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An examination of active inference 
in autistic adults using immersive 
virtual reality
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The integration of prior expectations, sensory information, and environmental volatility is proposed 
to be atypical in Autism Spectrum Disorder, yet few studies have tested these predictive processes 
in active movement tasks. To address this gap in the research, we used an immersive virtual-reality 
racquetball paradigm to explore how visual sampling behaviours and movement kinematics are 
adjusted in relation to unexpected, uncertain, and volatile changes in environmental statistics. We 
found that prior expectations concerning ball ‘bounciness’ affected sensorimotor control in both 
autistic and neurotypical participants, with all individuals using prediction-driven gaze strategies to 
track the virtual ball. However, autistic participants showed substantial differences in visuomotor 
behaviour when environmental conditions were more volatile. Specifically, uncertainty-related 
performance difficulties in these conditions were accompanied by atypical movement kinematics and 
visual sampling responses. Results support proposals that autistic people overestimate the volatility 
of sensory environments, and suggest that context-sensitive differences in active inference could 
explain a range of movement-related difficulties in autism.

Autism Spectrum Disorder (ASD, hereafter autism) is diagnosed according to atypicalities in social interaction, 
communication, and behavioural flexibility. However, one particular source of daily living difficulty for autistic 
people concerns impaired sensorimotor  control1,2. Indeed, differences in sensory integration, motor coordina-
tion and skill acquisition are common in autistic  people2,3, with particular impairments shown in interceptive 
skills like catching or hitting a  ball4–7. These differences emerge at a kinematic  level5,7,8, for which autistic people 
show noisy, inflexible, and uncertain movement  patterns7,9,10. The degree of impairment in motor tasks correlates 
with an individual’s socio-behavioural  traits11 and daily living  competencies1. Research into the source of these 
sensorimotor difficulties could thus develop both our scientific understanding of autism, and our capacity to 
manage its various clinical features.

Neuro-computational research has shown that movement is controlled using probabilistic models about 
the world (i.e., predictions), which are derived from incoming sensory evidence and prior  expectations12,13. 
When performing an action like hitting a tennis ball, the brain will regulate motor responses (e.g., movement 
kinematics) and sampling behaviours (e.g., gaze responses) according to both incoming sensory cues and prior 
beliefs (e.g., about gravity, ball  bounciness14). Such dynamic sources of information are weighted according to 
their uncertainty, or precision, which is directly proportional to learning  rate15. These precision-weighted pre-
dictions not only serve to optimise perceptual functions, they also represent a set point that an individual can 
act towards in their  movements13,16,17. Any deviations away from near-optimal processing could thus result in 
sensorimotor impairment.

Indeed, various researchers have highlighted the role of impaired predictive processing in autism (see 
 review18). Though conflicting in their precise explanations, most ‘simple’ Bayesian frameworks attest to an 
attenuated influence of prior expectations on autistic perception and  action19,20. These accounts can explain 
heterogeneous socio-behavioural traits and neurological abnormalities displayed in autistic people (see clin-
ically-focused  review21). Furthermore, proposed differences in predictive  processing22 align with a range of 
autism-related sensorimotor atypicalities, including: impaired movement  planning23,24, reduced anticipatory 
motor  adjustments7,25, suboptimal movement initiation  kinematics5,8, slower error-based saccade  adaptation26, 
and atypical gaze fixation  behaviours27. However, prediction-related difficulties only emerge under some task 
conditions (see  review28), with autistic people demonstrating intact visual motion  prediction29, anticipatory 
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lifting  forces30, and non-social ocular tracking  abilities31. These inconsistent findings undermine proposals that 
prior expectations are generically attenuated in autism.

As such, recent neurocomputational accounts instead argue that autism is characterised by atypicalities in 
precise, context-sensitive processing functions, which determine how predictive control is hierarchically adjusted 
according to environmental statistics (e.g., uncertainty,  volatility18,32,33). In contrast to the simple frameworks dis-
cussed above, these mechanisms implicate how an individual dynamically models the world, through precision-
related modulation of postsynaptic cortical  gain32,33. Here, autistic daily living difficulties are not perceived to 
result from ‘one-level’ attenuations in the use of prior expectations; they are proposed to stem from mechanisms 
that contextually regulate prediction error across multi-level neural  networks18,32,33. These hierarchical functions 
not only determine the precision (i.e., uncertainty) of prior beliefs, they also model how environmental prob-
abilities are expected to fluctuate over time. Indeed, estimations about environmental (in)stability implicate how 
an individual samples and learns about sensory information from the  world15, with even minor abnormalities 
likely to impair the formation of stable, statistically-optimal predictive  models33. As a result, autistic people 
may consistently interact with the world as if it is uncertain or  volatile32, a hypothesis supported by studies of 
probabilistic  learning34, neural  habituation35, and pupil diameter  responses32.

When interpreted alongside active inference perspectives, these context-sensitive frameworks present novel, 
empirically-falsifiable predictions about sensorimotor  behaviour18. According to active inference theory, optimal 
movement control rests on dynamic adjustments in the sampling and weighting of sensory  information12, with 
physical actions used to fulfil predictions and/or reduce their  uncertainty13,16,17. Here, the use of probabilistic 
generative models is seen to minimise future prediction errors (or Bayesian surprise), based on estimates of 
hidden (i.e., unknown) world states. For instance, when uncertainty in prior expectations is high or environ-
mental volatility increases (e.g., when conditions become more unpredictably-changeable), individuals tend to 
rely more heavily on incoming sensory feedback and will adjust their visual search strategies  accordingly30,36,37. 
Alternatively, when sensory information is more uncertain, more emphasis will be placed on longstanding prior 
expectations and ‘top-down’ attentional  processes12,38. Such Bayes-optimal adjustments have been demonstrated 
in neurotypical cue combination, interceptive timing, movement planning, and visuomotor integration (see 
 review12).

Though research is currently limited, recent evidence from the rubber-hand39 and size-weight30 illusions sug-
gests that autistic people display inflexibilities in active inference. Specifically, when compared to neurotypical 
controls, autistic participants appear less inclined to adjust visual search and movement initiation kinematics 
under non-veridical, uncertain task conditions. Importantly, these differences in context-sensitive processing 
were not accompanied by any generic attenuations in the use of prior  expectations30,39. Although these results 
provide clear support for recent hierarchical frameworks of  autism18,32,33, neither study experimentally manipu-
lated or quantified environmental statistics over time, meaning that causal links must be made with caution. 
Moreover, movement-related impairments were not examined in either lab-based task, limiting their utility in 
the development of interventions.

The present work examined how movement is dynamically controlled during multi-sensory interceptive 
actions, where autistic people often display performance  impairments4–7. To this end, we adopted an immersive 
virtual racquetball  task14,40 and monitored how predictive control is adjusted between different volatility condi-
tions. Here, the use of virtual-reality (VR) facilitated systematic, unconstrained manipulations of environmental 
uncertainty, meaning that we could decipher precisely which predictive processing mechanisms are implicated in 
autism. Specifically, VR enabled us to artificially alter whether the ‘bounciness’ of an approaching ball remained 
stable or unpredictably-changeable (volatile) over time, before measuring how sensorimotor behaviours were 
adjusted. Atypical predictive processes usually manifest most clearly in uncertain or volatile conditions, as sub-
optimal probabilistic expectations will impair abilities to distinguish random sensory noise from actual environ-
mental  changes22,32. Accordingly, we hypothesised that autistic participants would show impaired interceptive 
performances, particularly under volatile conditions.

In this task, both the timing and location of anticipatory eye movements are affected by prior expectations 
and incoming visual  information14. Specifically, anticipatory saccades move gaze ahead of the ball to its expected 
future location, with the subsequent fixation point proving directly proportional to both its early-flight trajec-
tory and, crucially, its predicted elasticity  profile14,40. These sampling behaviours appear fundamental in the 
retrieval of post-bounce position information, with unexpected and computationally ‘surprising’ changes in 
ball bounciness leading to poorer subsequent gaze  pursuit41. We hypothesised that autistic participants would 
be less inclined to use a predictive gaze strategy than their neurotypical counterparts, and would thus show later 
pre-bounce saccades, shorter fixations around the bounce point, and a reduced distinction between expected and 
unexpected gaze tracking responses (i.e., reduced behavioural surprise to unexpectedly ‘bouncy’ ball trajectories). 
Furthermore, on the basis that autistic people may be hypersensitive to environmental  change32, we hypothesised 
that the ASD group would show greater changes in these measures between stable and volatile task conditions.

Action predictions are also used to guide an individual’s motor  response40,42. In interceptive skills, swing 
onset times are flexibly adjusted according to previous ball trajectories and spatiotemporal  conditions40,43, via 
precision-mediated sensory  attenuation13,16,17. Research from constrained motor tasks indicates that movement 
onset kinematics are suboptimal in  autism5,8,25, with further scrutiny required in unconstrained movement 
skills. Moreover, for dynamic and naturalistic actions, the optimal regulation of neuromuscular systems and 
movement degrees of freedom rests on context-sensitive modulatory mechanisms (e.g., precision  control13). 
During uncertain task conditions, for example, neurotypical adults have been shown to increase joint stiffness 
and restrict multi-effector  redundancy44. Though such ‘fixing’ of joint angles is less efficient, and would usually 
be associated with more novice-like movement profiles (i.e., reduced movement degrees of  freedom45), it likely 
represents an active attempt to reduce uncertainty from signal-dependent  noise44. Given that autistic people are 
proposed to interact with the world as if it is generally uncertain or  volatile32, we hypothesised that the ASD 
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group would show greater ‘fixing’ of joint angles than the neurotypical group (i.e., reduced range of motion and 
peak hand displacement: see Table 2 in methods). In line with previous  studies30,39, these participants were also 
expected to display inflexible motor kinematics, as evidenced by reduced between-condition adjustments in 
swing onset time and peak hand velocity.

Results
An immersive virtual racquetball task required participants to wear an HTC Vive Head-Mounted Display and 
intercept balls with a controller during two counterbalanced conditions (Fig. 1). On each trial, a single ball 
bounced toward the participant with either standard (i.e., expected) or unexpectedly-high levels of elasticity. 
Under stable conditions, trials were presented in predictable serial orders, with the probability of facing an 
expected ball remaining fixed at 67.67%. Under these contexts, Bayes-optimal performers will employ highly ‘pre-
dictive’ sensorimotor  behaviours12, such as early anticipatory saccades, and a clear distinction between expected 
and unexpected trials. Contrastingly, in the volatile condition, the likelihood of facing an expected ball switched 
unpredictably over time between highly- (83.33%), moderately- (67.67%) and non-predictive (50%). Under this 
uncertainty, Bayes-optimal performers should increase the sampling of incoming sensory information and show 
a reduced distinction between expected and unexpected ball tracking behaviours (i.e., reduced behavioural sur-
prise). As both conditions contained the same overall proportion of expected trials (66.67%), general movement 
and visual sampling strategies could be examined through averaging data retrieved from inbuilt VR hand- and 
eye-tracking technology. However, to further scrutinise the distinction between expected and unexpected gaze 
profiles, probability-matched ‘test’ trials were situated within each condition (see methods). These metrics were 
then compared between autistic (n = 26) and neurotypical (n = 54) groups.

Performance data. The proportion of successful interceptions revealed a negative skew due to a high 
number of participants successfully hitting the ball in all trials (n = 18; Fig. 2). However, a range of intercep-
tion rates were still exhibited, particularly in the autism group (range: 27.78–100%). A mixed-model ANOVA 
showed that performance levels statistically differed between groups (F(1,78) = 7.92, p = 0.01, np2 = 0.09, 
 BF10 = 7.07), with lower interception rates evident in autistic (86.38 ± 19.20%) as opposed to neurotypical par-
ticipants (94.69 ± 7.19%). These overall scores were not significantly different between stable and volatile trials 

Figure 1.  The Virtual Racquetball task. An illustration of the experimental set-up (a), example gameplay 
footage (b), and a side-view of ball trajectory distributions (c). Note: for all trials, virtual balls stayed fixed on 
the midline of the room and followed the same pre-bounce speed and trajectory. Differences between expected 
and unexpected trials were therefore consigned to ball elasticity (i.e., ‘bounciness’) manipulations only. See 
Supplementary Videos of the protocol at https:// osf. io/ ewnh9/.

https://osf.io/ewnh9/
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(F(1,78) = 1.13, p = 0.29, np2 = 0.01,  BF10 = 0.18). However, there was a significant condition-by-group interaction 
(F(1,78) = 5.08, p = 0.03, np2 = 0.06,  BF10 = 1.90), with autism-related performance impairments emerging under 
volatile conditions (Fig. 2; W = 963.00, p < 0.01,  BF10 = 21.50). Spearman’s Rho analysis supported these obser-
vations, with self-reported autistic-like trait scores across the entire sample (on the 26-item Autistic Quotient: 
AQ-26) negatively correlating with interception rate in the volatile (Rs = -0.25, p = 0.02,  BF10 = 35.18) but not 
stable trials (Rs = -0.09, p = 0.44,  BF10 = 1.03). Post-hoc tests indicated that these associations were driven by high-
order social and attentional traits (Supplementary Table 1).

Kinematic data. To examine these performance differences further, we compared aspects of swing kinemat-
ics based on the position of the VR hand controllers, between groups and conditions. Three participants (ASD: 
n = 1; NT: n = 2) were excluded from this analysis, following detection of univariate outliers or invalid trials 
(remaining n = 77). For peak velocity of the hand, ANOVA showed a significant effect of group (F(1,75) = 5.18, 
p = 0.03, np2 = 0.07,  BF10 = 2.38) but not condition (F(1,75) = 0.04, p = 0.84, np2 < 0.001,  BF10 = 0.19), with autis-
tic participants employing slower foreswings than neurotypical individuals (t(75) = 2.28, p = 0.03,  BF10 = 2.20). 
However, the timing of peak velocity was not significantly different between groups (F(1,75) = 1.79, p = 0.19, 
np2 = 0.02,  BF10 = 0.69), and occurred close to ball contact in both conditions (Table 1). Though swing onset times 
occurred later in volatile trials (F(1,75) = 4.47, p = 0.04, np2 = 0.06,  BF10 = 0.74; Table  1), no group differences 
emerged (F(1,75) = 1.82, p = 0.18, np2 = 0.02,  BF10 = 0.76). Moreover, no significant interactions or correlations 
were present for these swing onset and peak velocity variables (p’s > 0.23; all  BF10 < 0.50), except for peak hand 
velocity, which was inversely related to AQ-26 scores (R = -0.25, p = 0.03,  BF10 = 1.59). Therefore, autistic partici-
pants exhibited slow, novice-like46 movement kinematics in both task conditions.

During the foreswing action, autistic participants kept their hands closer to the body (Maximum Hand Dis-
placement: F(1,75) = 13.84, p < 0.001, np2 = 0.16,  BF10 = 55.09) and employed reduced ranges of motion (swing 
ROM; F(1,75) = 5.35, p = 0.02, np2 = 0.07,  BF10 = 1.65) compared to their neurotypical counterparts. For swing 
ROM, a weak main effect for condition also emerged (F(1,75) = 4.08, p = 0.047, np2 = 0.05,  BF10 = 1.94), with 
average values in both groups reducing between stable and volatile trials (t(76) = 2.33, p = 0.02,  BF10 = 1.60). The 
condition-by-group interaction, however, was not significant (F(1,75) = 0.19, p = 0.66, np2 = 0.003,  BF10 = 0.37), 

Figure 2.  Performance data. The proportion of balls successfully intercepted in stable and volatile conditions 
for each group. NT neurotypical, ASD autism spectrum disorder. *denotes statistically significant differences 
(p < .05).

Table 1.  Foreswing Kinematic Averages (SD) during each Experimental Condition. ASD autism spectrum 
disorder, NT neurotypical. *Significantly different between groups (p < .05); #significant differences between 
conditions (p < .05).

NT group ASD group

Stable Volatile Stable Volatile

Kinematic measures

Swing onset  time# 0.59 (0.10) 0.60 (0.10) 0.55 (0.10) 0.57 (0.08)

Peak velocity of the hand* 10.15 (2.93) 9.96 (3.01) 8.41 (2.79) 8.54 (2.98)

Time of peak hand velocity -0.04 (0.02) -0.04 (0.03) -0.04 (0.02) -0.04 (0.02)

Maximum hand displacement* 0.61 (0.06) 0.61 (0.07) 0.55 (0.08) 0.55 (0.07)

Swing range of motion*,# 83.06 (25.63) 79.94 (27.24) 67.31 (28.01) 65.31 (31.10)
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with volatility-related changes in swing ROM proving similar between groups. Therefore, autistic participants 
showed higher, more uncertain-like swing ROM values in both stable and volatile conditions (Table 1). Relat-
edly, lower movement degrees of freedom were associated with higher AQ-26 scores across the whole sample, 
both for maximum hand displacement (R = -0.37, p = 0.001,  BF10 = 27.10) and swing ROM (R = -0.24, p = 0.03, 
 BF10 = 1.33). Nonetheless, changes in swing ROM were highly variable (ΔROM range: -31.17 – 24.08, SD: 10.36°), 
and there was a lack of condition-related changes in maximum hand displacement (F(1,75) = 0.07, p = 0.79, 
np2 = 0.001,  BF10 = 0.20). Therefore, the extent to which these more novice-like joint motions reflected aberrant 
volatility processing was unclear, and precise examination into participant’s ‘active’ sensory sampling behaviours 
were required.

Gaze data. Eye-tracking data from eight participants (ASD: n = 2; NT: n = 6) were identified as poor quality 
and were excluded from gaze analyses (remaining n = 72). As described  previously14,40, participants utilised a 
prediction-driven gaze strategy (illustrated in Fig. 3). Specifically, after pursuing its early-flight trajectory, gaze 
tended to shift ‘predictively’ ahead of the ball via large, anticipatory pre-bounce saccades. Gaze then stayed rela-
tively still and focused on a location just above the ball’s future bounce position, in what is referred to hereafter as 
the bounce fixation location. This fixation was generally maintained for ~ 200 ms (mean: 182.16 ± 63.28 ms) until 
the ball ‘caught up’; when participants would attempt to track the ball onto the racquet through a combination of 
smooth pursuit and corrective saccades. Interestingly, these general strategies were favoured by all participants, 
irrespective of their diagnosis status (Fig. 3). ANOVAs showed that the timing and amplitude of participants’ 
pre-bounce saccades were not affected by condition or group (p’s > 0.29; all  BF10 < 1; Fig. 4a, b), nor were they 
correlated with AQ-26 scores (p’s > 0.24;  BF10 < 0.33). Moreover, the duration of the subsequent bounce fixation 
was not significantly affected by volatility, diagnosis status, or levels of autistic-like traits (p’s > 0.06;  BF10 < 1.07). 
Therefore, anticipatory gaze adjustments were evident in both groups, and these prediction-driven responses 
proved robust to changing environmental conditions.

Notably, both groups attempted to closely pursue balls after they had bounced on each trial (Fig. 3). These 
tracking behaviours would presumably be impaired if any oculomotor deficits were present. As such, we studied 
the vertical distance between participant’s gaze and the centre of the virtual ball on a frame-by-frame basis (in 
angular pitch coordinates), and averaged these values for the post-bounce portion of each trial. Here, greater 
deviation values would reflect larger average distances between gaze and ball vectors (i.e., high tracking  error42). 
However, ANOVA showed no significant main effects (condition: F(1,70) = 0.16, p = 0.69, np2 = 0.002,  BF10 = 0.18; 
group: F(1,70) = 3.63, p = 0.06, np2 = 0.05,  BF10 = 1.36) or interactions (F(1,70) = 0.66, p = 0.42, np2 = 0.01, 
 BF10 = 0.43) for this measure. Moreover, these gaze tracking profiles were unrelated to AQ scores (R = 0.19; 
p = 0.11;  BF10 = 0.50) and null group differences emerged when inspecting high-elasticity trials only (i.e., trials 
which had higher, faster-moving balls; see Supplementary Analyses). On this basis, it seems unlikely that senso-
rimotor difficulties were driven by any generic motion tracking deficits or oculomotor impairments in this task.

However, potential differences in the position of participant’s final pre-bounce gaze fixation appeared (see 
time ‘0’ in Fig. 3). Typically, people will look higher above the floor when they are expecting more ‘bouncy’ ball 
 trajectories14,40. Though anecdotal group differences  (BF10 = 1.32) did not reach significance for this variable 
(F(1,70) = 3.47, p = 0.07, np2 = 0.05), there was a significant group-by-condition interaction which required inspec-
tion (F(1,70) = 4.72, p = 0.03, np2 = 0.06,  BF10 = 1.51). Bounce fixations were higher in autistic than neurotypi-
cal participants, but only in stable trials (stable: t(70) = 2.59, p = 0.01,  BF10 = 4.08; volatile: t(70) = 1.12, p = 0.27, 
 BF10 = 0.44). These context-sensitive effects were caused by volatility-related increases in the neurotypical group 

Figure 3.  Gaze strategies during the virtual racquetball task. Average pitch of the gaze-in-world vector during 
stable (a) and volatile (b) conditions. Pitch represents the vertical angle of a vector which originates from the 
head at eye-height. Values of zero represent a vector that is parallel to the floor plane, while more positive values 
indicate that an individual is looking relatively higher in space around the bounce point. Bold lines are group 
averages, thin lines denote individual cases. NT neurotypical, ASD autism spectrum disorder.
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(t(47) = 2.42, p = 0.02,  BF10 = 2.16; Fig. 4c, d), who adjusted their fixations more readily under volatile conditions 
to facilitate the pursuit of ‘bouncier’ ball trajectories (see Supplementary Fig. S6). Autistic participants did not 
show between-condition changes in this manner (t(23) = 0.96, p = 0.35,  BF10 = 0.32, Fig. 4c, d), and instead showed 
a generally elevated gaze profile around the point of bounce (Fig. 3). They also appeared to update their bounce 
fixation location more variably on a trial-by-trial basis (Supplementary Fig. S6). Therefore, as with their swing 
kinematics (ROM: Table 1), autistic participants appeared to display behaviours that are typically affiliated with 
more uncertain conditions. However, the pitch angle of bounce fixations was unrelated to AQ-26 scores across the 
whole sample (p’s > 0.13;  BF10 < 0.50), and our weak anecdotal evidence against the null must be interpreted with 
caution  (BF10 = 1.51). Further scrutiny into the relationship between autism, prediction, and context-sensitive 
gaze control is thus required.

Finally, we also distinguished gaze tracking responses between expected and unexpected trials. As described 
above, positional distances between the gaze and ball vectors were averaged in the vertical plane for the post-
bounce portion of each trial. In this case, we specifically focused on probability-matched ‘test’ trials and sub-
tracted normalised expected (E) values from their unexpected (UE) trial equivalents (see methods). The resulting 
UE-E difference scores indexed levels of ‘surprise’ to unexpected events. Higher scores would signal that partici-
pants were tracking expected balls more closely than unexpectedly bouncy ones (i.e., with less error). Conversely, 
values close to zero would indicate minimal differences between ball tracking responses. Two participants were 
excluded from this analysis due to missing data on ‘test’ comparison trials (remaining n = 70).

Manipulation checks indicated that UE-E gaze tracking difference scores were significantly greater than zero 
under stable conditions (t(69) = 2.61, p = 0.01,  BF10 = 2.98). Unsurprisingly, participants tracked expected balls 
more closely than unexpected ones for these trials. ANOVA revealed a significant effect of condition on this 
index of behavioural ‘surprise’ (F(1,68) = 6.38, p = 0.01, np2 = 0.09,  BF10 = 4.37), with UE-E differences decreasing 
under volatile conditions (t(69) = 2.67, p = 0.01,  BF10 = 3.46). Crucially, there was a significant effect of group on 
these scores (F(1,68) = 5.80, p = 0.02, np2 = 0.08,  BF10 = 3.22). When compared to neurotypical individuals, autistic 
participants showed generally reduced surprise– they were tracking unexpectedly bouncy balls with a similar 

Figure 4.  Adjustments in predictive gaze positions. The amplitude of anticipatory pre-bounce saccades (a) and 
subsequent gaze fixation locations (c) during stable and volatile conditions. Values represent angular coordinates 
of the gaze-in-world vector (°), with between-condition changes illustrated in (b) and (d). NT neurotypical, ASD 
autism spectrum disorder; * denotes statistically significant differences (p < .05).
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level of accuracy to the more expected ones (Fig. 5). This is despite these balls having higher post-bounce veloci-
ties and lower prior probabilities. Furthermore, there were also significant negative relationships between UE-E 
differences, AQ-26 scores (R = -0.25, p = 0.04,  BF10 = 1.19) and interception rates (Rs = 0.30, p = 0.01,  BF10 = 3.46). 
However, no interaction effects emerged for this metric (F(1,68) = 0.01, p = 0.92, np2 < 0.001,  BF10 = 0.27), illustrat-
ing that autistic individuals adapted sampling behaviours ‘typically’ between conditions.

Discussion
We examined how sensorimotor control is dynamically adjusted in autism, using a novel and immersive VR para-
digm which systematically varied environmental volatility over time. Here, the frequency with which participants 
successfully intercepted a virtual bouncing ball was significantly lower in autistic individuals (Fig. 2), confirming 
basic impairments in interceptive skill  execution4–7. Such performance difficulties were accompanied by atypical 
swing kinematics (Table 1), gaze fixation patterns (Figs. 3, 4), and levels of behavioural surprise (Fig. 5). Results 
therefore support active inference formulations of predictive  processing18, and suggest that the dynamic regula-
tion of sensory sampling and motor control behaviours is fundamentally different in autistic people.

In accordance with predictive processing  theories22,33, autism-related difficulties in sensorimotor performance 
were more pronounced under volatile conditions (Fig. 2). Such results align with findings from more constrained 
prediction-based tasks (e.g., statistical  learning34 and sensorimotor  illusion39 paradigms), where autism-related 
atypicalities emerge under inconsistent, uncertain or unstable probabilistic conditions (see also recent  review28). 
Furthermore, the observed differences in this task appeared specific to ASD, and were not a result of any singular 
subset of autistic-like traits (see Supplementary Table S1 & Fig. S1–S5) or confounding clinically-diagnosed 
conditions (e.g., identified co-occurring motor disorders). Therefore, our novel, systematic assessment of sensori-
motor control extends our neuro-computational understanding of autism into more dynamic and unconstrained 
environments, where optimal behaviours rest on hierarchical, iterative predictive processing.

Autistic participants employed arm swing actions that were lower in peak velocity, closer to the body, and 
more restricted in ROM (Table 1). These profiles are indicative of more novice-like swing mechanics, as actions 
are typically slower and have reduced degrees of freedom in the early stages of  learning45,46, and autism-related 
sensorimotor difficulties may thus reside at the kinematic  level7,9,10. Indeed, atypical peak hand velocities have 
been consistently reported in clinical visuomotor  research9,47,48 and could result from various central and/or 
peripheral factors, including aberrant predictive action  modelling9. However, contrary to our hypotheses and 
previous  studies5,8, kinematic group differences were not significant for any of our movement initiation metrics 
(Table 1). Therefore, when examined in isolation, it is unclear whether these atypical movement kinematics 
in autism reflect specific differences in predictive processing, or more general impairments in sensorimotor 
development.

We next sought to explore the precise mechanisms that drive these motor differences. Notably, participants’ 
gaze kinetics were remarkably robust to the highly-changeable probabilistic conditions (Fig. 3), which reinforces 
suggestions that a prediction-driven visual sampling strategy is optimal for dealing with dynamic and uncertain 
cues for this type of  task14,42. Our data shows that autistic individuals also employed this ‘top-down’ strategy 
(Fig. 3) and that they shifted their visual attention and tracked approaching balls similarly to neurotypical 

Figure 5.  Gaze Tracking Responses. Group differences in gaze tracking behaviours between expected (E) and 
unexpected (UE) test trials. Higher index values signify more ‘prediction-driven’ errors in post-bounce gaze 
pursuit (i.e., greater behavioural surprise when faced with the unexpectedly ‘bouncy’ balls). NT neurotypical, 
ASD autism spectrum disorder. *denotes significant between-group difference (p < .05); #denotes significant 
change between conditions (p < .05).
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individuals (see Supplementary Analyses). These findings undermine proposals of broad attentional  differences49 
and/or generic attenuations in the use of prior  knowledge19. Moreover, null group differences were observed in 
relation to participants’ anticipatory pre-bounce saccades, despite these eye movements being directly related 
to previous trial trajectories and task  constraints14,40,43. Consequently, our results join varied evidence against 
simple Bayesian theories of autism, and support conclusions that predictive processing abilities are not generi-
cally impaired in sensorimotor  tasks28–30.

Recent research suggests that sensorimotor difficulties in autism may instead stem from context-sensitive 
mechanisms relating to precision modulation and volatility  processing18,32,33. In this study, participants displayed 
subtle adjustments in visual sampling behaviour that were qualitatively consistent with optimal active inference. 
Specifically, when conditions were more uncertain, individuals appeared to rely less on prior information and 
more on incoming, stimulus-driven attentional  cues36,37. This was illustrated in our gaze data, where the ten-
dency to track expected balls more closely than unexpected ones was reduced under volatile conditions (Fig. 5). 
Participants also adjusted their fixations more variably in these trials (Supplementary Fig. S6). Such context-
sensitive patterns of data match results from psychophysics experiments, where unexpected cues are processed 
more rapidly under uncertain conditions e.g.,50. The changes observed here reflect volatility-related modulation 
of precision and learning rate, which increases an individual’s responsivity to salient  events15.

Strikingly, our data showed consistent autism-related atypicalities in this context-sensitive modulation of 
sensorimotor control. Indeed, autistic participants showed differences in swing ROM (Table 1), bounce fixation 
location (Figs. 3, 4; Supplementary Fig. S6), and behavioural surprise (Fig. 5); metrics which all appeared sensitive 
to volatility conditions. For each of these measures, the ASD group demonstrated behaviours that are typically 
associated with high environmental instability. For instance, differences in gaze tracking between expected and 
unexpected ‘test’ trials were significantly reduced in autistic participants (Fig. 5), indicating dampened surprise 
to unexpected events (as in recent neurological and behavioural  evidence24,32). Similarly, while neurotypical 
participants reduced swing ROM during volatile conditions only, autistic participants exhibited low ROM scores 
across both conditions (Table 1). These atypical movement profiles can be explained by an increased tendency to 
‘expect the unexpected’ in  autism32, as a greater fixing of joint angles may serve as an active attempt at reducing 
uncertainty (i.e., through reducing signal-dependent motor  noise44). Therefore, our study supports proposals 
that autistic people tend to interact with the world like it is highly unstable or  uncertain32.

Atypical volatility processing can explain difficulties with various activities of daily living in autism, includ-
ing sensorimotor  impairments18. In our study, participants who showed poorer task performance and higher 
autistic-like traits tended to sample the world in a more uncertain-like manner (Supplementary Fig. S5). This 
is unsurprising, as the majority of balls bounced in an ‘expected’ way, so it would be suboptimal to sample cues 
as if they are unrelated to long-term prior experience. However, our fixation analysis cautiously suggests that 
autistic participants predictively positioned their gaze at a higher, more variable location than their neurotypical 
counterparts (Fig. 3; Supplementary Fig. S6), in a manner that benefits the sampling of recent high-elasticity ball 
 trajectories14. Though it is unclear whether these differences resulted from atypical learning  rates32 or compensa-
tory, non-linear adaptations in gaze behaviour (e.g., ‘centering’  strategies51), these results reinforce the notion 
that autistic participants were overestimating volatility, or ‘expecting the unexpected’, during the  task32.

Nevertheless, the exact source of aberrant uncertainty expectations and volatility modulation in autism 
remains to be  explored18,33. Contrary to our initial hypotheses, autistic and neurotypical groups appeared to 
comparably adjust visual sampling and motor kinematics according to environmental (in)stability (Table 1; 
Fig. 5). These null effects are notable, as recent computational models posit that autistic people are hypersensitive 
to environmental change, due to dysfunctions in neural excitation and/or  modulation32,33. Though conflicting 
with these proposals, such findings align with reinforcement learning  data52, which suggest that atypicalities 
may be consigned to higher-level processing computations. Our task was unlikely to implicate such mechanisms, 
with visual motion cues about ball-flight dynamics likely occurring in lower hierarchical levels. It is also pos-
sible, however, that our ASD group data do not highlight atypicalities in volatility processing, but rather a broad, 
psychobehavioural intolerance of uncertainty. Indeed, behavioural inflexibility and an insistence on sameness 
are well-defined autistic-like traits that correlate with motor  difficulties11. While these traits have been concep-
tually linked to predictive processing  atypicalities22,33, statistical associations do not consistently  materialise29. 
Therefore, research must establish whether sensorimotor difficulties reflect abnormalities in neuromodulation 
(e.g., in noradrenergic responsivity, divisive normalisation) or secondary consequences of cognitive and behav-
ioural traits.

A number of study limitations must also be considered. For example, we did not directly assess participants’ 
cognitive or visual abilities, nor were there any checks performed for undiagnosed motor conditions. Such 
variables could have influenced our data, with autistic populations showing higher incidence rates of cognitive 
impairment, optometric issues (e.g.,  strabismus53) and developmental  disorders54. Though participants were 
excluded if they reported co-occurring medical conditions (see methods), many of these issues can remain 
undetected. Levels of experience in racquet-based activities were also unclear and may generally be lower in 
clinical  groups55. However, our correlational analysis did examine relationships between sensorimotor control 
and levels of autistic-like traits across a large general population (i.e., the broader autism  phenotype54). Most 
participants in this analysis were neurotypical (68%), which reduces the influence of ASD-related  confounds54. 
Notably, all but one of the between-group effects that were identified in our main analysis were accompanied 
by significant AQ correlations (Supplementary Fig. S1–S5). These trait-based effects notably reinforce our main 
findings, though future research could explore additional co-variables in their analyses (e.g., IQ subscale scores, 
clinical questionnaires, standardised motor assessments).

Additionally, impoverished depth cues and haptic feedback in our VR task could influence action control and 
uncertainty  expectations56, thus limiting their generalisability to ‘real-world’ behaviour. Although this argument 
is, in itself, uncertain at  present56, and the use of VR affords unique methodological benefits, future studies may 
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wish to manipulate probabilistic conditions in ‘real-world’ tasks. To do this, one may wish to select a task that 
is more sensitive to prior expectations. Indeed, though gaze strategies are evidently driven by prediction in our 
task (Fig. 3)42, time-pressed interceptive actions still rely heavily on incoming visual  information14. Therefore, 
the addition of prior contextual cues should be considered, such as probabilistic sensory signals (e.g., predictive 
auditory  tones32) or explicit prior  information57. These contextual cues should not only enable research into 
more predictive control strategies, but they could also form the basis of future sensorimotor interventions (see 
‘Moneyball Approach’ in  sport57).

In conclusion, autistic people tend to struggle with performing an interceptive motor skill when sensory 
cues are unpredictably changeable over time. These performance difficulties are underpinned by fundamental 
differences in predictive processing and active inference. Specifically, atypical sensory sampling behaviours and 
movement kinematics appear driven by aberrant precision modulation and/or volatility processing mechanisms. 
The exact source of these neuro-computational differences requires further examination.

Methods
Participants. Ninety participants visited the laboratory (33 female, 78 right-handed, age: 21.66 ± 4.45 years). 
Thirty of these individuals had a formal diagnosis of ASD, while the remaining sample (n = 60) were age-
matched neurotypical individuals (ASD group: 21.40 ± 5.09  years; NT group: 21.78 ± 4.14  years; t(88) = 0.70, 
p = 0.70,  BF10 = 0.25). A large neurotypical sample was recruited to provide sufficient power for correlational 
analysis (α = 0.05; 1-β = 0.8; see below). All autistic participants reported that they had received their diagnosis 
from a qualified clinician according to DSM-IV58 or ICD-1059 criteria, and completed both the 26-item Autistic 
Quotient (AQ-26)60 and Social Communication Questionnaire (SCQ)61 to corroborate clinical presentation of 
autistic-like traits. Although diagnosis status was not independently verified in this study, a broad range of SCQ 
scores were displayed by the ASD group that are consistent with normative clinical  values62 (mean: 18.34 ± 5.72). 
Participants self-reported normal or corrected-to-normal vision and were excluded if they reported any history 
of musculoskeletal or neurological disorders, leading to the removal of two cases (ASD: n = 1; NT: n = 1). Neuro-
typical participants also completed the AQ-26 (range: 37–80, mean: 55.17 ± 9.77; n = 59) to permit correlational 
analyses across the whole sample (i.e., the broader autism  spectrum54). All participants were naïve to the experi-
mental aims and had no prior experience of playing VR-based racquet sports. Informed consent was obtained 
in accordance with British Psychological Society guidelines, and the study received approval from the School of 
Sport and Health Sciences Ethics Committee (University of Exeter, UK) and Department of Psychology Ethics 
Committee (University of Bath, UK). The study methods closely followed these approved procedures and the 
Declaration of Helsinki.

Apparatus and stimuli. A virtual environment, simulating an indoor racquetball court, was developed 
using the gaming engine Unity (Unity Technologies, San Francisco, CA). This simulated environment (see 
Fig. 1) spanned 15 m in length and width, and contained a series of concentric circles projected onto the front 
wall as an aiming target. Above this target was an additional concentric circle, representing the starting location 
where virtual balls were launched from in each trial (launch height: 2 m). The floor resembled that of a tradi-
tional squash court, with participants instructed to start behind the ‘short line’ (located 9 m behind front wall, 
0.75 m from the midline; as in Diaz et al.14). To ensure consistency in this starting position, a 1  m2 service box 
was marked on the laboratory floor with reflective tape, and an experimenter checked that participants were 
stood in this square prior to all experimental trials.

The virtual environment was presented to participants on an HTC Vive head-mounted display (HTC Inc., 
Taoyuan City, Taiwan; Fig. 1), a high-precision, consumer-grade VR system which has proven valid for small-area 
movement research tasks (field of view: 110°, accuracy: 1.5 cm, jitter: 0.5 mm, latency:  22ms63). Two ‘lighthouse’ 
base stations recorded movements of the headset and hand controller at 90 Hz. The headset also included an 
inbuilt Tobii eye-tracking system, which uses binocular dark pupil tracking to monitor gaze at 120 Hz (spatial 
accuracy: 0.5–1.1°; latency: 10 ms, headset display resolution: 1440 × 1600 pixels per eye). Gaze was calibrated 
over five virtual locations prior to each condition, and upon any obvious displacement of the headset during trials.

Participants then attempted to hit balls towards the projected target circles using a virtual racquet (Fig. 1), 
operated by the Vive hand controller. Virtual balls were 5.7 cm in diameter, and resembled the visual appearance 
of a ‘real-world’ tennis ball. The visible racquet in VR was 0.6 × 0.3 × 0.01 m, although its physical thickness was 
exaggerated by 20 cm for the detection of ball-to-racquet collisions (see discussion of tunnelling  effects14,40). 
One neurotypical participant was excluded from analyses following frequent loss of headset tracking during 
their session (remaining n = 86).

Procedures. On arrival to the laboratory, participants provided written informed consent and completed 
the autistic-like trait questionnaires. Next, they were fitted with the VR headset and presented with a view of 
the simulated racquetball court. Participants completed six familiarisation trials and the inbuilt VR eye-tracker 
was subsequently calibrated, before undertaking the stable and volatile conditions. During each trial, individu-
als were instructed to hit virtual balls towards the centre of the projected target. Balls were launched from the 
front wall, following 3 auditory tones, and passed exactly through the room’s midline, bouncing 3.5 m in front 
of the prescribed starting position. Right-handed participants started 0.75 m to the left of this midline, and left-
handers 0.75 to the right of this point, meaning that all shots were forehand swings. Participants were informed 
that the ball would bounce once, but that they were free to hit the ball before or after it reached them. Task 
instructions simply stated that they should aim to hit as many balls as possible to the middle of the front target. 
No further information relating to ball elasticity, trajectory or probabilistic manipulations were provided. Vir-
tual balls followed the same pre-bounce trajectory and speed (vertical speed: -9 m/s at time of bounce; Fig. 1), 
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which were both consistent with the effects of gravity (-9.8  m/s2). Although bounces were accompanied by 
auditory feedback, no visual, proprioceptive, or verbal feedback were provided upon making contact with the 
ball. Instead, a neutral ‘pop’ sound was incorporated, so as to minimise the influence of motivation and com-
municative requirements.

To manipulate environmental volatility in each condition, we systematically varied ball elasticity over time 
(Fig. 1). Specifically, in expected trials, ball elasticity was congruent with its visual ‘tennis ball-like’ appearance, 
and set at 65%. Conversely, in unexpected trials, elasticity was increased to 85%, an abrupt change in ‘bounci-
ness’ that is easily detectible to  participants14. By selecting such unnatural ball elasticity profiles, and by adjusting 
these without the participant’s  knowledge14,41, it was anticipated that post-bounce ball trajectory would deviate 
substantially from any ‘real-world’ prior distributions. This would then permit unique control over participant’s 
experience of expected and unexpected events, through probabilistically contrasting order sequences (available 
at https:// osf. io/ ewnh9/).

Specifically, in stable conditions, balls were presented in ‘predictable’ serial orders (e.g., three unexpectedly-
bouncy balls would follow three expected ones, and so on), with the likelihood of facing a ‘normal’ ball (i.e., 
expected event) remaining fixed at 67.67%. In the volatile condition, these ball probabilities were unstable, 
switching irregularly between highly- (83%), moderately- (67%) and non-predictive (50%) in blocks of 6, 9 or 
12 trials. Importantly, conditions contained the same number of Expected (n = 30) and Unexpected (n = 15) tri-
als in ‘high-interference, non-repeating’  schedules64, meaning that the difference between blocks was consigned 
to environmental volatility only (i.e., differences in how labile the context is perceived to be). Furthermore, to 
permit precise within- and between-condition comparisons, three expected and three unexpected “test” trials 
were situated within each block. These trials had identical prior probability distributions (66.67% of preceding 
trials contained expected ball trajectories) and identical previous trial histories (n – 1 were all expected trials). 
To ensure that bouncy balls remained computationally surprising in the stable condition, unexpected ‘test’ trials 
were taken from within the final nine trials, in which the order sequences had recently been changed.

The experiment began with a practice set of six trials, whereby balls were projected from the target without a 
bounce (so that ball elasticity remained unknown to participants). Thereafter, upon calibration of the eye-tracking 
system, experimental conditions were performed in a counterbalanced order. Each condition contained 45 trials 
and was separated by a short break, with a total of 96 trials performed by each participant.

Data analysis. To index task performance, the proportion of trials in which participants made contact 
between the ball and racquet (interception rate, %) were recorded. Thereafter, positional data for the hand con-
troller were extracted from the Vive system, and smoothed using a dual-pass, zero-phase Butterworth filter (at 
10  Hz65). The contact point between the racquet and ball (referred to as: ball contact frame) were derived from 
the last data point before ball exhibited an abrupt change in direction of its trajectory. Trials where participants 
missed the ball were also included in analyses. In these instances, the reference ball contact frame represented 
the last data point in which the ball’s depth position exceeded that of the racquet. Trials where participants used 
a backhand swing, as opposed to a forehand swing, were noted at the time of data collection and removed from 
kinematic analysis.

To capture aspects of swing kinematics, we calculated a number of measures linked to motor proficiency (all 
defined in Table 2), namely: swing onset time, peak velocity of the hand, maximum hand displacement from 
the head, and swing Range of Motion (ROM). Specifically, swing onset time was defined from the first frame at 
which forward motion of the racquet began, while swing offset corresponded with the ball contact frame. The 
foreswing, representing the forward phase of the hand movement before ball  contact66, was defined between 
swing onset and swing offset. Velocity of the hand controller was calculated as the square root of the sum of 
squared vector  differentials9, where peak velocity and the timepoint of peak velocity (ms, relative to ball contact 
frame) was identified during the foreswing phase. Higher peak velocities, which occur close to ball contact, 
are indicative of more proficient motor  control46. Normalised maximum hand displacement from the headset 
denoted the span of the arm from the body during the swing. This was operationally defined as the distance 
between the headset and hand controller position in the transverse plane (divided by body height in meters). 
Swing ROM (°) was calculated as the angular deviation of the hand controller during the foreswing. Angular 
deviation was defined in the transverse plane, with angles of 0° representing minimal rotation. Reductions in 

Table 2.  Description of kinematic outcome measures.

Variable General description Operationalised definition

Swing onset time Moment when the racquet first started moving towards the ball The first timeframe in which forward motion of the VR hand controller 
was detected (expressed relative to ball contact frame)

Peak velocity of the hand The highest speed that the hand reached when moving towards the ball The maximum differential position of the VR hand controller shown 
between frames following swing onset (expressed in m/s)

Time of peak hand velocity The moment when the hand reached its highest speed The time at which Peak Velocity of the Hand occurred, relative to ball 
contact frame

Maximum hand displacement The furthest distance that the hand deviated away from the body during 
the swing action

The maximum distance that occurred between the VR headset and hand 
controller in the transverse plane following swing onset (normalised by 
participant body height)

Swing range of motion The total arc travelled around the body by the hand during the swing 
action

The total angular deviation (°) of the hand controller from the VR head-
set that occurred in the transverse plane following swing onset

https://osf.io/ewnh9/
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maximum hand displacement and/or swing ROM values would signal greater ‘fixing’ of movement degrees of 
 freedom67, a motor strategy which could be used to reduce action  uncertainty44.

A single unit vector corresponding to cyclopean gaze direction was extracted from the inbuilt eye-tracking 
system, with features defined according to head-centred, egocentric coordinates (i.e., vertical and horizontal 
coordinates). Both this extracted gaze vector, and the ball’s head-centric position were then plotted with respect 
to 2D direction in space, to provide relative ‘in-world’ angular orientation metrics (see gaze-head and gaze-ball 
angles in Table 3). Here, yaw angles represented rotation about a vertical axis that is in-line with gravity, and 
pitch values index angular deviance from a plane originating at eye-height that is parallel to the floor  plane14,40. 
All trials were segmented from the moment of ball release until the time point corresponding to ball contact 
frame. Gaze values were passed through a three-frame median filter, before being smoothed by a second-order, 
zero-lag Butterworth  filter68. In line with recent  recommendations43,69, different cut-off frequencies were applied 
for saccade identification (50 Hz) and analysis of positional tracking features (15 Hz). Trials with > 20% missing 
data, or where eye-tracking was temporarily lost (> 100 ms) were excluded.

Angular velocities (°/s) and accelerations (°/s2) of gaze-in-world vectors were calculated from the distance 
between samples of the filtered signal. Saccades were identified from portions of data where gaze acceleration 
was more than five times its median absolute  acceleration40. To avoid erroneous detections (e.g., due to pursuit 
or tracker-noise artefacts), gaze velocity had to exceed 40°/s for five consecutive frames and had to be at least 
20% greater than that of the ball, with time periods preceded or followed by missing data also excluded. If this 
acceleration criteria failed to identify any anticipatory pre-bounce saccades, trials were manually inspected 
using a 30°/s velocity  threshold43. Onset and offset times were determined from these signals using acceleration 
minima and  maxima68. A spatial dispersion algorithm was then used to extract gaze  fixations70. Here, fixations 
were defined from portions of data where gaze velocity was < 30°/s14, using a 3° spatial dispersion threshold and 
a minimum required duration of 100  ms71. This method excluded dynamic phases of smooth pursuit and instead 
highlighted periods in which gaze became stable within a 3° circular area.

Upon identification of saccades and fixation periods, various prediction-related gaze metrics were calculated 
(described in Table 3). As we were interested in the final predictive saccade made before the ball had bounced, the 
latency (i.e., median onset time, relative to bounce; ms) and amplitude (i.e., mean deviance between the final and 
initial gaze position) of this gaze event were recorded. Moreover, we extracted the fixation position at the moment 
of bounce (expressed as gaze-head pitch angle), in addition to the average gaze-ball pitch after this timepoint. To 
assess the degree of gaze tracking prediction error, average gaze-ball pitch was converted into z-scores for each 
participant, with mean expected test scores subtracted from their corresponding unexpected test trial values. 
This presented a UE-E gaze tracking difference score, whereby higher scores would signal a greater difference 
between expected and unexpected trials (i.e., greater behavioural surprise following an unexpected trial event).

Gaze and kinematic data values that were > 3.29 SD away from the mean were classed as univariate outliers 
(p < 0.001) and removed from analysis (see  guidelines72). Participants with > 20% of data identified as missing 
and/or outliers were excluded (n = 6). One performance outlier was excluded from analysis, after they failed to 
intercept the ball on any trials and showed extreme gaze values, potentially due to equipment error and/or a 
lack of task understanding. Following this case removal, a further two autistic participants were then identi-
fied as potential performance outliers (see Fig. 2). However, since the overall pattern of results was not affected 
by their inclusion, and such extreme values are consistent with previously documented clinical sensorimotor 
impairments, these cases remained in the analysis (as recommended in clinical  guidelines73). Remaining miss-
ing data points within the dataset (n = 80) were deemed missing completely at random, on the basis of Little’s 
MCAR test (p > 0.05). For all variables, normality, linearity, multicollinearity, and homoscedasticity of data were 

Table 3.  Description of gaze metrics.

Variable General description Operationalised definition

Gaze-head angle Where gaze was being directed in space, relative to the head
Angular orientation of the gaze vector in 2D space, with respect 
to the VR headsets ‘in-world’ position (expressed as pitch and 
yaw, °)

Gaze-ball angle Where gaze was being directed in space, relative to the ball Angular deviation in 2D space between the gaze vector and the 
ball’s head-centric spatial position (expressed as pitch and yaw, °)

Anticipatory pre-bounce saccade onset time The moment when gaze suddenly shifted ahead of the ball before 
it bounces

The median onset time of participants’ final pre-bounce saccadic 
eye movement (recorded in ms, relative to when the ball had 
bounced)

Anticipatory pre-bounce saccade amplitude How far gaze moved when it was being suddenly shifted ahead of 
the ball (see above)

The change in gaze-head pitch angle (°) that occurred between 
the onset and offset of participants’ final pre-bounce saccade

Bounce fixation duration How long gaze remained steady for, around the time when the 
ball was bouncing

The average duration of gaze fixations that occurred at the 
time of, or immediately prior to, the ball bouncing on a trial 
(expressed in ms)

Bounce fixation location Where gaze was directed around the time when the ball was 
bouncing

The average gaze-head pitch angle (°) of fixations that occurred at 
the time of, or immediately prior to, the ball bouncing

Average post-bounce gaze tracking error How much higher or lower gaze was from the ball, on average, 
from when it bounced to when it was hit/missed by the racquet

The average gaze-ball pitch angle (°) shown from the first 
timeframe after the ball bounces up to the point of racquet-ball 
contact

UE-E gaze tracking difference How much closer gaze was tracking expected as opposed to 
unexpected balls after they had bounced

Differences in normalised post-bounce gaze tracking error (see 
above) between expected and unexpected ‘test’ comparison trials



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20377  | https://doi.org/10.1038/s41598-021-99864-y

www.nature.com/scientificreports/

inspected. Cleaned data were analysed using JASP (version 0.12.2), with significance accepted at p < 0.05 and 
data presented ± SD.

Mixed-model ANOVAs assessed the effects of group and condition on all of our metrics relating to per-
formance (interception rate), action kinematics (swing onset time, peak hand velocity, time to peak velocity, 
maximum hand displacement, ROM) and gaze behaviour (predictive saccade onset time/amplitude, bounce 
fixation duration/position, average post-bounce gaze tracking error, UE-E gaze tracking difference scores). Any 
significant differences were examined using two-tailed t-tests and all effect sizes were calculated using partial-
eta squared (ηp2). To explore the role of autistic-like traits, Pearson’s Correlation analysis explored relationships 
between all sensorimotor outcomes and AQ-26 scores. As data for interception rate and predictive saccade 
outcomes violated assumptions of normality, these outcomes were inspected using non-parametric t-test and 
correlation equivalents (i.e., Mann–Whitney U for group comparisons, Spearman’s Rho for correlation analyses). 
Mixed-model ANOVAs are robust to moderate deviations from statistical  normality74, and were still performed 
for these measures. Non-spherical data were adjusted using the Greenhouse–Geisser correction, and multiple 
comparisons were accounted for using the Holm-Bonferroni  method75. For all tests, Bayes Factors using a sym-
metric Cauchy prior quantified the strength of evidence for the alternative and null hypotheses.

Data availability
All data generated and analysed during the current study are publicly available at: https:// osf. io/ ewnh9/.
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