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Water cavitation from ambient 
to high temperatures
Francesco Magaletti1,3, Mirko Gallo2,3 & Carlo Massimo Casciola2,3*

Predicting cavitation has proved a formidable task, particularly for water. Despite the experimental 
difficulty of controlling the sample purity, there is nowadays substantial consensus on the 
remarkable tensile strength of water, on the order of −120 MPa at ambient conditions. Recent 
progress significantly advanced our predictive capability which, however, still considerably depends 
on elaborate fitting procedures based on the input of external data. Here a self-contained model 
is discussed which is shown able to accurately reproduce cavitation data for water over the most 
extended range of temperatures for which accurate experiments are available. The computations are 
based on a diffuse interface model which, as only inputs, requires a reliable equation of state for the 
bulk free energy and the interfacial tension. A rare event technique, namely the string method, is used 
to evaluate the free-energy barrier as the base for determining the nucleation rate and the cavitation 
pressure. The data allow discussing the role of the Tolman length in determining the nucleation 
barrier, confirming that, when the size of the cavitation nuclei exceed the thickness of the interfacial 
layer, the Tolman correction effectively improves the predictions of the plain Classical Nucleation 
Theory.

Experimental evidence reveals that pure water at ambient conditions can sustain large negative pressures for 
a prolonged time before cavitating. In other words, stretched water is trapped in a metastable state and bub-
ble nucleation takes place as a rare event. In fact, in the appropriate thermodynamic conditions, the cavitation 
nucleus spontaneously appears due to thermal fluctuations. However, the probability that a fluctuation able to 
trigger the transition takes place could be extremely rare. This implies that the time needed to observe cavita-
tion can be quite long not only on the atomistic scale. For instance, at the temperature of 50 ◦C and pressure 
p = −70MPa , the nucleation rate (number of nucleated bubbles per unit time and volume) is J ≃ 10−36 s−1m−3 . 
This figure can be translated into an average time of 30 billion years (to be compared with the age of the Universe 
estimated in 13.77 billion years) to wait before observing a single bubble in a volume corresponding to the water 
content of the oceans (assuming they cover 70% of the Earth surface with a mean depth of 3700m and were 
formed by pure water). Slightly oversimplifying, the liquid-vapor transition implies two states, one of which—the 
liquid—is metastable and the other one—the vapor—which is the thermodynamically stable state, corresponding 
to the absolute free energy minimum. The two states are separated by a free-energy barrier with a critical state 
across which the system passes when transitioning. In fact the free-energy barrier and, as a consequence, the 
nucleation rate strongly depend on temperature and pressure, easily spanning a range of one hundred orders of 
magnitude, with the transition becoming quite fast at spinodal conditions.

In the last decades, different experimental techniques were conceived to determine the water stability limit, 
such as aqueous inclusions in quartz1,2 and acoustic experiments3,4. It is now established that the typical pressure 
to observe vapor bubble formation in ultra pure water at ambient conditions within a reasonable time window 
is on the order of −120 MPa5. The cavitation pressure pcav increases with temperature up to ≃ 22MPa in critical 
conditions ( Tc = 373.94 ◦C ). At high temperatures ( T ≃ 300◦C ) there is broad consensus among the different 
experimental techniques on the estimated cavitation pressure6. However, discrepancies are observed in the 
range of low temperatures. The issue is relevant for the long lasting debate on the anomalies of water, namely 
the shape of the line of maximum density which, according to different scenarios, may or may not intersect the 
spinodal line5,7–9.

Classical Nucleation Theory (CNT) provides the basic framework to understand the nucleation process. It 
assumes a uniform state inside the spherical bubble up to the dividing surface which separates the vapor from 
the external uniform liquid. The (free-)energy of the interfacial layer is ascribed to the zero thickness interface 
leading to a simple free-energy model consisting of bulk part and interfacial contribution. Near saturation 

OPEN

1Advanced Engineering Centre, School of Computing Engineering and Mathematics, University of Brighton, Lewes 
Road, Brighton BN2 4GJ, UK. 2Department of Mechanical and Aerospace Engineering‑DIMA, Sapienza Universitá 
di Roma, 00184  Rome, Italy. 3These authors contributed equally: Francesco Magaletti, Mirko Gallo and Carlo 
Massimo. *email: carlomassimo.casciola@uniroma1.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99863-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20801  | https://doi.org/10.1038/s41598-021-99863-z

www.nature.com/scientificreports/

conditions, where the bubble radius is sufficiently larger than the thickness of the interfacial layer, CNT provides 
qualitatively correct results. However, the CNT nucleation barrier is found to be overestimated leading to large 
discrepancies with the experimentally observed cavitation rates and cavitation pressures6,10.

Recently, Menzl et al.11 corrected the CNT by including the Tolman length δ in the basic model to account for 
the effect of interface curvature on the surface tension σ . Assuming δ > 0 , as generally accepted, the curvature 
decreases σ and the nucleation free-energy barrier, ��∗ = 16/3πσ 3

∗ /�p2 , is decreased. Since the barrier height 
controls the escape rate from the potential well, an increase of the nucleation rate by orders of magnitude follows.

In11, the classical Kramers approach was complemented by determining the diffusion coefficient in the Lan-
gevin equation for the bubble volume on the basis of the overdamped Rayleigh–Plesset equation for the nucleat-
ing bubble. This extended approach, completed with data from molecular dynamics (MD) simulations proved 
successful in reproducing the order of magnitude of the cavitation pressure estimated from quartz inclusion 
experiments at ambient temperature5.

In the present paper we attack the problem of homogeneous vapor bubble nucleation in water with a Dif-
fuse Interface (DI) approach12 that we recently developed for model fluids (Van der Walls equation of state or 
Lennard–Jones fluids)13–17. Historically, the DI model originated from the pioneering work on capillarity of Van 
der Waals who introduced a continuous, sharply varying density distribution ρ(r) in place of a sharp interface. 
This approach is a simplified version of density functional theory (DFT). The purpose of the proposed model is 
to reproduce the two crucial observables related to water cavitation, namely the nucleation rate J, defined as the 
number of bubbles nucleated per unit time and volume, and the cavitation pressure pcav . Given the volume of the 
liquid sample, Vl , the latter is defined as the liquid pressure for which the probability to observe at least one cavita-
tion bubble in a given time window, 0 ≥ t ≥ τ , equals 1/2. This definition is based on assuming nucleation as a 
random Poisson point process18, where single nucleation events are independently distributed in space and time.

The DI model is completed with a realistic equation of state for water—the IAPWS-95 EoS19—and the surface 
energy of the planar interface, σ0(T) , as a function of temperature20. The model implicitly includes the effect of 
interface curvature on the surface energy, accounting for the Tolman length, δ (see “Methods”).

Results
One of the main results of the paper is provided in Fig. 1 which shows the cavitation pressure of ultra-pure 
water as a function of temperature. Introducing the nucleation rate J, the average number of nucleated bubbles 
observed in a liquid volume Vl within the time window 0−−τ is, by definition, �n� = JVlτ . Given the Poisson 
distribution of the bubble number π(n|Vl , τ) = 1/n!(JVlτ)

n exp(−JVlτ) , the probability of having at least one 
bubble is 1− exp(−JVlτ) . Based on the above assumptions, the cavitation pressure is the liquid pressure at which 
this probability is exactly 1/2, i.e. J(pcav) = ln(2)/(Vlτ).

The data shown by the red thick curve in the figure were obtained by evaluating, for given temperature, the 
nucleation rate—see “Methods”—for different pressures to extract pcav by interpolation. Within the shaded 
region, obtained by varying Vlτ in the range 1÷ 106 µm3 · s , the cavitation pressures changes by less than 10% 
for all the analyzed temperatures, confirming the robustness of this observable.

The predictions of the present model compare favorably with the experimental data at high temperature2 
(quartz inclusions)21, (heat pulse method), see also the figure inset. As the temperature is reduced, the experi-
mental scatter on the cavitation pressure data increases considerably. The point indicated by the blue symbol on 

Figure 1.   Cavitation pressure as a function of temperature. The red solid line reports the values as predicted by 
the diffuse interface model, as explained in the text; the light red band shows the sensitivity to the experimental 
parameter Vlτ = 1000µm3 · s when changed by a factor 10−3 (lower limit) and 103 (upper limit). The dash-
dotted black, and the dashed blue, lines show the spinodal and saturation pressures, respectively, as provided by 
IAPWS EoS. The different symbols (green stars2, black dots21) represent available experimental data. The arrow 
indicates the correction due to the matrix compliance effect. The two dotted curves report data from22 exploiting 
two different water EoS, as indicated in the legend. The inset zooms into the high temperature region, close to 
the critical point.
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the left of the plot concern a single, very accurate measurement taken with quartz inclusions5. Azouzi et. al., after 
measuring the water density ρL = 922.8 kg/m3 and the temperature T ≃ 55◦C , obtained the cavitation pressure 
pcav ≃ −120MPa . To evaluate the pressure, they used the same IAPWS-95 EoS of our present numerical simula-
tions which yield pcav ≃ −118MPa at T ≃ 50◦C.

Figure 2 provides the liquid mass density at cavitation as a function of temperature, namely the density of 
the liquid far away from the bubble (i.e. in the bulk liquid state corresponding to the assigned temperature and 
pressure). The numerical data shown by the red line correspond to those given in terms of pressure in the previ-
ous Fig. 1. The experimental data come from four different experiments. The plus symbols23 provide cavitation 
density data from quartz inclusion experiments. They substantially correspond to the pressure data denoted by 
green stars2 in the pressure diagram. The left-most point is presumably affected by some inaccuracy2 and it is 
expected to underestimate the pressure, see the vertical green arrow in Fig. 1. The remaining experimental data 
points, see caption, provide data from acoustic experiments, which are believed to anticipate the cavitation. 
The inset shows the vapor density at the bubble center, an information which is unaccessible to experiments. 
Our model shows that vapor is close to saturation conditions, confirming expectations and CNT assumptions.

As explained in “Methods”, the string method is used to find the critical state. Briefly, the string method24,25 
is a specialized approach to extract the minimum free energy path in the transition between (meta)stable states 
and allows to determine the free-energy barrier. This class of algorithms is suggested by the rare event nature 
of the transition process which, under certain circumstances, can be extremely slow, hindering the adoption of 
direct simulation strategies. The nucleation free-energy barriers for different temperatures in the range 50–350◦ C 
are plotted in Fig. 3 as a function of the metastability level, µlev = (µ− µsat)/(µsp − µsat)

26, with µ the chemi-
cal potential and the subscripts sp and sat denoting spinodal and saturation conditions, respectively. The ��∗ 
vs µlev curves tend to collapse, although not exactly, at high temperature, a feature consistent with the density 
functional theory (DFT) results reported in26 for a Lennard–Jones fluid. In the present case, this behavior is 
apparently violated when the temperature decreases, red curve. The symbols in the main plot identify the barrier 
at the cavitation pressure, i.e. µlev = (µ(pcav ,T)− µsat(T))/(µsp(T)− µsat(T)) . Clearly, the barrier in thermal 
units at cavitation conditions is substantially independent of temperature, owing to the definition of cavitation 
pressure ( J(pcav) = ln(2)/(Vlτ) ) and the expression of the nucleation rate J = Ŵ0 exp(−��∗/(kBT)) , which 
implies that the temperature dependence of ��∗ is given by the additive contribution ln(Ŵ0) , where Ŵ0(T) is, 
e.g., the Blander and Katz27 prefactor.

In a famous paper, Kashchiev28 derived the celebrated nucleation theorem, (1/m)∂��∗/∂�µ = −n∗ , where 
n∗ is the molecule number in the critical cluster, with m the molecule mass, stating that it is expected to hold for 
classical, atomistic, homo- or heterogeneous, three- or two-dimensional nucleation. A more general result has 
been obtained in29 where the theorem has been proved in the context of DFT, with continuously varying density 
fields. In26 the original expression was modified by substituting the molecule number with the excess/defect of 
molecules, �n∗ , to extend its range of application to bubbles.

The nucleation theorem is shown to be preserved also in the present DI context, as shown in the inset of Fig. 3 
which plots the defect molecule number as a function of the metastability level. The symbols are a direct measure 
of the defect number (RHS of the nucleation theorem), while the curves provide the derivative of the barrier 
(LHS). Data are reported for the four temperatures of the main plot, with the curves hiding each other in couples.

Figure 2.   Liquid density at cavitation as a function of temperature. The curve colors and styles are the same as 
in Fig. 1. The available experimental data are obtained with different techniques: red circles4, blue diamonds4 
and purple triangles3 are obtained with acoustic experiments; the black plus signs23 are from inclusion 
experiments. More specifically, red circles are directly measured from fibre optic probe hydrophone, while 
purple triangles and blue diamonds by converting into density the pcav estimated with the static pressure 
method. The inset reports the corresponding density at the vapor bubble centre with the solid red curve, 
compared with spinodal (dash-dotted black) and saturation (dashed blue).
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The DI approach gives access to the surface tension, σ(T) , see “Methods”, Eq. (8). The theory naturally 
includes the effect of interface curvature, providing σ(T) as a function of the bubble radius, defined in this 
context as

For each temperature, the data shown in the Fig. 4, symbols, are taken from the critical bubble at dif-
ferent metastability level. The lines are the fitting of the surface tension using the Tolman expression, 
σ(T ,R) = σ0/(1+ 2δ/R) , where the parameter δ is the Tolman length31 and σ0 is the surface tension of the 
planar interface. We stress that σ0 at the different temperatures are taken from the fitted IAPWS expression for 
water20. This uniquely determines the capillary parameter entering the DI free energy, �(T) , Methods. Apparently, 

(1)R =
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Figure 3.   Free energy barrier ��∗ , normalized with the thermal energy kBT , as a function of the metastability 
level µlev = (µ− µsat)/(µsp − µsat) at four different temperatures. The symbols represents the values 
where p = pcav at those temperatures. The (negative) excess number of molecules in the critical bubble, 
�n∗ , as a function of the metastability level, is shown in the inset at the same temperature of the main 
plot, with corresponding colors. The symbols correspond to the data obtained with the diffuse interface 
model by integrating the density profile of the critical bubble, �n∗ = (1/m)

∫∞

0
(ρc(r)− ρL)r

2 dr , with 
m the mass of a water molecule. The solid lines are evaluated by applying the Nucleation Theorem30 as 
�n∗ = −(∂��∗/∂�µ)/m . Please notice that purple (red) curves and symbols are almost totally hidden by the 
light blue (rep. dark blue) ones.

Figure 4.   Liquid-vapor surface tension as a function of bubble radius R at four different temperatures. The 
data obtained via DI model are shown with symbols. The lines report the fits with the Tolman equation 
σ(R,T) = σ0(T)/(1+ 2δ(T)/R) that minimises the differences between the nucleation rates obtained with the 
DI model and with the corrected-CNT11, as explained in the dedicated subsection of “Methods”. The optimal δ 
values are {0.07582, 0.06835, 0.08888, 0.18412}nm at temperatures {50, 150, 250, 350}◦C , respectively.
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the behavior of the surface tension as a function of the critical bubble radius is well described by the Tolman fit, 
at least for reasonably large bubbles.

Beside the cavitation pressure, the nucleation rate J is the other most important observable. The classical 
Kramers’ theory32 provides the reaction rate by modeling the process as the escape of a random walker from 
the free-energy potential well. Figure 5 shows J as obtained from the barrier heights taken from the present DI 
model using the prefactor Ŵ0 = (ρLρV/m

2)
√

kBTσ 3/(η�p) . The solid lines in Fig. 5 show, for comparison, the 
data obtained using the Tolman-corrected CNT11 while the broken lines correspond to the plain CNT.

Discussion
The diffuse interface method adopted in the present paper assumes the free energy of the capillary system as 
described by a functional of the density field ρ(r) expressed as a volume integral of the bulk free-energy density 
and a capillary contribution proportional to the squared density gradient, see “Methods”. The equilibrium den-
sity field presents a strong gradient, sharply raising from the vapor to the liquid density at the interface between 
the two phases. The model can be interpreted as a gradient expansion of the functional used in DFT33. In can 
be considered as an effective theory where a few basic ingredients need to be included, namely the equilibrium 
thermodynamic properties of the liquid/vapor system. This allows the flexibility required to model realistic fluids, 
in the present case water, as described by the IAPWS EoS19 for bulk free energy and surface tension, in a wide 
range of temperatures and pressures. In the model the EoS should encompass all the states along the transition 
between the two phases (from the metastable liquid to the stable vapor in the cavitation bubble). In particu-
lar, also the unstable states below the spinodal line need to be considered. This raises an issue, since no direct 
experimental information is available in the unstable region. As discussed in the “Methods”, the procedure we 
have adopted consists in extrapolating data from the EoS to spinodal conditions and connect the limiting states 
across the unstable region. The interpolation is achieved with the constraints that (i) the pressure should be a 
strictly decreasing function of density at constant temperature (to prevent unphysical regions of local stability 
below the spinodal line), (ii) ∂p/∂ρ(ρsp)|T = 0 (as required for spinodal states), and (iii) enforcing the continu-
ity of pressure and free-energy. This procedure leaves a large freedom on the choice of the specific interpolation 
function. As shown in the Supplementary Information (SI), the model is insensitive to the details in the unstable 
region. The sensitiveness is larger to modifications of the shape of the spinodal curves, SI Fig. 2. In22, using an 
approach similar to the present one, the effect on cavitation of the topology of the spinodal line was discussed 
in some detail, concluding that a so-called reentrant spinodal, as in the case of the IAPWS EoS, is presumably 
better suited to capture cavitation data.

As shown in the “Results” section, our simulations reproduce remarkably well the best data available for 
bulk water. In comparing simulation data with experiments, one should be aware of certain technical difficul-
ties encountered on the experimental side. As the authors of the experiments themselves underline, in certain 
cases, particularly at low temperature, it turned out difficult to strictly control the purity of the water sample. 
This is especially true of experiments done with acoustic excitations3,4. Water inclusions in quartz1,2, on the 
other hand, reduce the probability that impurities are present in the sample by using an extremely small volume 
of water, exploiting the quartz hydrophilicity to prevent bubble nucleation at the solid interface, which would 
lower the transition barrier. Nevertheless, each particular sample showed a different behavior in terms of cavita-
tion pressure. Substantial effort was put in identifying the most suitable sample to perform repeated nucleation 
experiments in order to extract statistically reliable data5. Based on these considerations, the experimental data 
should, in general, be interpreted as overestimating the actual cavitation pressure pointing the attention to the low 

Figure 5.   Bubble nucleation rate J as a function of the metastable liquid pressure for different temperatures. The 
DI data are reported with symbols, while the dashed and solid curves correspond to the predictions of the plain-
CNT and the Tolman-corrected-CNT, respectively. The horizontal black line indicates the nucleation target rate 
J1/2 = ln2/(Vlτ) , corresponding to the value of the rate such that one bubble is observed in a system of volume 
Vl over an observation time τ with probability 1/2, following Ref.6. The black light band shows the sensitivity to 
the experimental parameters Vlτ = 1000µm3 × 1s by a factor of 0.001 (upper band) and 1000 (lower band).
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pressure envelope of the available data. With these comments in mind, the present simulation data are entirely 
consistent with experiments throughout the extended range of temperatures from 25 to 350◦ C where reliable 
experimental data are available.

As discussed in the introductory material, Kramers’ theory was revised and adapted to bubble nucleation in 
a recent paper11 where the Tolman length and the flat interface surface tension were fitted on MD data obtained 
with the TIP4P water model, predicting the cavitation pressure of −126MPa at the temperature T = 23.25◦ C . 
We like to stress that the Tolman length δ is implicitly included in the present DI model, where the density dis-
tribution ρ(r) is influenced by the size, hence the curvature, of the vapor bubble. As a consequence the excess 
grand potential that controls the actual surface tension felt by the system depends on bubble curvature. Figure 4 
shows that the surface tension of the critical nucleus can be fitted remarkably well by the Tolman expression 
(see the caption for the values of δ ), at least in conditions where the interfacial thickness remains sufficiently 
small with respect to the bubble size for the very concept of Tolman length to make sense. As a consequence, at 
the temperature of 25◦ C our model predicts pcav = −127.6MPa without introducing additional information 
apart from the EoSs, Fig. 1.

The thickness ℓ of the interfacial layer is amenable to direct measurement with X-ray scattering and 
ellipsometry34,35 respectively. The related data obtained from the present model are listed in the SI, Table 2, where 
the possibility to alter the interfacial thickness for given surface tension by changing the EoS in the unstable 
region is also briefly addressed. In fact, the interfacial thickness may easily be changed by 15% with no alteration 
of the nucleation rate and cavitation pressure.

As a final remark, we stress that several different prefactors, see, e.g.11,27, may be considered in the expression 
of the cavitation rate. The cavitation pressure is confirmed to be almost independent of the specific prefactor 
(SI, Fig. 3).

Conclusions and perspectives
Modeling cavitation in water has longly been an elusive issue. In this paper we have shown in detail how a dif-
fuse interface method completed with realistic equations of state for bulk water and for the vapor-liquid surface 
tension can be exploited in combination with rare event techniques to evaluate the free-energy barrier.

The model is shown able to capture the experimental values of the cavitation pressure in water over the wider 
range of temperatures over which experimental data are available, e.g. from 25◦C to critical conditions. Our data 
provide a lower envelope for the low temperature data, which are known to overestimate the cavitation pressure 
and the particularly accurate low temperature (ambient) data by5 are well matched by the present predictions.

We also confirm the findings discussed in11 where the authors show that the effect of interfacial curvature is 
crucial to reproduce realistic nucleation barriers. We stress, however, that the Tolman parameter is not a fitting 
degree of freedom in the present model, which is completely determined by equation of state and planar interface 
free-energy. The present data allow to directly verify the validity of the Tolman correction which, as shown in 
Fig. (4), works perfectly well for larger sizes, deteriorating progressively until becoming unsuitable as the size 
of the critical nucleus approaches the interfacial layer thickness. In principle, the data can be used to find more 
general fitting procedures for the surface tension as a function of bubble curvature see, e.g.36 for a more complete 
discussion based on experimental data.

The DI model is highly flexible and, in principle, can be extended to include the effect of dissolved gases in 
the metastable liquid or heterogenous nucleation over different kinds of surfaces14. An important feature of the 
DI model that was up to now exploited only for model fluids (Van der Waals EoS and Lennard–Jones fluids) is 
the possibility to describe the dynamic evolution of the cavitation bubble coupled with the inertial effect associ-
ated with liquid motion, to the point that even extreme events like shock waves launched in the liquid at bubble 
collapse, both on free space and near boundaries, can be addressed37–39. The dynamic approach can be extended 
in the spirit of Landau and Lifshitz’s fluctuating hydrodynamics to include the effect of thermal fluctuations13,14 
and may also account for the wettability of solid boundaries and the coupling with macroscopic flow motion. 
Finally, the resulting system of stochastic partial differential equations allows to deal with systematic heat injec-
tion for heat transfer problem.

Methods
Diffuse interface model.  The liquid-vapor system is described via a Diffuse Interface (DI) modelling 
based on the square gradient approximation (SGA) of the (Helmholtz) free energy functional, proposed in a 
seminal work by van der Waals40. This approach is understood as a particular case of the more general Density 
Functional Theory (DFT)33 and allows to control the thermodynamic behavior of the fluid through the choice 
of effective equations of state expressed in terms of the bulk free energy density, fb(ρ,T) . The total (Helmholtz) 
free energy functional is

where �(T) is the temperature dependent capillary coefficient that enables to tune the surface tension of the flat 
liquid–vapor interface σ0(T) of the specific fluid at any given temperature, the surface tension of water20 in the 
present work. More precisely, σ0(T) is evaluated as:

(2)F[ρ,T] =

∫

V

fb(ρ,T)+
�(T)

2
|∇ρ|2 dV,

(3)σ0(T) =

∫ +∞

−∞

�

(

∂ρeq
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)2

dx =
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expressed both in terms of the equilibrium density profile ρeq(x) across the flat interface, or directly through 
the EoS (see39 for details). In the above equations, ωb(ρ,T) = fb(ρ,T)− µb(ρ,T)ρ is the grand potential den-
sity, µb(ρ,T) = ∂fb/∂ρ is the chemical potential and ρsat

V/L(T) are the temperature dependent vapor and liquid 
densities at saturation, respectively. The specific procedure to adapt the IAPWS-95 EoS (the actual expression 
of free energy fb(ρ,T) used to reproduce the water thermodynamic properties) to the DI approach is described 
in the next subsection.

Free energy barrier evaluation.  As discussed in the main text, nucleation is a rare event which calls for 
specialized algorithm to determine the free energy barrier and, more generally, the minimum free energy path. 
The total free energy functional is minimized, with the constraint of given total mass, to obtain the equilibrium 
condition

where the external chemical potential, µext , and the system temperature are assigned. The above condition implies 
that the generalized chemical potential, including the capillary term, is spatially homogeneous at equilibrium. 
When the external chemical potential corresponds to a metastable liquid condition, one possible (unstable) 
equilibrium solution is the critical bubble immersed in the metastable liquid, described in terms of the critical 
density profile, ρc(r) with r the radial coordinate originating at the bubble center. In this work, the powerful string 
method24,25 is deployed to obtain the density profile of the critical bubble, corresponding to the saddle point 
of the (Landau) free energy landscape, i.e. the transition state13,16. In a nutshell, the string method numerically 
approximates the minimum energy path (MEP) describing the continuous sequence of density configurations, 
ρ(r,α) , along the transition path parametrized by the transition coordinate α . The images ρk(r) forming the 
string are evolved over the pseudo-time t̃ according to the steepest-descent algorithm

representing a relaxation evolution of Eq. (4), written in spherical coordinates. A reparametrization procedure 
redistributes the images after evolving Eq. (5) over a single pseudo-time step �t̃ . This two-steps procedure is iter-
ated up to the complete convergence of the whole string to the MEP. The configuration ρc(r) laying on the saddle 
point corresponds to the critical bubble. The relaxation dynamics of the string images, Eq. (5), is implemented 
by a centered, second order accurate finite difference scheme, with (pseudo-)time advancement performed by 
a forward Euler scheme. The forward scheme is used for its simplicity and stability properties, considering the 
time accuracy is not an issue here since we only need the steady, fully relaxed solution.

The critical radius, the energy barrier and the curvature dependent surface tension, are then measured 
following41 as

respectively (the temperature T, being a parameter, has been avoided to ease the notation).

Equation of state.  The IAPWS-95 EoS19 is here used to accurately describe the thermodynamic properties 
of water, both in the liquid and the vapor phases. The EoS provides an empirical expression for fb(ρ,T) obtained 
by fitting a large experimental dataset of stable liquid and vapor states. The values at metastable conditions are 
extrapolated up to the spinodal states, where the condition ∂p/∂ρ = 0 is met. In the whole unstable region, 
ρsp V < ρ < ρspL , the EoS exhibits spurious oscillations, preventing the direct application into the DI model. In 
fact, the presence of density intervals where ∂p/∂ρ > 0 in the unstable region, produces unphysical stable-states. 
The original fb(ρ,T) is corrected by modifying the expression in the unstable region at each temperature:

f mod
b  is obtained by enforcing the following six conditions requiring the continuity of the pressure and its deriva-

tive and of the free energy at the spinodal states:

(4)µb(ρ,T)− �(T)∇2ρ = µext ,

(5)
∂ρk

∂ t̃
= µext −

[

µb(ρ
k)−

�

r2
∂

∂r

(

r2
∂ρk

∂r

)]

,

(6)R∗ =

∫ ∞

0
r

(

dρc

dr

)2

dr
/

∫ ∞

0

(

dρc

dr

)2

dr,

(7)��∗ = 4π

∫ ∞

0

{

fb(ρc(r))− fb(ρL)− [ρc(r)− ρL]µext +
�

2

(

dρc

dr

)2
}

r2dr,

(8)σ ∗ =

[

�

4

∫ ∞

0

(

dρc

dr

)2

r2dr

]1/3
[

fb(ρL)− fb(ρc(0))− (ρL − ρc(0))µext

]2/3
,

(9)f corrb (ρ,T) =

{

fb(ρ,T), ρ ≤ ρspV (T) ∪ ρ ≥ ρspL(T)

f mod
b (ρ,T), ρsp V (T) < ρ < ρspL(T)

.
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The following third order polynomial supplemented with an exponential function is used as a prototype func-
tion for the modified pressure, pmod = Aρ3 + Bρ2 + Cρ + D + E exp(ρ)ρ2 . The cubic expression guarantees 
that no spurious oscillations occur in the unstable region. The sixth free parameter, F, appears as the integration 
constant when integrating pmod to obtain the free energy, as f mod

b =
∫

(pmod/ρ2)dρ + F . Other possible choices 
for f mod

b  have been tested, showing a very weak sensitiveness on the obtained cavitation pressure (Supplementary 
Information (SI)).

Tolman fit.  An iterative best fitting procedure has been exploited to estimate the Tolman length from 
the DI surface tension σ ∗ in critical conditions, Eq.  (8). For each temperature T, the data consist of the set 
{σ ∗

i = σ ∗(µi
lev ,T)} , measured at the i-th metastability level ( i = 1,M ). They are plotted, for several tempera-

tures, as a function of the corresponding critical radius, R∗
i  , in Fig. 4. Iterating over n, at fixed T, the Tolman 

length δn is obtained by using the Tolman law as fitting function σ ∗
i (T) = σ0(T)/(1+ 2δn(T)/R

∗
i ) , with σ0(T) 

the temperature dependent water surface tension of the flat interface provided by20. At the n-th iteration level, 
the Tolman length δn is obtained by employing the subset {σ ∗

i (T)} with i from n+ 1 to M thus progressively 
eliminating from the fit the data at the smallest radii. The “corrected”-CNT, with the curvature dependent sur-
face tension, has then been applied to estimate the nucleation rates Jn(i) = Jn(µ

i
lev ,T) at the different metastable 

liquid conditions, by employing the different δn fitting values. The optimal Tolman length, δopt(T) , is the one that 
minimizes the L2 norm of the difference between the “corrected”-CNT estimate and the rate measured from the 
DI model, || log10 Jn − log10 J

DI || = (
∑M

i=1 | log10 Jn(i)− log10 J
DI (i)|2)1/2 . The fitting error for the different n 

and several temperatures are reported in the SI. The caption of Fig. 4 reports the optimal Tolman lengths at the 
different temperatures considered in the plot.

Nucleation rate.  The evaluation of the nucleation rate in the different thermodynamic conditions follows 
the line of the Kramers’ theory32, providing the transition rate of the nucleation process as the escape of a random 
walker from the free-energy potential well, k = [(

∫

∪
exp(−β��(x))dx)(

∫

∩
exp(β��(x))/D(x)dx)]−1 , along 

the transition coordinate x. In this expression β = 1/(kBT) , D(x) is the diffusion coefficient, and ∪,∩ are short-
cuts to indicate that the integration is performed over the the well and barrier basin, respectively. The correspond-
ing nucleation rate is then evaluated as J = Ŵ0 exp(−��∗/(kBT)) , with the prefactor Ŵ0 = c0

√

kBTσ 3/(η�p) 
derived in11 in the case of bubble nucleation. The normalization constant c0 is not uniquely defined in the frame-
work of CNT, but we adopted the expression c0 = ρLρV/m

227 which compared favorably with the value obtained 
with MD in11. It is worth stressing that the specific expression, formally resembling that of plain-CNT, contains 
the distinctive feature that the energy barrier, the surface tension and the pressure jump, are all evaluated from 
the critical density profile ρc(r) obtained with the string method (Eqs. 6–8). When comparing the rates in Fig. 5, 
the plain-CNT prediction is obtained by substituting in the above expression the surface tension of the flat 
interface σ0 , ��∗ = 16πσ 3

0 /(3�p2) , and �p = psat − pL . Conversely, in the Tolman-corrected-CNT, the cur-
vature dependence of the surface tension σ(R) = σ0/(1+ 2δ/R) is considered in the derivation of the specific 
expressions11, while the value of the Tolman length δ is extracted from our data, as explained in the previous 
subsection.
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