for the tracing of origins and differentiation of patterns across 
populations and over time  periods9–12. As such, many haplogroups are associated with specific biogeographical 
 ancestries13–15. MtDNA haplogroup classification has become an essential step to recover ancestry and genea-
logical information from analyzed  samples16. One of the most popular and continuously updated repositories 
of mtDNA lineage relationships and nomenclature is Phylotree (http:// www. phylo tree. org). 17. The latest version 
of Phylotree (Build 17) contains more than 5,400 haplogroups and it constitutes the central reference for many 
bioinformatic tools to classify human mtDNA sequences.

The advent of high-throughput sequencing (HTS) technology has allowed the development of a wide range of 
applications, including whole-genome sequencing (WGS) and whole-exome sequencing (WES). MtDNA studies 
have also leveraged the power offered by  HTS18–20. Moreover, a study based on commercial WES solutions has 
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shown the potential to fully capture mtDNA, possibly due to the high copy number of  mtDNA21. Hence, mtDNA 
information can be recovered effectively from WES studies at no extra cost. Furthermore, the sequencing depth 
associated with WES usually allows reconstructing the entire mitogenome with high quality and detecting het-
eroplasmic  sites22. Third-generation HTS, such as those based on nanopore technology (ONT, Oxford Nanopore 
Technologies, Oxford, UK), allows sequencing with long reads, providing an opportunity to generate full-length 
mtDNA sequences in single reads.

Because of the importance of recovering ancestral information and pedigree relationships of study samples, 
the number of bioinformatics tools developed for mtDNA haplogroup classification has increased notably in the 
last decade to adapt to the HTS  technologies16,23–31. An unmet need is a benchmarking study of their capabilities, 
requirements, and usability to correctly classify the mtDNA haplogroups from different source files. Based on 
short-read WES and WGS data from the same donors, as well as on WGS obtained from long noisy reads from 
a subset of them, here we present an empirical evaluation of the 11 most salient bioinformatic tools available for 
human mtDNA classification from HTS data.

Materials and methods
Samples, library preparation and sequencing. The study was approved by the Research Ethics Com-
mittee of the Hospital Universitario Nuestra Señora de Candelaria and performed according to The Code of 
Ethics of the World Medical Association (Declaration of Helsinki).

Thirty-six DNA samples from unrelated donors of European descent were used for the study after informed 
consent (see supplementary Table S1). DNA was extracted from peripheral blood using a commercial column-
based solution (GE Healthcare, Chicago, IL). DNA quantifications were performed in a Qubit dsDNA HS Assay 
(Thermo Fisher, Waltham, MA). All samples were sequenced in parallel using short-read WGS and WES. Library 
constructions were performed with Illumina preparation kits following the manufacturer’s recommendations 
(Illumina Inc., San Diego, CA). The Nextera DNA Prep kit was used for WGS, except for six samples that were 
processed by Illumina DNA Prep. The same samples were processed with Nextera DNA Exome with a 350 bp 
insert size as described  elsewhere32. The library quality control was carried out in a TapeStation 4200 (Agilent 
Technologies, Santa Clara, CA). Sequencing was conducted on a HiSeq 4000 Sequencing System (Illumina Inc.) 
at the Instituto Tecnológico y de Energías Renovables (Santa Cruz de Tenerife, Spain).

Eight of these samples had WGS based on noisy long-read data obtained at KeyGene (Wageningen, The Neth-
erlands). Briefly, sequencing was performed on a PromethION system (ONT) for 64 h using one FLO_PR002 
(R9.4.1 pore) flow cell per sample following the manufacturer’s recommendations. Basecalling was performed 
on the PromethION computing module using MinKNOW v1.14.2 with Guppy v2.2.2 and data preprocessing 
was carried out with  PycoQC33.

Sequence processing and variant calling. Processing of short-read WGS and WES data was carried 
out using an in-house pipeline (see supplementary Figure S1) based on GATK v4.1 for WGS and GATK v3.8 
for  WES34. Reads were aligned to the GRCh37/hg19 reference genome and the mtDNA reads realigned to the 
revised Cambridge Reference Sequence (rCRS), GenBank  NC_01292035,36, following GATK best practices for 
this circular genome (see supplementary Figure S1). This required two alignment steps: one against the canoni-
cal mitogenome reference and another against the same reference but shifted by 8,000 nucleotide positions. This 
generates a displacement of the mtDNA D-loop to the opposite side of the contig, allowing to better capture vari-
ants of this highly variable region. The alignments were then processed for duplicate marking and base quality 
score  recalibration37. The variant calls were obtained with the “mitochondria mode” of Mutect2 GATK v4.1. This 
specific mode provides a better sensitivity for this genome as it shows a robust detection of very low fractions of 
variants once the nuclear mtDNA segments (NuMT) are filtered out. The mtDNA variants were then filtered by 
using FilterMutectCalls and VariantFiltration tools to keep the variants classified as PASS.

For ONT data, we first extracted all reads aligning to the mtDNA genome and then used four alternative 
strategies to obtain sequence variation for mtDNA classification: (a) one based on the alignment of reads to the 
rCRS sequence with  Minimap238 followed by a variant-calling step with Medaka (https:// github. com/ nanop 
orete ch/ medaka); (b) another relying on the reference-based assembly performed by Rebaler (https:// github. 
com/ rrwick/ Rebal er); (c) a third strategy based on de novo assembly with  Miniasm39 followed by nine rounds of 
polishing with  Racon40 and a final step with  RagTag41 for scaffolding; and (d) the last strategy combining ONT 
and Illumina reads in a hybrid de novo assembly built with  Unicycler42 and a final step with RagTag for scaffold-
ing (see supplementary Figure S2). Quality of assemblies were assessed with  QUAST43. For all the alternatives, 
a VCF file per sample was generated for the haplogroup classification step.

For each sample, three different files were generated for short-read data: BAM and VCF files created through 
the pipeline previously described, and FASTA files obtained by the VCF-consensus script included in  vcftools44 
generated from the VCF files. Of note, an additional filter was applied to the VCF files discarding variants that 
showed an allele fraction below 0.9, a threshold applied by default in Haplogrep during the haplogroup classifica-
tion. This enabled the harmonization of the genetic variation considered in FASTA and VCF files.

mtDNA haplogroup classification. Among the tools available from the literature, we selected 11 that 
were published in the last three years or that were cited at least 30 times since its description (Table 1). Hap-
logrep, Haplocheck and Phy-Mer have the option of using alternative input files, fostering an evaluation with the 
alternative supported format files. Some of the tools provide quality scores supporting the mtDNA haplogroup 
classification. In these cases, only the classification with the best scoring was considered for the analyses. For the 
haplogroup classification process, the tools that were designed to be run locally, either through an application or 
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via command line, were executed on a 4-core Intel Core i7 CPU at 2.6 GHz and 16 GB of RAM. All tools were 
run using the default parameters.

Statistical analyses. All statistical analyses were performed in R v.3.3.3 (R Core Team 2017). Model fitting 
was evaluated visually using the ‘DHARMa’  package48 (v.0.1.5). Prior to analysis, all predictors were standardized 
by subtracting the mean and dividing by the standard deviation with the ‘scale’ base function in R.

In order to evaluate the performance of the 11 tools in the classification, we ran generalized linear mixed 
models (GLMM) with the tools as fixed factor and the classification results (concordance/discordance) as the 
response variable. This was done separately for WGS and WES data. In the models, we included the sample as 
a random factor to account for differences introduced by the sequencing runs and the diverse enrichment kits 
involved. Classification results were transformed to a binary response so that, for each sample, discordance 
between the consensus haplogroup and the classification result was coded as one, and the concordance as zero. 
In such binary outcome data, the models may suffer from complete separation when one of the levels of an 
explanatory variable explains completely the binomial response variable, precluding an optimal fitting of the 
 algorithm49. This prevents the algorithm from properly fitting the coefficient for this level. To overcome this issue, 
we fitted the models using the bglmer function of the “blme” v.1.0.4 R  package50, which incorporates a similar 
algorithm to “lmer4” v.1.1.15 R  package51 to facilitate the estimation with the incorporation of a prior. Before 
the analysis, a Pearson’s correlation test was conducted to examine the cross-correlation among the different 
sequencing parameters measured (i.e., mapped reads, duplicate reads, depth, mean mapping quality, and base 
quality). Pearson’s correlation test revealed that the proportion of duplicate reads and the depth of coverage were 
highly correlated (r < 0.8). Therefore, only the mapped reads, mapping quality, and base quality were incorporated 
as covariates in the model (see supplementary Table S2). Finally, to evidence the pairwise differences between 
the tools, we run a post-hoc analysis with the Tukey contrast by using the “multcomp” v.1.4.8  package52. Model 
outputs were visualized using ‘effects’ v.0.9.453 and ‘ggplot2’ v.2.2.154.

Results
Short‑read sequencing summary of mitogenomes. The mean (± SD) number of mtDNA reads recov-
ered per sample (n = 36) for short-read WGS and WES data were 197,717 ± 98,719 and 9,905 ± 6,808, respectively. 
For WGS, 100% of the mitogenome was covered at least at 1X. For WES, this percentage decreased to a mean 
(± SD) of 86.79% ± 27.01 of the recovered mitogenome. The mean (± SD) mapping quality for mapped reads had 
a value of 59.9 ± 0.01 and the Phred base-quality scores estimated were high for both applications (28.38 ± 0.91 
for WGS, and 29.74 ± 0.02 for WES). The average (± SD) depth recovered for WGS was 1,119X ± 433 (range: 
554–2,577X), decreasing to 37X ± 20 for WES (range: 11-92X). Besides, while WGS provided a homogeneous 
depth of coverage profile across the mitogenomes, those recovered by WES showed a highly heterogeneous 
profile across samples. Interestingly, the region between nucleotide positions 2,000–3,000 was highly enriched 
in reads from Illumina WES data (Fig. 1). As for the number of detected variants after filtering, the mean (± SD) 
depth of coverage per variant call had a value of 958 ± 362 in WGS, decreasing to 40 ± 21 in WES. Out of the 36 
samples sequenced, ten showed the equivalent number of variants by WGS and WES. In the remaining samples, 
the number of variants detected by WES was lower than by WGS: 17 samples missed between 1 and 3 variants, 
and nine missed more than 30% of the variants (Table S1).

Table 1.  List of software assessed for human mtDNA haplogroup classification. All the tools assessed classify 
mtDNA sequences according to the PhyloTree nomenclature by using the latest version Build 17. Two of them, 
MitoTool and Phy-Mer, remain outdated in regards of the PhyloTree built when this study was conducted. 
*CLI Command-line interface. $A range is provided given the differences among samples in the size of the 
input files. a: https:// dna. james lick. com/ mthap/; b: https:// haplo grep.i- med. ac. at 16; c: http:// mitot ool. org 24,45; 
d: https:// haplo find. unibo. it 46; e: https:// empop. online 28; f: https:// github. com/ MEEIB ioinf ormat icsCe nter/ 
phy- mer 27; g: https:// mitos uite. com 25; h: https:// github. com/ svohr/ mixemt 30; i: https:// github. com/ genepi/ 
haplo check 31; j: https:// haplo track er. cau. ac. kr 26; k: https:// gitlab. com/ bio_ anth_ decode/ haplo Group er 47.

Tool User interface Release year Version Latest release Database version Input options
Execution  time$ 
(seconds)

James Lick’sa Web 2010 0.19a 2013.04.08 Phylotree 17 FASTA 20–27

Haplogrepb Web / CLI* 2011 2.2.4 2016.07.08 Phylotree 17 VCF | FASTA 0.1 | 1–3

MitoToolc App 2011 1.1.2 2013.11.02 Phylotree 16 FASTA 2–3

Haplofindd Web 2013 – 2013.01.12 Phylotree 17 FASTA 11–15

EMMAe Web 2013 13 2019.11.28 Phylotree 17 FASTA 10–38

Phy-Merf Web / CLI* 2015 1.0.0 2016.01.14 Phylotree 16 BAM | FASTA 8–298 | 51 -54

MitoSuiteg App 2017 1.0.9 2017.06.06 Phylotree 17 BAM 10–340

MixEmth CLI 2017 0.1 2017.05.09 Phylotree 17 BAM 79–5034

Haplochecki Web / CLI* 2019 1.1.0 2019.11.17 Phylotree 17 BAM | VCF 3–14 | 1 -2

Haplotrackerj Web 2020 – 2020.04.23 Phylotree 17 FASTA 30–32

HaploGrouperk CLI 2020 – 2020.08.17 Phylotree 17 VCF 0.1

https://dna.jameslick.com/mthap/
https://haplogrep.i-med.ac.at
http://mitotool.org
https://haplofind.unibo.it
https://empop.online
https://github.com/MEEIBioinformaticsCenter/phy-mer
https://github.com/MEEIBioinformaticsCenter/phy-mer
https://mitosuite.com
https://github.com/svohr/mixemt
https://github.com/genepi/haplocheck
https://github.com/genepi/haplocheck
https://haplotracker.cau.ac.kr
https://gitlab.com/bio_anth_decode/haploGrouper
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Haplogroup classification based on short‑read data. Twenty-eight samples showed > 90% concord-
ance in the haplogroup classification among the 11 tools. The remaining showed a mean concordance rate of 
69.23% (see supplementary Table S3). In addition, a higher classification accuracy was provided for WGS, reach-
ing an average of 90.08%, while for WES it decreased to an average of 76.98% (see supplementary Table S4). On 
average (± SD), there were more discordances on the WES classifications (2.97 ± 3.92) than for WGS (1.39 ± 1.48). 
Based on this evidence, we set the WGS-derived haplogroup as the ground truth.

By the classification accuracy, Haplogrep, Haplocheck, EMMA, and James Lick’s mtHap classified all samples 
correctly based on WGS. For the WES data, only Haplocheck classified all haplogroups correctly, and only when 
the BAM file was used as input. Concerning the less accurate classifiers, MixEmt showed the lowest accuracy for 
WGS, only classifying precisely 30.55% of the analyzed samples. MitoTool was the least accurate tool for WES 
data, yielding an incorrect haplogroup classification in 41.67% of the samples. The execution time required for 
haplogroup classification was also very different between the tools (Table 1). As expected, classifications that 
relied on BAM inputs had a processing time higher than those running with FASTA and VCF files. Among the 
tools that support BAM file inputs, MixEmt was the most time-consuming, in which the heterogeneity of process-
ing time among samples was likely due to the different number of mtDNA reads between datasets. Comparing 
Haplocheck with MixEmt (which was also designed to estimate the potential cross-contamination of samples), 
Haplocheck required less time per sample for the haplogroup classification.

Modelling of the haplogroup classification accuracy. Based on these results, we modelled the per-
formance of the 11 tools for short-read mtDNA data classification. The total variance explained by a fixed effects 
model was 57.69% and 46.19% for WGS and WES data, respectively. The predicted probabilities were then esti-
mated in order to assess the haplogroup classification accuracy of each tool both on WES and WGS data (Fig. 2). 
Among all tools, MixEmt (estimate ± SE; 3.55 ± 0.66; p < 0.001) was the one with the lowest accuracy in correctly 
classifying the haplogroup from WGS (80.91% predicted probability of incorrect classification). The rest of the 
tools showed a negligible probability of misclassifying the haplogroup from WGS (Fig. 2 and Table S5). Post-hoc 
tests did not show statistically significant differences among them. For WES, Haplocheck (-4.38, ± 1.99, p = 0.03) 
and MixEmt (-1.13, ± 0.50, p = 0.02), both using BAM as the input file, were the tools showing the highest accu-

Figure 1.  Circular plot of the depth of coverage for short-read and long-read sequencing in the mtDNA of an 
exemplar sample. Short-read WGS and WES data are colored in green and red, respectively. Long-read WGS 
data is shown in blue.
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racy for haplogroup classification (Fig. 2 and Table S5). Haplocheck correctly classified the haplogroup for all 
samples, while MixEmt incorrectly classified four of the 36 samples analyzed. Despite that, post-hoc tests did not 
show significant differences in the classification performance between Haplocheck and MixEmt. In contrast, 
MitoTool (0.97, ± 0.49, p = 0.05) showed the lowest accuracy in the haplogroup classification based on WES, for 
which the predicted probability of incorrectly classifying an haplogroup was ≥ 25%. Regarding the effect of the 
covariates, their effect was negligible for WGS data. However, for the WES data, a relatively high effect size was 
found for the mapped reads (-5.96 ± 3.55; p = 0.09) and the mapping quality (1.16 ± 0.39; p < 0.001) (Table S5). 
Taken together, these results suggest that the number of reads available and their mapping quality of the WGS 
datasets presented in the study are sufficient for accurate haplogroup classification in all cases, while this was not 
the case for the WES datasets.

Qualitative assessment of haplogroup classification tools. Due to the large number of haplogroup 
classification tools, a secondary aim of this study was to provide a guidance for researchers to select the most 
suitable tool for their analyses, not only based on the mtDNA haplogroup classification accuracy but also based 
on different software features and the usability of the evaluated tools. In order to facilitate the comparison among 
different tools, a qualitative assessment table is provided with the advantages and limitations of each tool. For 
this, the following characteristics were considered: haplogroup classification accuracy, computation time for 
classification, whether or not the latest Phylotree database is used, ability to process cohorts, versatility in the 
input files supported, user-friendly interface, frequency of tool maintenance, and the presence of others major 
functions (Table 2). Overall, Haplocheck proved to be the most complete tool, achieving the best performance in 
over 90% of the evaluated features. At the opposite end, Phy-Mer, with more than 50% of the features resulting 
poorly classified was the tool with the worst performance among all the assessed tools in this study.

Assessment of ONT data for mtDNA haplogroup classification. The mean (± SD) number of 
mtDNA reads per sample (n = 8) recovered by ONT was 2,812 ± 1,003. The average mtDNA coverage depth 
was 576X (range: 358-910X). The ONT-recovered mitogenome profile was uniform. However, a slight decrease 
in the coverage depth was observed for the D-loop region (positions between 16,024–576) (Fig. 1). Regarding 
the quality of the recovered assemblies, the hybrid de novo and reference-based assembly strategies reached a 
similar value of N50, with 16,571 bp and 16,569 bp, respectively. However, for the long-read only de novo assem-
bly, this length decreased to 16,407 bp. The consensus overall identity with the rCRS sequence reached a value 
of 100% for hybrid de novo assembly, 99.97% for reference-based strategy, and 88.99% for the long-read only 
de novo assembly strategy. Taking the called variants by short-read WGS as the ground truth, the variant call-
ing strategy for ONT data shared a consensus average (± SD) of 76.41% (± 5.43), the reference-based assembly 
shared an average of 93.95% (± 5.76), de novo assembly shared an average of 89.13% (± 5.56), and the hybrid 
de novo assembly shared an average of 97.35% (± 3.34). In addition, the strategies that only use ONT reads for 
mtDNA assembly called a larger number of variants that were undetected by short-read WGS. The reference-
based assembly strategy called a total of 61 (± 31) variants and de novo assembly 158 (± 173). For the variant 
calling and hybrid de novo assembly strategies, the number of novel variants called was lower, decreasing to an 
average of 3 (± 2) and 1 (± 2), respectively.

Given that Haplocheck was the best performing classifier based on short-read data, we then used it for ONT 
mtDNA haplogroup classification. The reference-based assembly and the hybrid de novo assembly strategies clas-
sified all samples correctly. However, both the variant calling and the de novo assembly approaches incorrectly 

Figure 2.  Predicted probability values (and 95% confidence intervals) of the GLMM model estimated for 
each tool for (a) WGS and (b) WES datasets. In light grey, the raw data from the haplogroup classification 
results. JML James Lick’s, HPG Haplogrep, MTO MitoTool, HPF Haplofind, EMA EMMA, PHY Phy-Mer, MTS 
MitoSuite, MIX MixEmt, HPC Haplocheck, HPT Haplotracker, HPR HaploGrouper.
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classified one out of the eight samples analyzed. Despite that, all samples were classified correctly at the macro-
haplogroup level with all strategies (Table 3).

Discussion
Over the last decade, the number of mtDNA haplogroup classification tools has increased considerably. How-
ever, to our best understanding, there was no benchmarking study that assessed the accuracy of the haplogroup 
classification provided by them until now. This study presents a comparison of the 11 tools that are most widely 
used. The evaluation was done using empirical HTS data from two of the most widely used applications in human 
genetics, WES and WGS, in diverse empirical data. Besides, we also evaluated the best performing tool in long 
noisy ONT reads in a subset of the samples. Our results support that WES offers a suitable solution to allow 
accurate reconstruction of the mtDNA sequence, although at a lower depth of coverage than WGS. Our results 
also demonstrated that the most accurate tools for human mtDNA haplogroup classification from short-read 
WGS data are Haplogrep, Haplocheck, James Lick’s, EMMA, HaploGrouper, and Haplotracker, whereas, for 
short-read WES, Haplocheck and MixEmt were the most accurate. Considering both the accuracy of classifica-
tion for both approaches and the qualitative assessment made, Haplocheck demonstrated the best performance 
overall. In fact, using Haplocheck on long noisy ONT reads, we were able to accurately retrieve the mtDNA 
haplogroup from all assessed samples.

Table 2.  Qualitative assessment of mtDNA haplogroup classification tools. Performance of each tool is 
evaluated across different features and represented on a color scale based on the level of performance: green 
triangle pointing up for good, orange square for fair, and red triangle pointing down for low performance. 
Haplogroup classification accuracy of each tool was categorized into three ranges based on the predicted 
probabilities by each application: tools with a predicted probability of incorrectly classifying a haplogroup 
below 1% were represented as good performance, for a fair performance was established a range between 1.01% 
and 10%, and as low performance tools with a predicted probability higher than 10.01%. For computation 
time, three intervals were established: tools that classified samples in less than a minute were defined as good 
performance, from 1 to 5 min were categorized as fair performance, and those tools that required more than 
an hour were represented as low performance. Regarding the PhyloTree database used, it was represented as 
low performance those tools which are not updated to the latest version of Phylotree, Build 17, and those that 
allow the latest version as high performance. Multi-sample function was evaluated based on the possibility of 
cohort analysis. Tools that allow to process these functions were defined as good performance, tools that allow 
processing several samples by using a loop through a command-line were categorized as fair performance, 
and tools without this ability were represented as low performance. Based on the file format supported two 
categories were established: tools that support various input format files categorized as high performance 
and those that only support one format file that are represented as low performance. The user interface was 
divided into two categories, tools based on web or desktop applications defined as good performance, and tools 
developed exclusively for CLI as low performance. The tool maintenance was classified into two classes, tools 
updated continually or have been recently released, both identified as good performance, and tools that have not 
been updated during the last years. The last feature is the presence or not of additional functions; tools that have 
other functions implemented are categorized as good performance. Those tools without more functions were 
determined as low performance.
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Previous studies have used WES data for human mitogenome  reconstruction21,55–57. Based on our comparisons 
between WGS and WES datasets, the most striking difference between their classification results was mainly 
related to the breadth and depth of coverage, both being better for WGS than for WES in the presented datasets. 
Differences in mtDNA breadth of coverage were less pronounced. However, the mean depth of mtDNA for 
WGS was around 30 times higher than that obtained by WES. For WGS, the depth reported in diverse studies 
ranged between 1,200–4,000X58–60, fitting with the expected proportion of mtDNA copy number compared to 
the nuclear DNA, which theoretically differs by 10 to 100  times61,62. With respect to WES, the observed depth fits 
in the range described in the  literature55,57,63,64. Attending to the number of variants compared to those detected 
by WGS, a loss of variants was observed for WES in several samples. This may be explained by the low number 
of mapped reads of the mtDNA recovered in these samples, causing a shallower mtDNA depth. Despite that, 
based on the BAM-deduced haplogroup results, we and  others64 have confirmed that WES can be an efficient 
approach to recover complete human mitogenomes, which allows retrieving the haplogroup with comparable 
accuracy to that based on WGS.

In general, the data quantity and quality of the WGS datasets analyzed allowed accurate mtDNA haplogroup 
classification in all samples, but this was not the case for the WES datasets in most of the evaluated tools. This 
could be explained by the lower depth of mitogenomes in WES compared to WGS, as has been described 
 elsewhere65,66, given that a low depth of coverage will have negative consequences on the performance of the 
variant calling  algorithms67,68. mtDNA haplogroup classification relies on a hierarchical algorithm based on the 
presence or absence of specific diagnostic variants defining the  genealogy69. Therefore, missing key variants due 
to the low depth may have a strong impact on the correct assignment in those tools that only support VCF and/or 
FASTA files as input. In contrast, the tools that can rely on BAM as an input file, given that this format contains 
all mapped reads—including information about the alignment conditions and the complete sequence together 
with the quality for each base—may facilitate the proper haplogroup classification in sample datasets where 
certain variant positions are supported by a low number of reads. Hence, the BAM format might be optimal in 
samples where a low number of mtDNA reads is expected. The use of the BAM file as a possible input file for 
haplogroup classification has become popular in the last few  years25,27,30,31. With respect to the WES haplogroup 
results, the tools that support BAM as input files obtained the highest classification accuracy, except Phy-Mer, 
which was one of the tools performing worst in the classification. Haplocheck and MixEmt reached the high-
est accuracy among all the tools evaluated. Haplocheck excels in the correct classification of all samples, even 
with low depth of mtDNA, unlike MixEmt, which resulted in several misclassifications. On the other hand, our 
results from WES data also showed that the total number of mapped reads, which closely relates to the depth of 
coverage, has a strong effect on the haplogroup classification, affecting the classification of the samples with a low 
number of mtDNA reads. However, the effect of this variable was negligible in WGS datasets. Consequently, the 
total number of mtDNA mapped reads can be considered another key factor to take into account in the mtDNA 
classification from WES datasets.

As a cautionary note, the results of this study are dependent on well-preserved starting material that associate 
with a high quantity and quality of DNA. However, in some scenarios such as on ancient DNA studies, this is 
not always possible. Sequencing poor quality DNA can have negative consequences on the performance of the 
process, mainly affecting the breadth and depth of the coverage. Low depth of coverage negatively impacts the 
variant-calling step, because one expects that potential diagnostic variants may remain undetected due to the low 
number of reads. Based on our results, if low depth of coverage is expected, using the BAM file as input is likely 
more suitable for haplogroup classification. However, it would be interesting to perform a specific benchmark-
ing of the tools on datasets from samples with degraded and low-quality DNA. While we did not test datasets 
generated with low-coverage WGS studies, it has been shown that the mtDNA depth of coverage recovered 
exceeds the threshold required for accurate mtDNA variant  calling70, thus obtaining equivalent results as with 
the standard 30X WGS datasets.

Haplogrep, Haplocheck, James Lick’s, EMMA, HaploGrouper, and Haplotracker tools yielded the highest 
accuracy scores based on WGS data, and their accuracy was independent of the input file format. This finding 
may be related to the high and uniform depth of WGS throughout the mitogenome, translating in strong support 

Table 3.  Long-read (ONT) sequencing summary and haplogroup classification results for the samples. The 
results of the short-read whole-genome sequencing (WGS) mtDNA classification are also shown.

Samples

ONT sequencing Variant-calling
Reference-based 
assembly De novo assembly

Hybrid de novo 
assembly Short-read WGS

Mapped 
reads

Depth of 
coverage Variants Haplogroup Variants Haplogroup Variants Haplogroup Variants Haplogroup Variants Haplogroup

CAN03 3,065 581 14 H1ao1 69 H1ao1 119 H1ao1 16 H1ao1 14 H1ao1

CAN06 2,981 566 36 J2a2d 141 J2a2d 154 J2a2d 46 J2a2d 44 J2a2d

CAN07 2,343 444 15 H6a1b2 132 H6a1b2 175 H6a1b 17 H6a1b2 14 H6a1b2

CAN09 2,126 358 33 U4c1 66 U4c1 602 U4c1 37 U4c1 37 U4c1

CAN17 4,209 821 10 H2a2 59 H + 16,189 41 H + 16,189 15 H + 16,189 12 H + 16,189

CAN23 1,737 532 29 K1a1b1 69 K1a1b1 78 K1a1b1 37 K1a1b1 35 K1a1b1

CAN31 1,776 398 20 U6b1a1 67 U6b1a1 119 U6b1a1 28 U6b1a1 26 U6b1a1

CAN34 4,256 910 34 L3f1b1a 90 L3f1b1a 174 L3f1b1a 42 L3f1b1a 43 L3f1b1a
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of variants by a high number of reads and, therefore, making more equivalent the information contained in the 
BAM, VCF, and FASTA files. Haplogrep and Haplocheck, both sharing the underlying algorithm developed first 
for Haplogrep and now integrated as a module directly in  Haplocheck31, were the ones providing the best ratings 
for all evaluated features. Despite that, taking into account all the evaluated features, Haplocheck stands out as the 
most complete haplogroup classification tool for WGS data as it also allows detecting potential sample contami-
nations based on BAM files. For those users who prefer working with mtDNA alignments in FASTA format and 
with the sole objective of classifying a limited number of samples by web-based user-friendly tools, EMMA, James 
Lick’s, HaploGrouper, and Haplotracker are good choices as they all showed similar accuracies as Haplogrep and 
Haplocheck. EMMA is integrated into the EMPOP platform and stands out as one of the most complete and 
up-to-date databases of human mtDNA information, containing high quality representations of haplogroups 
from all over the world based on logical and phylogenetic measures suitable for forensic  purposes71,72. James 
Lick’s is one of the first tools released for mitochondrial haplogroup classification that is continually updated to 
new versions of the PhyloTree database. This tool is widely used among genetic genealogists because it is user 
friendly and based on a web application. HaploGrouper, the most recently released tool, allows classifying the 
haplogroups both for mtDNA and the non-recombining portion of the Y-chromosome, being unique in this 
dual function. However, this tool requires basic bioinformatic skills since it runs from a command-line interface. 
Finally, Haplotracker has been designed for fragmented DNA samples, such as degraded ones, allowing datasets 
to be classified using both short reads and complete mtDNA sequences. It runs as a web application with a user-
friendly interface that makes it appealing for users without bioinformatics skills. Among all the tools evaluated, 
Haplogrep, Phy-Mer, MitoSuite, MixEmt, and Haplocheck can be optimized by choosing optional parameters 
to improve the performance of the classification methods. However, to simplify this benchmarking, and since 
not all tools have the possibility of a customized configuration run, we decided to use the default parameters for 
all the tools. Given that a customized configuration may affect the performance of some of the tools, we recom-
mend performing a sensitivity analysis for specific data sets and consider a balance between the reduction in 
user friendliness of these tools and the possible gains in performance.

Long-read sequencing technology allows new genome discoveries leveraging the improvements in genome 
assemblies and detecting structural variants, among others. Long noisy ONT reads have been applied for stud-
ies of the nuclear  genome73,74. However, there are few examples of the use of this sequencing technology for 
mtDNA genome  analysis75,76. The Achilles’ heel of this emerging sequencing technology, the high error rates, 
is continuously improving mostly based on pore modifications and the development of basecalling methods. 
Here we showed that reference-based assembly and hybrid de novo assembly strategies provide precise results 
for haplogroup classification. However, despite the high number of artefactual variants detected using only the 
long reads for assemblies (reference-based and de novo), these results could be improved using new methods 
for basecalling and/or genome assembly. Irrespective of that, our results demonstrate that the ONT reads are 
appropriate for recovering accurate mtDNA haplogroups from WGS data.

Conclusions
With the advent of the HTS technologies, the number of human mtDNA haplogroup classification tools has 
increased notably in the last decade. Each new tool released incorporates novel features and different analysis 
functions, but this has not been always linked to an improvement in the haplogroup classification accuracy. In this 
study, an evidence-based benchmarking effort was proposed to compare the classification accuracy provided by 
the most salient tools. We conclude that Haplocheck is the most suitable mtDNA haplogroup estimator for WGS 
and WES datasets, not only because of its classification accuracy but also because of all the included features and 
its user-friendly web interface. Regarding third-generation HTS, despite the lower per base accuracy currently 
offered by ONT, we found that it does not hinder a precise human mtDNA classification.

Data availability
The data generated as part of this study has been deposited in the European Genome-Phenome Archive (EGA, 
https:// egaar chive. org/) and the National Center of Biotechnology Information (NCBI, https:// www. ncbi. nlm. 
nih. gov/).
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