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N‑doped reduced graphene oxide 
for room‑temperature NO gas 
sensors
Yu‑Sung Chang, Feng‑Kuan Chen, Du‑Cheng Tsai, Bing‑Hau Kuo & Fuh‑Sheng Shieu*

In this study, we use nitrogen‑doped to improving the gas‑sensing properties of reduced graphene 
oxide. Graphene oxide was prepared according to a modified Hummers’ method and then nitrogen‑
doped reduced graphene oxide (N‑rGO) was synthesized by a hydrothermal method using graphene 
oxide and  NH4OH as precursors. The rGO is flat and smooth with a sheet‑like morphology while the 
N‑rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas 
sensitivity. The N‑rGO and the rGO sensors showed n‑type and p‑type semiconducting behaviors in 
ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) 
at room temperature. The gas‑sensing results showed that the N‑rGO sensors could detect NO gas 
at concentrations as low as 400 ppb. The sensitivity of the N‑rGO sensor to 1000 ppb NO (1.7) is 
much better than that of the rGO sensor (0.012). Compared with pure rGO, N‑rGO exhibited a higher 
sensitivity and excellent reproducibility.

Gas sensors are very important for a wide range of applications, including detection of harmful chemical vapors, 
industrial process control, and chemical processing  plants1,2. The development of gas sensors is a highly critical 
research area that involves issues related to safety, health, and environmental  risks3,4. Typical gas sensors use metal 
oxide materials, such as zinc oxide and tin  oxide5,6. Metal oxide-based gas sensors operate at high temperatures 
(200–400 °C), which results in excessive consumption of energy and limits their long-term stability. Thus, it is 
important to develop new gas sensor concepts that can overcome these drawbacks.

In recent years, carbon-based nanomaterials, such as carbon nanotubes and graphene, have been used for gas 
detection at room temperature. Various gases have been tested using carbon nanotubes gas  sensors7–9. However, 
these sensors show low sensitivity and long response time, or poor reproducibility, depending on the assembly 
process and the purity. Graphene-based materials are useful for the fabrication of high-performance sensors, 
especially for detecting gases at low operating temperatures. Graphene exhibits two excellent properties for gas 
detection: (1) High carrier mobility (200,000  cm2/V s) and high surface area (2630  m2/g), facilitating detection 
of resistance change during the  process10 and (2) Low electrical resistivity (1.0 ×  10–6 Ω cm) for detecting resist-
ance change after adsorption or desorption and increase or decrease in target gas  concentration11. However, 
pure graphene is intrinsically inert, while graphene oxide (GO) has multitudinous oxygen functional groups 
and is too insulating for fabrication of resistance-based sensors. Recently, several graphene-based composites 
have been reported for gas sensors. For example, Ganhua et al.12 prepared graphene directly from GO through 
one-step heating (200 °C, 2 h), which was responsive to low-concentration  NO2 and  NH3 gases in air at room 
temperature with excellent sensitivity. Jianwei et al.13 synthesized graphene/Pt with sensitivities of 14% (7%), 
8% (5%), and 10% (8%), for 1000 ppm  H2,  NH3, and NO gases, respectively with (without) Pt nanoparticles 
at room temperature. Vardan et al.14 prepared a hybrid structure of reduced graphene oxide (rGO) and ZnO 
nanostructures exhibiting 40–50% better response to  NO2 and  H2 compared to pure ZnO sensors at an operating 
temperature of 200 °C. Hao et al.15 synthesized rGO/SnO2/Au hybrid nanomaterials through a one-step hydro-
thermal process, exhibiting a much better response/recovery time to 5 ppm  NO2 compared with pure rGO and 
rGO/SnO2 at an optimal operating temperature of 50 °C. Sen et al.16 synthesized rGO/ZnO/Au hybrids through 
the wet chemical method with high sensitivity and fast response for detection of  NO2 at an operating temperature 
of 80 °C. The improved sensor performance reported in the above studies is attributed to the incorporation of 
graphene/RGO-based nanocrystals/nanoparticles. However, their synthesis methods are complicated, requir-
ing a high operating temperature and incorporation of precious metal or metal-oxide, and the sensor has a low 
response to low concentrations of gases. Therefore, reducing operating temperature and cost, and developing 
an environment-friendly strategy is very important to extend the applications of graphene-based gas sensors.
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We prepared nitrogen doped rGO gas sensors with fast response and high sensitivity. Nitrogen-doped rGO 
(N-rGO) nanosheets were prepared directly from GO through the hydrothermal treatment in an ammonia solu-
tion. In the gas sensing process, N-rGO and rGO exhibited n-type and p-type semiconductor behaviors, respec-
tively. We assessed the sensing characteristics of N-rGO at various concentrations of NO gas at room temperature.

Materials and methods
Chemicals. All chemicals were of analytic grade and used without further purification. Graphite powder 
(Choneye Pure Chemicals, Taipei, Taiwan) was used to prepare GO. Sodium hydroxide (NaOH; Echo Chemical, 
Miaoli, Taiwan) and an ammonia solution (Choneye Pure Chemicals, Taipei, Taiwan) were used to prepare rGO 
and N-rGO, respectively. The NO calibration gas cylinders (1000 ppb) used for the sensing studies were obtained 
from Air Products San Fu Co. Ltd., Taiwan.

Preparation of GO. The modified Hummers’  method17 is used to prepared graphene oxide powders. The 
mixture of 2 g of graphite powder and 0.6 g of  NaNO3 is mixed in 20 mL of concentrated  H2SO4 solution under 
30-min stirring in an ice-bath surrounding. Then, 10 g of  KMnO4 was added slowly in the mixture solution 
which was stirred at 35 °C for 3 h. Follow, the mixture solution with 180 mL DI water was heated at 98 °C for 2 h. 
In order to eliminate the excess of  KMnO4, 20 mL of 30%  H2O2 was dropped slowly to the solution. Finally, the 
mixture solution was centrifuged and washed with 5% HCl and DI water to remove the metal ions and control 
the pH value to 7. The resulting solid was dried in a vacuum oven under a pressure of 101.32 Pa at 70 °C for 12 h.

Preparation of rGO and N‑rGO. Hydrothermal method is used to synthesize N-doped graphene from the 
raw material of graphene oxide. Dispersion of GO (0.05 g) in 50 mL of DI water is obtained by ultra-sonication 
for 2 h. Then, 20 mL of ammonia solution (25 wt.% in water) was added in dispersed solution. The Teflon-lined 
autoclave which contain the mixture solution is placed in drying oven at 200 °C for 24 h. The reacted solution 
from the autoclave which is cooled naturally to room temperature are centrifuged and washed several times with 
distilled water and ethanol after. The remaining mixtures are drying in a vacuum oven at 80 °C for 24 h. For 
fabrication of rGO powders, the NaOH solution is conducted in the same process instead of ammonia solution.

Characterization. The optical properties were measured using a Shimadzu UV 3600 spectrophotometer 
at wavelengths in the range of 200–800 nm. The morphology and the dispersion level of rGO and N-rGO were 
analyzed by transmission electron microscopy (TEM, JEOL 200CX), field-emission scanning electron micros-
copy (FESEM, JEOL JSM-6700F), and scanning electron microscopy (SEM, Hitachi TM-1000). Raman spectra 
were recorded on an Andor DU401-BV multichannel confocal microspectrometer with 632-nm laser excitation. 
X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe) was performed using monochromated Al Kα 
radiation (1486.8 eV). All these measurements were carried out at room temperature.

Fabrication of sensor and gas‑sensing measurements. The sensor was fabricated using a three-layer 
configuration: sensing materials, Ag–Pd electrodes, and  Al2O3 substrate. Figure 1a shows the SEM image of Ag–
Pd electrodes. The prepared N-rGO was added to a 1:1 mixture of DI water and ethanol and then sonicated for 
20 min. Then, a droplet was placed on a planar resistive-type sensor device which was then placed on a hotplate 
for 20 min to dry (Fig. 1b). Figure 1c shows the testing apparatus used for gas sensing. All the measurement 
results at room temperature were acquired by recording the corresponding electrical responses. The gas concen-
tration was controlled by a mass flow controller (MFC, Brooks 5850E). The electrical resistances of the sensors 
were measured using a Keysight B2901A data acquisition system and collected in real time using a PC equipped 
with the corresponding data acquisition hardware and software. The desired concentration of the target gas was 
obtained by adjusting the flow rates with the MFCs, while maintaining a total constant flow rate of 200 sccm 
(mL/min). The response upon gas exposure was evaluated by measuring the electric current variation of the 
sensor using a bias voltage of 1 V.

Results and discussion
Structural and chemical characterization. Figure 2a,b show the FESEM images of rGO and N-rGO, 
respectively. A smooth and sheet-like surface of the rGO sample is apparent in Fig. 2a. Figure 2b shows that 
N-rGO exhibits a folded morphology after the hydrothermal treatment. The TEM images of the rGO sample are 
shown in Fig. 2c, while those of the N-rGO sample are shown in Fig. 2d. It is evident that rGO is flat, transpar-
ent, and smooth with a sheet-like morphology and lateral dimensions ranging from 1 to 10 μm (Fig. 2c). On the 
other hand, the morphology of N-rGO resembles crumpled silk; this type of folding of the surface morphology 
can increase the gas  sensitivity18,19.

The main application of XPS is determination of binding energy of electrons for qualitative analysis of sur-
face elements. Figure 3a shows the XPS spectra of the GO, rGO, and N-rGO samples; the major peaks cor-
respond to C, N, and O elements, suggesting absence of impurities. Figure 3b,c show the C 1 s spectra of GO 
and rGO, respectively, wherein the major binding energy contributions are assigned to  sp2 (C=C),  sp3 (C–H), 
C–O (hydroxyl, epoxide, ether etc.), and C=O (carboxylic)  bonds20,21. The intensity of the  sp2 peak increases 
and that of the oxygen-related peaks decreases, further confirming the reduction of GO. Figure 3d shows the C 
1s spectra of N-rGO, wherein the major binding energy contributions are assigned to  sp2 (C=C),  Csp2-N, and 
 Csp3-N, originating from the doping of  N22. As a result of the relatively low electronegativity of N (than oxygen), 
this peak appears at a lower binding energy relative to the C–O and C=O peaks. The N 1s spectra in Fig. 3e 
show peaks originating from three components, namely graphitic–N, pyrrolic–N, and pyridinic–N23,24. The 
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presence of these peaks show that the doping of N atoms into an  sp2-bonded network of carbon results in three 
different N functionalities (Fig. 10): (i) graphitic-N (refers to the substitutional N atoms at the carbon sites), (ii) 
pyrrolic-N (refers to the N atoms that are bonded to two carbon atoms, which contribute to the π system with 
two p-electrons), and (iii) pyridinic-N (refers to the N atoms at the edge of the graphene planes, each of which 
is bonded to two carbon atoms and donates one p-electron to the aromatic π–system)25,26.

Figure 4 shows the UV–vis absorbance spectra of the GO, rGO, and N-rGO samples. The GO sample exhib-
ited a strong absorbance at 236 and 305 nm, corresponding to π–π* transition of the  sp2 C=C bonds and n-π* 
transition of the C=O bonds,  respectively27. When GO is reduced to graphene, a typical absorption peak is 
observed at 234 nm, which can be ascribed to the excitation of the π-plasmon of the graphitic  structure28. The N 
doping introduces a new UV absorption peak at 268 nm, corresponding to the electron transitions from C=N29. 
Meanwhile, when GO is reduced to rGO and N-rGO, the shoulder peak at approximately 305 nm disappears as 
a result of the decrease in the concentration of carboxyl  groups30.

Figure 5 shows the Raman spectra of the GO, rGO, and N-rGO samples. The D-band, called as a defective 
band (related to edges, defects, and structurally disordered carbon) is observed at approximately 1349  cm−1 and 
the G-band (in-plane vibrations of  sp2 carbon network) is observed at approximately 1613  cm−131. The intensity 
ratio of the D-band to the G-band  (ID/IG) is used to determine defect lattices and degree of disorder in  graphene32. 
The  ID/IG ratio increased from 1.15 for GO to 1.24 for rGO. This is a clear indication of the effective reduction of 
GO. A higher ratio  (ID/IG = 1.28) for N-rGO indicates the presence of more defects caused by N doping.

NO sensing characteristics. Current–voltage (I–V) characteristics. Figure 6 shows the I–V character-
istics of the NO gas sensors operated at a bias voltage ranging from − 1 to 1 V at room temperature. Graphene 

Figure 1.  (a,b) Microelectrodes with an interdigital structure consisting of Ag–Pd conducting paths on an 
 Al2O3 substrate. (c) Schematic of gas-sensing.
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oxide is normally electrically insulating at room temperature, owing to the presence of abundant epoxide and 
hydroxyl groups on both sides and  sp3-hybridized carbon  atoms33. After the NaOH treatment, the resistance of 
rGO slightly decreases, further confirming the reduction of GO. The resistance of N-rGO significantly decreases, 
indicating improved sensitivity.

Reproducibility and stability studies. Figure 7 shows the typical dynamic response of the relative resistance (R/
R0) in 1000-ppb NO at room temperature. Initially, the sensor was exposed to clean air to determine the base 
resistance; then, NO gas was injected into the sensing chamber for 2.5 min to register the sensing signal; finally, 
the NO gas supply was closed and air flow was simultaneously allowed for 2.5 min to repeat the cycling of the 
sensor. In these experiments, there was no evidence of any deterioration in the sensitivity. Figure 7a shows the 
transport characteristics of the N-rGO device, which is similar to that of an n-type semiconductor. When NO 
gas is introduced into the test chamber, the NO gas molecules capture the electrons on the N-rGO surface. This 
reaction leads to a decrease in the concentration of electrons, resulting in a decrease in the conductivity and an 
increase in the resistance of the  sensor34. This is because N-rGO is very sensitive to this gas. As the N-rGO nano-
structures are exposed to air ambient, the electrons introduced by the oxygen vacancies in the N-rGO nanostruc-
tures are adsorbed by the oxygen molecules from the air ambient which compensate the surface oxygen vacancy 
sites. These surface adsorbed oxygen molecules are transformed into oxygen ions such as  O2

−,  O2
− and  O− by 

capturing the electrons from the conduction band of N-rGO. Hence, the electron depletion layer is extended on 
the surface of the N-rGO nanostructures that increases the electrical resistance of the  nanostructures35.

 The NO gas is adsorbed on the surface of the N-rGO material according to Eqs. (1), (2), and (3).

 Figure 8 shows the N-rGO sensor is exposed to air, oxygen molecules adsorb on the surface of the nanorods 
form  O−,  O2

− ions by capturing electrons from the conduction band which results in increase in resistance 
(Eq. 1). When the N-rGO is exposed to the atmosphere of NO, it captures the electrons due to its higher electro-
phonic property leading to the formation of adsorbed  NO− (ads) which results in increase in resistance (Eq. 2). 

(1)NO(gas)+ e− → NO−(ads)

(2)2NO−(ads) → 2O−(ads)+N2(gas)

(3)2NO−
+ e− → O−(ads)+N2O(gas)

Figure 2.  FESEM images of (a) rGO and (b) N-rGO; TEM images of (c) rGO and (d) N-rGO.
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However, desorption of  NO− can take place and the adsorbed  NO− (ads) reacts with adsorbed oxygen  (O−,  O2
−) 

which results in further increase in resistance (Eq. 3). Then, when the air was let in, NO can readily dissociate 
into  O− and some bound electrons were  released36. Figure 7b shows the transport characteristics of the rGO 
device, which are similar to those of a p-type semiconductor. This p-type semiconducting characteristic agrees 
with the results reported for graphene sheets prepared using  thermally37 and  chemically38 reduced GO when 
exposed to the ambient environment. The absorbed oxygen on the rGO surface attracts electrons from graphene, 
generating additional holes as carriers. This process increases the hole concentration and contributes to the 
p-type semiconducting behavior. When the rGO (p-type) sample is exposed to the NO gas, a chemical reaction 
takes place. This chemical reaction will then cause a change in the material properties, for example, electrical 
conductivity or resistance.

Figure 3.  (a) XPS spectra of GO, rGO, and N-rGO; (b) C1s peak of GO; (c) C1s peak of rGO; (d) C1s peak of 
N-rGO; (e) N1s peak of N-rGO.
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Figure 4.  UV–vis absorption spectra of GO, rGO, and N-rGO.

Figure 5.  Raman spectra of GO, rGO, and N-rGO.

Figure 6.  Current–voltage characteristics of GO, rGO, and N-rGO.
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Sensitivity studies. Various concentrations of NO gas, ranging from 400 to 1000 ppb, were fed into the chamber 
to determine the sensing performance of the optimal sensor. In ambient environments, the oxygen  (O2) gas 
excess NO reacts with oxygen to form  NO2

39. Therefore, used the  N2 represent the state the ambient. Figure 9 
shows the plots of normalized response versus time for the sensing device based on an assembly of N-rGO and 
rGO upon exposure to NO gas of different concentrations. The recovery time of the N-rGO sensor was much 
shorter than that of the rGO sensor, even though sensor recovery was incomplete in  N2. This means that the 
surface topography is related to the response time. We calculated the sensitivity (S), which is one of the most 
important characteristics of a gas  sensor40,41. Figure 10 shows the relationship curve for the sensitivity to NO at 
different concentrations ranging from 400 to 1000 ppb. The results indicate that the sensor response increases 
with the concentration of NO. The sensor sensitivity of rGO is 0.012, 0.008, 0.005, and 0.003, whereas those of 
N-rGO are 1.7, 1.3, 1.18, and 1.12, that corresponding the NO gas concentrations of 1000 ppb, 800 ppb, 600 ppb, 
and 400 ppb, respectively. That N-rGO is significantly more sensitive than rGO. In N-doped rGO, the carrier 

Figure 7.  The relative resistance in presence and absence of 1000 ppb NO gas (a) N-rGO and (b) rGO.

Figure 8.  Schematic view of sensing mechanism of N-rGO sensor with NO gas.
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concentration can change the potential profile, which can have a direct influence on the device resistance and 
the sensing properties.

Table 1 compares the gas-sensing performance attained in the present study with recent results reported in 
the literature. The use of N-doped rGO sheets greatly improves the sensor performance even in comparison 
to recently reported results for rGO/metal for the same gases. Thus, it can be concluded that there is a major 
improvement in the performance of graphene-based gas sensors fabricated with metal- or N-doped graphene.

Sensor performance. Selective detection of target gases remains a challenge in the applications of gas sensors. 
To identify their selectivity by exposing them to saturation organic vapors like  NH3, isopropanol (IPA), ethanol 
(EtOH), methanol (MeOH), as summarized in Fig. 11. It was seen that the responses of the N-rGO sensor are 
much higher than the rGO sensor on the selective gas.

The long-term cyclic stability of the rGO and N-rGO sensor was measured in Fig. 12. It can see, the rGO 
and N-rGO sensors exhibit nearly constant sensing in 7 days at each time to 200 ppm NO during the test. The 
analysis of humidity is beneficial but we haven’t the "Constant temperature and humidity machine". We test the 
simple for humidity. The corresponding relative humidities of 30%, 50%, and 100% were the NO gas response 
of 1, 0.7 and 0.2, respectively. This result response decrease, that N-rGO sensors adsorption high water vapor.

Gas sensing mechanism of N‑rGO. The gas sensing mechanism of N-rGO can be explained using a 
surface-controlled model, which includes absorption, electronic desorption, and transfer. The unsatisfactory 

Figure 9.  The relative resistance in various concentrations of 1000–400 ppb NO gas (a) N-rGO and (b) rGO.
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performance of the rGO sensor results from its constituent carbon atoms. Graphene has two types of carbon 
atoms, namely  sp2 hybridized carbon atoms and  sp3 hybridized carbon atoms. These constitute the graphite 
structure and the structural defects, and form chemical bonds with oxygen-containing groups, respectively. 
The absorption energy of  sp3 is larger (5.7 kcal/mol), resulting in slower adsorption and  desorption43. Figure 13 
shows the schematic of the sensing mechanism of NO gas adsorbed onto N-rGO sheets. The improvement in the 
NO gas-sensing performance of the rGO nanosheets doped with N can be explained as follows: (i) Gas sensing 
by resistance-type sensors is based on variations in the conductance of the sensing element. The N-doped rGO 
offers significantly improved sensitivity, leading to a better sensing behavior; (ii) The N doping would produce 

Figure 10.  Sensitivity of rGO and N-rGO sensors to NO concentrations ranging from 400 to 1000 ppb at room 
temperature.

Table 1.  Comparison of fabricated NO gas sensors with the previously reported NO sensor material.

References Sensing material Working temperature Concentration Definition of sensitivity Response
42 rGO/Au 50 °C 5 ppm Ra/Rg 1.15
13 rGO/Pt 100 °C 800 ppm ΔR/R0 100% 12.5%
15 rGO 50 °C 5 ppm Ra/Rg 1

This work rGO RT 1 ppm R/R0 0.012

N-rGO RT 1 ppm R/R0 1.7

Figure 11.  Selectivity of the sensor to other organic volatiles.
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polarization in the  sp2 carbon network, in which N has a higher electronegativity (x = 3.04) than C (x = 2.55), 
thus further affecting the physical and the chemical performance; (iii) The doped N atoms exist in three different 
states, namely pyridinic-N, graphitic-N, and pyrrolic-N. The enhanced catalytic activity is usually attributed to 
the increased active sites of pyridinic-N and/or pyrrolic-N. Pyridinic N refers to N atoms at the edges of gra-
phene planes, where each N atom is bonded to two carbon atoms and donates one p-electron to the aromatic 
π  system44,45. Pyrrolic N atoms are incorporated into five-membered heterocyclic rings, which are bonded to 
two carbon atoms and contribute two p-electrons to the π  system46–48. Pyridinic-N modifies the band structure 
of carbon, raising the density of π states near the Fermi level and lowering the work function.the relative elec-
tronegativity of graphitic N atoms reduces the electron density on the adjacent C nuclei, which helps electrons 
transfer from the adjacent C to N atoms, and N backdonates electrons to adjacent C pz orbitals. The donation 
and backdonation processes not only facilitate  O2 dissociation on the adjacent C atoms, but also help forming a 
strong chemical bond between O and  C49.

Conclusions
Reduced graphene oxide and N-rGO nanosheets were evaluated for their NO gas sensing properties at room tem-
perature. The hydrothermal treatment converted rGO to n-type N-rGO, as confirmed by UV and XPS analyses. 
The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. 
The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). 
The results of the present study indicate that N-doping can significantly enhance the NO sensing properties of 
graphene-based sensing materials at room temperature, suggesting their excellent potential for use as gas sensors.

Figure 12.  Long-term stability of gas sensor.

Figure 13.  Schematic of the sensing mechanisms of nitric oxide gas adsorbed onto N-rGO sheets.
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