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The network interplay of interferon 
and Toll‑like receptor signaling 
pathways in the anti‑Candida 
immune response
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Fungal infections represent a major global health problem affecting over a billion people that kills 
more than 1.5 million annually. In this study, we employed an integrative approach to reveal the 
landscape of the human immune responses to Candida spp. through meta‑analysis of microarray, 
bulk, and single‑cell RNA sequencing (scRNA‑seq) data for the blood transcriptome. We identified 
across these different studies a consistent interconnected network interplay of signaling molecules 
involved in both Toll‑like receptor (TLR) and interferon (IFN) signaling cascades that is activated 
in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. 
tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune 
responses. scRNA‑seq data confirmed that genes commonly identified by the three transcriptomic 
methods show cell type‑specific expression patterns in various innate and adaptive immune cells. 
These findings shed new light on the anti‑Candida immune response, providing putative molecular 
pathways for therapeutic intervention.

Fungal infections, including the emergence of new fungal pathogens highly resistant to antifungal drugs, repre-
sent a major global health  issue1–5. Indeed, fungal infections affect over a billion individuals worldwide and kill 
more than 1.5 million annually. Among these diseases, invasive candidiasis (IC) is the most common, affecting 
approximately 250,000 people annually and causing more than 50,000  deaths6,7. Overall, an increasing number 
of patients with malignancies, inborn errors of immunity (IEIs), autoimmune diseases (involving immunosup-
pressive treatment), and hematopoietic stem cell or organ transplantation is contributing to the high frequency 
of individuals susceptible to life-threatening fungal  pathogens8,9. Thus, a better understanding of molecular 
pathways that can be explored to develop new therapies to reduce the morbidity and mortality caused by Candida 
infections is  needed10,11.

Linear and mechanistic approaches have elegantly demonstrated that the antifungal immune response involves 
appropriate recognition of pathogen-associated molecular patterns (PAMPs) by different pattern recognition 
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receptors (PRRs) expressed on the host cell membrane, such as C-type lectin receptors (CLRs: dectin-1, dec-
tin-2, and CD209), scavenger receptors (CD36), and Toll-like receptors (TLRs), e.g., TLR2 and TLR4. Addition-
ally, intracellular PRRs, including RIG-I-like receptors (RLRs: melanoma differentiation-associated protein 5 
or MDA5), TLRs (e.g., TLR3 and TLR9), and NOD-like receptors (NLRs: nucleotide-binding oligomerization 
domain-containing protein or NOD1/2, NOD-, LRR- and pyrin domain-containing 3 or NLRP3), are relevant 
and expressed by antigen-presenting cells and phagocytes, which bind well-known  ligands12–14. Activation of 
PRRs induces several signaling events, e.g., the canonical nuclear factor (NF)-κB  pathway15, that trigger effector 
antifungal mechanisms. Such mechanisms include phagocytosis, reactive oxygen species (ROS)  production16, 
degranulation, and neutrophil extracellular traps (NETs)17,18. Moreover, PRRs promote production of key inflam-
matory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-17, type I interferons 
(IFNs [IFN-α/β]), and the IL-12/IFN-γ  axis11,14,19,20, shaping and guiding immune  cells14.

Nevertheless, the landscape of antifungal molecules remains to be resolved in an integrative manner. To 
reach this goal, we performed multistudy analysis of blood transcriptome microarray, bulk, and single-cell 
RNA sequencing (scRNA-seq) data to uncover the landscape of human immune responses to Candida spp. Our 
approach provides new insight into the anti-Candida immune response.

Results
Multilayered conservation of TLR and IFN signaling pathways in response to C. albicans. We 
surveyed published RNA-seq datasets and found 8 related to the human immune response to Candida spp., 
including 5 microarray and 2 bulk RNA-seq datasets and one scRNA-seq dataset (further details are provided 
in the Methods section). First, we explored scRNA-seq by performing overrepresentation analysis (ORA) of dif-
ferentially expressed genes (DEGs) from innate immune (monocytes, natural killer, and plasmacytoid dendritic 
cells) and adaptive (CD4 + , CD8 + , and CD19 + lymphocytes) cells. The DEGs were assigned to clusters as previ-
ously  described21 (Fig. 1a) under resting and C. albicans conditions (Fig. 1b–c), and 6722 DEGs (Suppl. Table S1) 
were identified. Enriched pathways associated with the immune response to C. albicans are shown in Fig. 1d; all 
enriched categories are present in Suppl. Table S2. Among them were 72 and 99 DEGs belonging to TLR and IFN 
(both type I and type II) signaling cascades, respectively. Among the DEGs, 62 are involved in both TLR and IFN 
signaling cascades based on our enrichment analysis or as previously reported in the literature (Suppl. Table S3).

We next sought to determine whether interplay between TLR and IFN signaling cascades is induced at a 
topological level. To this end, we performed modular gene coexpression  analysis22 using the microarray dataset 
from Smeekens et al11, a unique public dataset containing more than 15 samples per group (30 resting and 24 
C. albicans-activated samples) to obtain biologically meaningful modular  networks23. Modular gene coexpres-
sion analysis using  CEMiTool24 identified thirteen enriched coexpression modules from all genes expressed by 
PBMCs (which contain lymphocyte subpopulations, monocytes, and dendritic cells). Among these modules, 12 
were significantly enriched (9 downregulated and 3 upregulated) in response to C. albicans infection (Fig. 1e). 
Of note, modules M1 and M2 indicate gene coexpression and upregulation of IFN and interleukin signaling 
with TLR cascades (Fig. 1f–i).

Based on the results obtained by modular coexpression analysis, we dissected the significantly enriched 
pathways of differentially expressed genes (DEGs) induced by C. albicans11. In agreement with the topological 
results obtained using CEMiTool, ORA of DEGs using the ClusterProfiler  tool25 pinpointed different clusters 
related to activation of TLR and IFN signaling (Suppl. Fig. 1a–b). The relationship between the 30 most enriched 
pathways and their associated genes is shown in a network view in Suppl. Fig. 1c, and the entire list of all enriched 
pathways is summarized in Suppl. Table S4. Type I IFN signaling was the most significant pathway modulated 
by C. albicans, as previously reported by Smeekens et al.11 and as recently characterized by Bruno et al.26. Fur-
thermore, stimulation by C. albicans resulted in significant enrichment of several TLR signaling events, such as 
TLR4, TLR3, TLR7/8, and TLR9, MyD88/TIR-domain-containing adapter-inducing interferon-β (TRIF)/TIR 
domain containing adaptor protein (TIRAP) cascades, as well as TRAF6-mediated NF-κB activation. ORA also 
indicated that C. albicans activates chemokine (G protein-coupled receptor [GPCR] ligand binding) and cytokine 
(IL-10, IL-3 and IL4) signaling pathways, IFN-α/β signaling, the interferon-stimulated gene 15 (ISG15) antiviral 
mechanism, TNF receptor-associated factor 3 (TRAF3)-dependent IRF activation, DExD/H-box helicase 58 
(DDX58)/interferon-induced with helicase C domain 1 (IFIH1)-mediated induction of IFN-α/β, and regula-
tion of type I and II IFN (Suppl. Fig. 1a and c; Suppl. Table S4). This finding agrees with the study performed by 
Jaeger et al.27, who characterized in detail the relevance of IFIH1 (MDA5) in the anti-Candida immune response.

C. albicans infection activates common TLR‑ and IFN‑associated genes in peripheral blood 
leukocytes. We further investigated which DEGs and signaling pathways are consistently activated by C. 
albicans in peripheral blood leukocytes such as PBMCs (Smeekens et al.11 and Bruno et al.28) and peripheral 
whole blood cells (WBCs, Dix et al.29 and Sieber & Kämmer et al.30,31) in all publicly available datasets. WBCs 
contain PBMCs (lymphocytes 20–45% and monocytes 2–10%) and granulocytes (neutrophils: 50–70%; baso-
phils: 0–1%; and eosinophils: 1–5%)32. Meta-analysis of WBC and PBMC gene expression datasets using the 
P value combination method revealed 44 commonly activated DEGs (40 upregulated and 4 downregulated) 
(Fig. 2a, Suppl. Table S5). These DEGs form well-defined hierarchical clusters according to cell populations, i.e., 
PBMC datasets presented a closer expression pattern among them and WBC datasets when comparing both 
regulation and significance (Fig. 2b). Enrichment analyses using EnrichR of these 44 genes revealed 87 signifi-
cantly affected pathways (Suppl. Table S6), including TLR and IFN-α/β signaling (Fig. 2c). Furthermore, these 
44 DEGs were enriched in other interleukin signaling pathways, such as JAK-STAT, IL-12, IL-17, IL-23, TNF, 
chemokines (GPCR ligand binding) and PRRs, including RIG-I-like receptor and NOD signaling. Multistudy 
factor analysis of  eligible33 datasets (WBCs: Dix et al.29 and PBMCs: Smeekens et al.11; those with the minimal 
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Figure 1.  Multilayered induction of TLR and IFN signaling pathways in response to C. albicans. (a), UMAP 
visualization of scRNAseq profiles colored according to cell cluster. (b) and (c), UMAP of resting and C. 
albicans-activated cell groups. DEGs, differentially expressed genes; IFN, interferon; ORA, overrepresentation 
analysis; scRNAseq, single-cell RNA sequencing; TLR, Toll-like receptor; UMAP, uniform manifold 
approximation and projection. (d), Dot plot showing pathways associated with the immune response to C. 
albicans, as obtained by ORA of DEGs. (e), Coexpression modules significantly enriched (M1-M11, and M13) 
in PBMCs (resting n = 30; C. albicans infected n = 24; dataset GSE42606). (f) and (g) Network representation of 
M1 and M2 with hubs (most connected genes) colored based on coexpression (blue color), coexpression and 
interactions (green color), or interactions only (dark-red color). (h) and (i), Enrichment representation obtained 
by modular genes coexpression in M1 and M2 showing significantly (− Log10 transformed adjusted p value) 
enriched signaling pathways. IFN, interferon; TLR, Toll-like receptor. 
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number of samples required for this analysis) identified two common latent factors with high loadings, whereas 
specific latent factors showed low loadings across these studies, strengthening the biological relevance of the 44 
common genes (Fig. 2d, Suppl. Table S7).

C. albicans activates common TLR and IFN signaling pathways across different layers of immu‑
nity. We further included monocyte-derived dendritic cell (moDC) studies (Dix et al., Rizzetto et al., and 
Rizzetto et al.)34–36 in our integrative analysis. moDCs are known to be essential players in antifungal immunity, 
bridging the innate and adaptive arms of the immune system. We searched for genes commonly regulated by C. 
albicans in the transcriptomes of WBCs, PBMCs, and moDCs under resting and C. albicans activation condi-
tions. Intersection analyses performed according to cell population identified 123, 223, and 57 common DEGs 
for the WBC, PBMC, and moDC datasets, respectively (Fig. 3a–c). Five genes (RIN2, RGL1, MARCKS, FNIP2, 
and TLR7) reported as commonly differentially expressed in PBMC studies were upregulated in the dataset of 
Smeekens et al.11 and downregulated in that of Bruno et al.28. All other common DEGs were consistently up- or 
downregulated across studies investigating the same cell population (Suppl. Table S9).

However, only 2 common DEGs were present across all seven datasets (Fig. 3d), which by themselves did 
not show significant signaling pathway enrichment. We then explored whether the DEGs from each dataset are 
enriched in common signaling biological processes among all studies. Gene Ontology (GO) analysis using Clus-
terProfiler revealed 173 common biological processes (Suppl. Table S8), and we found several molecules/pathways 
to be essential for the antifungal immune  response12, including a cluster of IFN-γ and NF-kB signaling and a 
previously described overlap with the immune response to  viruses11 (Fig. 3e). The latter has been mechanistically 
characterized by Bourgeois et al.37. Additional ORA of DEGs involved in this cluster showed significant enrich-
ment in signaling cascades of single TLRs (TLR2, TLR3, TLR4, TLR5, TLR9, TLR9, and TLR10), TLR heterodi-
mers (TLR1/TLR2, TLR2/TLR6, TLR7/8), and TLR adapter molecules (MyD88/TIRAP, TRAF6, TRIF) as well 
as in several interleukin signaling pathways, such as IL-1, IL-4/IL-13, IL-6, IL-10, IL-17, and IFN-α/β (Fig. 3f). 
Furthermore, 1096 DEGs (Suppl. Table S11) affecting common biological processes among WBCs, PBMCs and 
moDCs were detected. In Fig. 3g, the interactome obtained from some of these 1096 DEGs and enriched signaling 
cascades is illustrated (Suppl. Table S12), highlighting the association of TLR- and IFN-signaling cascades con-
sistently enriched in our analyses. These 1096 DEGs were also enriched in other PRR and interleukin signaling 
pathways, including CLRs (dectin-1), NLRs (NOD1/2), pro- (IL-1, IL6, IL-17, IL-12), anti-inflammatory (IL-10), 
and T helper 2 (IL-4 and IL-13) cytokines. This immunological balance between pro- and anti-inflammatory 
events is crucial for properly controlling fungal infections while maintaining immune  homeostasis38,39.

C. albicans infection increases correlation between TLR‑ and IFN‑associated genes. After veri-
fying TLR and type I and II IFN signaling cascade consistency, we assessed the degree of association between 
these two variables in the immune response to C. albicans. Due to the requirement of minimum sample  size40, 
we selected TLR- and IFN-associated genes present in the PBMC transcriptome data from Smeekens et al.11. This 
dataset contains 45 and 14 TLR- and IFN-associated DEGs modulated by C. albicans compared to the resting 
group. Overall, C. albicans infection increased mainly positive correlations between TLR- and IFN-associated 
DEGs (Fig. 4a–b). We then performed canonical correlation analysis (CCA), a generic parametric model used 
to quantify relationships between two groups of interrelated and interdependent  variables41, to further assess the 
association strength between TLR and IFN DEGs. This approach revealed a pair of canonical variates (x-CV1 
and y-CV1), a finding that highlights the strong association between most TLR- and IFN-associated DEGs in 
both resting and C. albicans-infected PBMCs (Fig. 4c) as well as the ability to stratify these conditions (Fig. 4d–e).

Interplay between TLR and IFN signaling pathways is conserved in response to nonalbicans 
Candida species. We then assessed whether only C. albicans induces the observed correlation between 
TLR- and IFN-associated genes or other nonalbicans Candida species, such as C. glabrata, C. parapsilosis, C. 
tropicalis, and multidrug-resistant C. auris28,42. We used the public dataset of Sieber & Kämmer et al.30,31, and 
intersection analyses performed with TLR- and IFN-associated DEGs from this dataset revealed 12 and 19 com-
mon DEGs, respectively, upon activation by the different species. These DEGs are involved in several pathways 
related to both TLR and IFN signaling (Fig. 5a–b, Suppl. Table S13).

We determined whether this interplay between the TLR and IFN signaling pathways is involved in the 
response to multidrug-resistant C. auris by exploring a unique publicly available dataset analyzing the immune 
response to C. auris and C. albicans (Bruno et al.28). Similar to activation by C. albicans, ORA of DEGs induced 
by C. auris included TLR and IFN cascades among the 30 most enriched pathways (Suppl. Fig. 2a–b). C. albicans 
and C. auris similarly modulated levels of DEGs involved in TLR signaling, including NF-κB1, NF-κB2, JUN, 
and DUSP4, and in IFN signaling, such as IRFs, GBPs, SOCS1, ISG20, TRIM, and IFIT3 (Fig. 5c). When we 
compared the DEGs induced by C. auris with enriched common pathways among all datasets (1096 DEGs, Suppl. 
Table S11) assessing the immune response to C. albicans, we identified 237 common DEGs (Fig. 5d), and ORA 
of these common DEGs indicated that the interplay between TLR and IFN signaling cascades is a consistent 
immunologic feature in response to these two species of Candida (Fig. 5e).

Inborn errors of immunity (IEIs) corroborate interplay between TLR and IFN signaling cas‑
cades. Finally, we aimed to evaluate the potential clinical and translational relevance of the identified TLR- 
and IFN-associated genes and molecular pathways consistently modulated by Candida. Therefore, we searched 
for IEI-associated genes known to increase susceptibility to both systemic and mucocutaneous candidiasis in 
humans, as described by Tangye et al.43. For this analysis, we only included mutations but not single-nucleotide 
polymorphisms (SNPs) associated with susceptibility to Candida infection. Jaeger et  al.27 found that MDA5 
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Figure 2.  C. albicans activates common TLR- and IFN-associated genes in peripheral blood leukocytes. (a) The upper plot displays 
the number (set size) of DEGs present in each dataset (y-axis: WBCs, GSE65088, and GSE114180; PBMCs: GSE42606 and GSE154911) 
and their intersections. Black bubbles, present in rows, mark the dataset, which refers to the amount present in the blue columns, with 
intersections between two or more groups being shown. (b), Hierarchical clustering of the 44 common DEGs demonstrating gene 
expression patterns across different studies. The size and color of circles correspond to − Log10 transformed adjusted p value and Log2-
fold change (Log2FC), respectively. Blue represents downregulated DEGs, and red indicates upregulated DEGs. The cutoff applied 
to identify the down/upregulated genes was Log2FC <  − 1/ > 1 and adjusted p value < 0.05. Rows and columns were clustered based 
on cosine similarity between Log2FC values. (c), GOplot of selected immunological pathways and associated genes. (d), Heatmap of 
common and specific latent factors across studies. Heatmaps contain genes presenting positive and negative loadings ranging from − 1 
to 1. DEGs, differentially expressed genes; PBMCs, peripheral blood mononuclear cells; WBCs, white blood cells. 



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20281  | https://doi.org/10.1038/s41598-021-99838-0

www.nature.com/scientificreports/

SNPs are associated with Candida, and mutations in this gene have been reported as an IEI associated with 
increased susceptibility to recurrent viral  infections43. Regardless, this fact reinforces type I interferon’s consist-
ent role in the anti-Candida immune response, indicating that patients with increased susceptibility to Candida 
spp. need to be screened for mutations in MDA5.

To date, mutations in 100 genes known to be associated with IEIs have been identified as enhancing suscepti-
bility to candidiasis and other clinical manifestations (Suppl. Table S16). We compared them with the 1096 genes 



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20281  | https://doi.org/10.1038/s41598-021-99838-0

www.nature.com/scientificreports/

described above (Suppl. Table S11, i.e., those enriching the common biological processes activated by C. albicans 
(Fig. 3e), which encode molecules present in different compartments, such as extracellular regions, organelles, 
and nuclei, forming macromolecular complexes. Together, these factors form a highly interconnected physical 
protein–protein interaction network (Fig. 6a) that contains several  hubs44 (Fig. 6b) defined as having more than 
or equal to 200 interaction partners. Of note, 34 genes associated with IEIs were also present across the studies. 
Although 66 genes associated with IEI were not identified in the datasets, these genes were highly connected with 
the other DEGs in this network. Furthermore, the 1096 DEGs mostly comprised type I and II IFN-associated 
genes, 878 in total (Fig. 6c, Suppl. Table S14).

The 34 IEI-associated genes present in this network consist of 7 groups of IEIs, including congenital defects 
of phagocytes, defects of intrinsic and innate immunity, predominantly antibody deficiencies, and diseases 
of immune dysregulation, as defined by International Union of Immunological Societies Expert Committee 
(IUIS)43 (Suppl. Fig. 3a). Notably, among the hubs are STAT1, STAT3, NFKBIA (IκBa), and NFKB1, which are 
well known to be associated with TLR and IFN  signaling45–50. ORA of these 34 genes indicated that in addition 
to dectin-151 and NLR signaling, they were mostly enriched in components of both type I and II IFN and several 
TLR (TLR1/2, TLR2/6, MyD88, and TRAF6-mediated NF-κB activation) signaling pathways (Suppl. Fig. 3b–c).

Common TLR‑ and IFN‑associated DEGs and signaling pathways across microarray, bulk, and 
single‑cell RNA‑seq datasets. Finally, we revisited the scRNA-seq data and found 11 TLR- and 23 IFN-
associated DEGs to be among the WBC, PBMC and moDC DEGs identified by microarray and bulk RNA-seq 
datasets (Suppl. Table S15). Thus, the network interplay of TLR- and IFN-associated DEGs is not a particular fea-
ture of a specific leukocyte cell population, as C. albicans systemically activated this network in different innate 
(monocytes, natural killer, and plasmacytoid dendritic cells) and adaptive (CD4 + , CD8 + , and CD19 + lympho-
cytes) cells identified by the scRNA-seq dataset. Fig. 7a–b illustrates these 34 common genes across the leukocyte 
subpopulations and those present in the WBC, PBMC, and moDC datasets (Fig. 2a–c). In general, hierarchical 
clustering of common enriched pathways across the cell subpopulations identified by scRNA-seq revealed a 
similar upregulation pattern of TLR- and IFN-associated signaling pathways, forming clusters (Fig. 7c), as indi-
cated by microarray and bulk RNA-seq data. Taken together, these data strongly support the immunobiological 
relevance of interplay between TLR and IFN signaling cascades, as previously  described50 (Fig. 8).

Discussion
The association between PRR activation and cytokine production by immune cells is crucial for an adequate 
immune response to pathogens, and this association has been well investigated by linear approaches or strategies 
designed to identify the antifungal transcriptomic  signature11,28,52,53. For instance, several immunologic molecules 
and pathways, such as those triggered by TLR and IFN, which induce the generation of T cell subpopulations 
(e.g., T helper 1 [Th1], Th17, and T regulatory [Treg] cells), have been successfully characterized by individual 
studies and mechanistic  approaches14. Our systems immunology approach integrates various transcriptomic stud-
ies investigating the anti-Candida immune response, highlighting the consistency of crosstalk between PRRs (e.g., 
CLRs, TLRs, and NLRs) and type I and type II interferons as well as the cytokine (e.g., TNF and IL-10) cascades 
previously  reported37,54–60. In addition, we show consistent overlap between antiviral and antifungal immune 
responses, supporting the previously reported pivotal role of IFN type I in the immune response to C. albicans11.

Of note, recent reports suggest that Candida-specific induction of type I IFN responses is not limited to 
professional immune cells, as in vivo studies confirm the role of type I IFN in epithelial host defense against 
C. albicans61,62. In agreement, a transcriptional profiling study showed that the type I IFN response is induced 
by vaginal epithelial cells in response to a variety of Candida  species63. Although the type I IFN response has a 
protective role at early stages of infection, opposite effects (tissue damage) are observed at later stages. This is in 
line with several studies showing that IFNs may play beneficial or detrimental roles in the host defense against 
candidiasis. That is, cytokines are essential for controlling the development of severe Candida infections by 
promoting the inflammatory action of phagocytic cells (monocytes and neutrophils), but uncontrolled activa-
tion of these cells by IFNs during sepsis may contribute to fatal tissue  damage64–67. Therefore, understanding 
the TLR-IFN network at different timepoints of Candida infection will provide valuable insight for the clinical 
management of patients.

Figure 3.  C. albicans activate common TLR and IFN signaling pathways across different leukocyte populations. 
(a–c), Proportional Venn diagrams displaying the number of DEGs present in each dataset grouped by cell type 
and their intersections: datasets of WBCs (a), PBMCs (b), and moDCs (c). (d), The intersection plot highlights 
the number of common DEGs across different cell groups (Venn diagrams were created using CorelDraw2019, 
available at coreldraw.com). (e), Hierarchical clustering exhibiting pathways enriched in common biological 
processes across studies (Suppl. Table S10). (f) Further analysis of TLR- and IFN-associated pathways. In both 
heatmaps, the size of the circles corresponds to the adjusted p value transformed into -Log10, and the color 
intensity indicates the number of genes in each biological process and pathway across studies. (g) Network 
demonstrating interactions between TLR- and IFN-associated DEGs/signaling pathways with other molecules 
and signaling cascades classically associated with antifungal immune responses. Enrichment analysis was 
performed using Reactome. Circular nodes represent pathways, and their size denotes the number of genes 
enriching the pathways. Colored squares represent the cellular location of genes. Genes interacting with more 
than 5 pathways are named. The interaction network was built using NAViGaTOR software. DEGs, differentially 
expressed genes; moDCs, monocyte-derived dendritic cells; IFN, interferon; PBMCs, peripheral blood 
mononuclear cells; TLR, Toll-like receptor; WBCs, whole Blood Cells.
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It has been suggested that different TLRs synergistically activate immune cells to, for instance, induce expres-
sion of several proinflammatory molecules through cooperation of the NF-κB, IRF, STAT, MAPK, ITAM, and 
PI3K signaling  pathways68–70. On the one hand, TLR-induced NF-κB signaling promotes the production of 
several key cytokines, including IFNs, that activate the STAT1-mediated signaling  pathway71. On the other hand, 
IFN-γ promotes expression of genes encoding  TLRs72–75. IFNs also potentiate TLR-induced gene transcription 
by creating a primed chromatin environment via histone acetylation that allows sustained occupancy by the 
transcription factors STAT1 and IRF-1 at promotors and enhancers at TNF, IL-6, and IL12B  loci53. Our phe-
nomenological study confirms these previously reported mechanistic studies and provides new insight into the 
molecular network of TLR and IFN signaling pathways in the anti-Candida immune response. These networks 
need to be further investigated in other mycoses (paracoccidioidomycosis, histoplasmosis, and cryptococcosis) 
and neglected diseases (dengue, Zika, leishmaniasis, and Chagas disease) occurring in developing  countries76. The 
TLR and IFN interactomes involve more complex events than previously thought, demanding further bottom-up 
and top-down system immunology investigations.

Our conclusions are based on the integration of publicly available human transcriptomes that identified 
common DEGs, biological processes and signaling pathways consistently modulated across several leukocyte 
subpopulations in response to fungal pathogens (Candida spp.). Among these DEGs, we highlight those involved 
in IFN-α/β (e.g., ISGs, IRFs, SOCS, and GBPs), TLR3,4,7/8,9, and TRAF-mediated NF-κB signaling cascades, and 
the correlation of DEGs involved in these signature clusters increase upon stimulation with C. albicans. Of note, 
among the consistently identified DEGs are those previously associated with IEI that increase host susceptibil-
ity to fungal infections, such as those causing chronic mucocutaneous candidiasis. Furthermore, these DEGs 
are involved in immunological pathways related to the development of IEI phenocopies, such as those targeted 
by anti-IL-17 or anti-IL17RA autoantibodies, enhancing susceptibility to Candida spp. infections. Because the 
outcome of fungal infections depends primarily on the host immune response, it is highly relevant to examine 
IEIs that predispose patients toward Candida  infections14,52. IEIs represent an essential research field that has 
been most useful for investigating human susceptibility models to infection, often revealing the nonredundant 
role of genes involved in immunologic  homeostasis77–79. Of the 416 molecular defined IEIs recently summarized 
by the expert committee of the IUIS, more than 20 syndromes were recognized as being associated with sus-
ceptibility to fungal  infections43. This list of genes associated with an increased risk of fungal infections includes 
genes regulating signaling via the IL-2 receptor, NF-kB activation, IFN-induced signaling, STAT activation, and 
TLR signaling. These observations support the relevance of the interactome and interplay events characterized 
by our analysis, increasing the understanding of consistent immunologic pathways essential for the immune 
response to Candida infections.

However, our manuscript has some limitations that need to be considered, including the different C. albicans 
strains used in the studies, the timepoint of in vitro stimulation, the multiplicity of infection (MOI) applied, 
or whether heat-killed/inactivated or live organisms were used. These factors may have affect the host immune 
response in different  ways80,81, such as in the case of dataset  GSE15491128 for which a different C. albicans strain 
(CWZ10061110) that only induces a robust transcriptional change after 24 h of stimulation was used. It will 
be important that future studies address the impact of these factors on transcriptional dynamics in response to 
Candida pathogens. Nevertheless, the fact that we found activation of a network between interferon and Toll-like 
receptor signaling across several datasets indicates that these interactions reflect an important crosstalk mecha-
nism during the anti-Candida immune response. Furthermore, only a few datasets related to Candida spp. are 
available compared with the large amount of data investigating other pathogens, which reinforces the need for 
more studies related to fungal infections.

Altogether, our work provides a systems immunology view of the interactome of antifungal molecules, reveal-
ing a consistent network interplay between TLR and IFN signaling pathways in response to Candida spp. This 
study also indicates new biomarkers and provides novel insight into the systemic immunological mechanism 
against fungal infections. Future investigations dissecting this interplay will pave the way for new immunotherapy 
approaches to reduce the high mortality caused by fungal infections. Finally, our study indicates that exploration 
of functional genomic approaches by applying systems immunology methods to investigate IEI will provide new 
opportunities for further understanding the immune system in natura.

Figure 4.  Relationship between molecules associated with TLR and IFN signaling cascades. (a) and (b), 
Correloplot of DEGs associated with TLR and IFN signaling cascades in PBMCs (GSE42606) in the (a), absence 
or (b), presence of C. albicans. Histograms of Pearson’s correlation coefficient, containing negative and positive 
correlations from 1 to − 1, respectively. (c) Estimated correlations of TLR- and IFN-associated DEGs versus their 
corresponding first 2 canonical variates (x-CV1 and x-CV2 for IFN-associated genes; y-CV1 and y-CV2 for 
TLR-associated genes). Gray-colored variables (with names omitted) are those with correlation coefficients ≤ 0.7 
in two corresponding canonical variates. Inner dotted lines limit the canonical correlation coefficient 
between − 0.7 and 0.7; outer dotted lines limit the coefficient between − 1 and 1. (d) and (e), PCA was used for 
stratification analysis of resting and C. albicans-infected PBMCs based on TLR- and IFN-associated DEGs. (d), 
Of note, individuals with similar expression values for these DEGs are grouped together; (e) Variables with 
positive correlation are pointing to the same side of the plot; negatively correlated variables point to opposite 
sides. DEGs, differentially expressed genes; IFN, interferon; PBMCs, peripheral blood mononuclear cells; TLR, Toll-
like receptor. 
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Methods
Datasets and curation. We performed an integrative analysis by searching the NCBI GEO  database82 and 
ArrayExpress  database83 to identify publicly available gene expression data of infection by C. albicans, C. auris, 
C. glabrata, C. parapsilosis, and C. tropicalis using WBCs, PBMCs, and moDCs. This search comprised stud-
ies published between March 2010 and July 2020. Since transcriptome datasets from patients with candidiasis 
were not publicly available, we applied the following criteria for inclusion: (1) gene expression data for WBCs, 
PBMCs, and moDCs of in vitro infection with C. albicans or Candida nonalbicans species; (2) studies composed 
of at least 2 samples per group; and (3) inclusion of control groups for comparison. All gene expression analysis 
platforms were considered, and only studies that provided transcriptome data were included for the integra-
tive analyses. Exclusion criteria were (1) nonhuman samples, (2) treatment before molecular genetic analysis, 
and (3) review studies. RNAseq and MicroArray studies were included in our integrative analysis; five stud-
ies were retrieved from the NCBI GEO  database82  (GSE6508829 and  GSE11418030,  GSE4260611,  GSE15491128, 
and  GSE7796934) and two from the ArrayExpress  database83 (E-MTAB-13535, E-MTAB-75136). Additionally, a 
single-cell RNA-seq study was  included84. Information about sample identification and information is provided 
in Suppl. Tables S17 and S18.

Single‑cell RNASeq analysis. We obtained the Seurat object containing scRNA-seq data from De Vries 
et  al.84, which was deposited in the single-cell eQTLGen Consortium database (https:// eqtlg en. org/ candi da. 
html). We followed the default Seurat pipeline (https:// satij alab. org/ seurat/ artic les/ pbmc3k_ tutor ial. html) as 
previously described by Stuart et al.85 to perform differential expression analysis and data visualization (UMAP, 
dotplot, and heatmap).

Differential expression analysis of bulk RNA‑seq and microarray data. To characterize the immu-
nological signature from global transcriptional profiles in infection by C. albicans, read counts of each RNA-seq 
study were transformed (log2 count per million), and the NetworkAnalyst 3.0 webtool (https:// www. netwo rkana 
lyst. ca/) 86 was used to perform differential expression analysis, applying the DESeq2 pipeline. The microarray 
studies were analyzed through the GEO2R web  application87, which is available at http:// www. ncbi. nlm. nih. gov/ 
geo/ geo2r/, using the limma-voom  pipeline88. We used the statistical cutoffs of log2-fold-change > 1 (upregu-
lated) or < −1 (downregulated) and adjusted p value < 0.05 to select up- and downregulated genes between the C. 
albicans infection and normal groups.

Analysis of gene co‑expression modules. We utilized the GSE42606 dataset to analyze the gene coex-
pression modules with the R package CEMiTool 1.12.2 using default  parameters24.

Enrichment analysis and data visualization. We used the differentially expressed genes (DEGs) to 
identify enriched GO terms. Pathways and biological processes were identified through overrepresentation 
analysis (ORA) and  EnrichR89, and significantly enriched immunological terms were generated according to an 
adjusted p value < 0.05. UpSet and Venn graphs demonstrating intersections and comparisons between common 
DEGs among the datasets were generated through the webtools  Intervene90 and Bioinformatics & Evolutionary 
Genomics (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/). We plotted the set of genes shared between the 
dataset in bubble-based heat maps, applying one minus cosine similarity through the webtool Morpheus (https:// 
softw are. broad insti tute. org/ morph eus/) 91. We used  ClusterProfiler25 to obtain dot plots of enriched terms asso-
ciated with Candida spp. ClusterProfiler and ORA were performed in R software version 4.0.2 (https:// www.r- 
proje ct. org/ index. html) through the packages DOSE, enrichplot, reactomePA, and  clusterprofiler25. GOplot was 
plotted using the R packages unikn, circlize, and  GOplot92. Statistical graphs were constructed using the func-
tionalities of the ggplot2  package93. We represent shared DEGs between different fungal infections (C. albicans 
and C. auris) with circular heatmaps using the R packages circlize and  ComplexHeatmap94.

Correlation analysis. We used the GSE42606 dataset to perform correlation analysis between genes associ-
ated with TLRs and type I and II IFN signaling cascades. Correlation matrices were generated with the webtool 
 Intervene90 (https:// inter vene. readt hedocs. io/ en/ latest/ index. html) using the Pearson coefficient. Canonical cor-
relation analysis (CCA)95 was applied to investigate patterns of association between IFN and TLR genes from the 

Figure 5.  Induction of interplay between TLR and IFN signaling pathways by other Candida species. Venn 
diagram showing the transcriptional overlap between (a), TLR- and (b), IFN-associated DEGs and the signaling 
pathways enriched in response to nonalbicans Candida species (C. glabrata, C. parapsilosis, and C. tropicalis) in 
comparison to C. albicans (created using CorelDraw2019, available at coreldraw.com). (c), Circular heatmaps of 
RNAseq expression z-scores computed for log2 transformed DEGs (p value adj < 0.05, fold change > 1 and <  − 1) 
compare expression of TLR (left panels) and IFN (right panels) signaling pathways induced by C. albicans 
(green/gray heatmaps) or C. auris (yellow/gray heatmaps) all from GSE154911. Small circular heatmaps (blue/
gray) demonstrate common DEGs modulated by C. abicans and C auris. Individual circular heatmaps were 
created using the R packages circlize and ComplexHeatmap; the figure layout was edited using CorelDraw2019. 
(d), Venn diagram showing the transcriptional overlap (an intersection containing 237 shared DEGs) induced 
by C. auris and C. albicans (those 1096 genes found across all studies: Suppl. Table S11). (e), Dotplot of 
enriched signaling pathways by the 237 shared DEGs. DEGs, differentially expressed genes; IFN, interferon; ORA, 
overrepresentation analysis; TLR, Toll-like receptor.
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Figure 6.  The interactome of DEGs enriched in signaling pathways involved in the anti-Candida immune response and 
its association with inborn errors of immunity. (a), Relationships (edges) among the 1096 DEGs (nodes) found across all 
studies (Suppl. Table S11). Subnetworks (semicircles) represent genes associated with IEI causing increased susceptibility to 
candidiasis; 34 purple node genes are shared with the group of 1096 DEGs, and 66 green nodes represent those not found 
in the Candida datasets. Blue nodes are highlighted genes with more than 200 partners of interaction. Colored squares and 
circles represent the cell location of genes. The interaction network was built using NAViGaTOR software. (b), Network of 
hubs present in (a). (c), Proportional Venn diagram (created using CorelDraw2019, available at coreldraw.com) of interferon 
types associated with the group of 1096 DEGs. Interferome analysis revealed 878 IFN-regulated genes modulated by IFN 
types I, II, and III, as shown in the Venn diagram. DEGs, differentially expressed genes; IFN, Interferon; IEIs, inborn errors of 
immunity; TLR, Toll-like receptor.
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same dataset. CCA was performed on R software version 4.0.2 (https:// www.r- proje ct. org/ index. html) through 
the packages CCA and  whitening95. Principal component analysis (PCA) was carried out using the R functions 
prcomp and princomp with the factoextra package.

Molecular network. Networks of pathways related to fungal infection immune responses and physical pro-
tein–protein interaction (PPI) networks of DEGs found across all datasets were annotated, analyzed and visual-
ized using NAViGaTOR 3.0,1496. Node color represents the Gene Ontology cellular component, as indicated in 
figure legends. DEGs were used as input for Integrated Interactions Database (IID version 2020–05; http:// ophid. 
utoro nto. ca/ iid) 97,98 to identify direct physical protein interactions. Networks were exported in SVG file format 
and finalized in Adobe Illustrator 2021.

Figure 7.  Common TLR- and IFN-associated DEGs and signaling pathways across microarray, bulk, and 
single-cell RNA-seq datasets. (a), Heatmap using expression values from scRNAseq of DEGs also present in 
microarray and bulk studies; the cell condition and group are indicated by different colors. (b), Hierarchical 
clustering of average expression comparing resting and C. albicans-activated cells. (c), Hierarchical clustering 
showing common pathways selected from Fig. 1d across the cell groups; the size of circles corresponds to 
adjusted p value transformed into − Log10, and the color intensity indicates the number of genes in each 
pathway across the cell groups. DEGs, differentially expressed genes; IFN, interferon; TLR, Toll-like receptor; 
scRNA-seq, single-cell RNA sequencing. 
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Multistudy factor analysis (MSFA). MSFA is a generalized version of factor analysis that allows for joint 
analysis of multiple studies. MSFA estimates shared factors common to all studies, as well as factors specific to 
individual studies. Estimation of parameters for the MSFA model can be computed using either a frequentist or 
a Bayesian approach. Compared with frequentist analysis, the Bayesian approach offers two major advantages: 
(1) it provides better-defined factors, and (2) it chooses the dimension of the common and study-specific factors 
through a practical and useful approach. We adopted a Bayesian  multistudy99 for inferential analysis to identify 
common and study-specific  factors14,33,100 shared by GSE65088 and GSE42606. The Bayesian MSFA considers all 
data at once in an integrated approach, estimating parameters by maximum-likelihood  analysis101.

Interferome analysis. Identification of interferome genes was performed with Interferome V2.01 (http:// 
www. inter ferome. org/ inter ferome/ home. jspx).

Single‑cell RNA‑seq differential expression analysis. The Seurat package was used to obtain DEGs 
between different cell types under infection by C. albicans and resting conditions. Enrichment of DEGs by cell 
group and by total DEGs was performed according to the ClusterProfiler package.

Data availability
The published transcriptome datasets can be found in the GEO and Array Express databases (IDs. GSE65088, 
GSE114180, GSE42606, GSE154911, GSE77969, E-MTAB-135, E-MTAB-751). Single-cell data are available as 
Seurat Object on doi 10.1371/journal.ppat.1008408.

Code availability
R codes used in this work are available at https:// github. com/ ranie ri131/ Salga doRC_ CANDI DA_ IMMUNE_ 
RESPO NSE_ 2021
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