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Deforestation is the turning point 
for the spreading of a weedy 
epiphyte: an IBM approach
Cleber Juliano Neves Chaves1,2*, Bárbara Simões Santos Leal1,2, Davi Rodrigo Rossatto3, 
Uta Berger4 & Clarisse Palma‑Silva2

The rapid spread of many weeds into intensely disturbed landscapes is boosted by clonal growth and 
self‑fertilization strategies, which conversely increases the genetic structure of populations. Here, we 
use empirical and modeling approaches to evaluate the spreading dynamics of Tillandsia recurvata 
(L.) L. populations, a common epiphytic weed with self‑reproduction and clonal growth widespread 
in dry forests and deforested landscapes in the American continent. We introduce the TRec model, an 
individual‑based approach to simulate the spreading of T. recurvata over time and across landscapes 
subjected to abrupt changes in tree density with the parameters adjusted according to the empirical 
genetic data based on microsatellites genotypes. Simulations with this model showed that the strong 
spatial genetic structure observed from empirical data in T. recurvata can be explained by a rapid 
increase in abundance and gene flow followed by stabilization after ca. 25 years. TRec model’s results 
also indicate that deforestation is a turning point for the rapid increase in both individual abundance 
and gene flow among T. recurvata subpopulations occurring in formerly dense forests. Active 
reforestation can, in turn, reverse such a scenario, although with a milder intensity. The genetic‑
based study suggests that anthropogenic changes in landscapes may strongly affect the population 
dynamics of species with ‘weedy’ traits.

Intensive disturbances are inherent to human history and have substantial effects on natural  communities1. 
Ecosystems are currently subjected to unprecedented rates of human-induced changes that are fostering the sixth 
mass  extinction2. However, not all organisms respond the same way to human disturbances. While many species 
become extinct or migrate, others thrive in anthropogenic environments and can invade natural  environments3,4. 
Indeed, human activities, such as those related to deforestation, have allowed the dispersal and reproduction 
of many  species4. Weeds are opportunistic species that can evolve from introduced or native species that grow 
within human-transformed landscapes without being cultivated and negatively affecting both the environment 
and the  economy1,5,6.

Between 50 and 80% of all invasive plant species can be classified as weeds, depending on current impacts and 
human  perception6. However, native species possessing traits that pre-adapt them to establish in newly disturbed 
areas can also evolve into  weeds7. In addition to landscape disturbances, propagule pressure, and individual 
density, the spreading rate of weeds is mainly driven by their high dispersal abilities and wide traits’ plasticity, 
which have enabled them to rapidly colonize large  areas5,8–11. In particular, clonal growth and self-fertilization 
(hereafter referred to as ‘selfing’) are some of the most important adaptations that allow weeds to establish new 
populations after long-distance dispersal  events12,13. Indeed, clonal growth and selfing favor invasiveness and 
weediness, even in native species, by mitigating the Allee effect of small populations and, therefore, enhance 
reproductive assurance and genetic  transmission14–16. While selfing can increase species’ investment in seed pro-
duction, clonal growth reduces the likelihood of genet death by sharing stochastic risk over multiple  ramets17,18.

Despite the positive effect of clonal growth and selfing strategies on weed invasiveness, the aggregation of self-
fertilized offspring and clonal individuals strongly influences the spatial genetic structure (SGS) of populations, 
reducing local genetic diversity and promoting inbreeding  depression18–22. On the other hand, clonal growth 
may also lead to the maintenance of (once established) genetic  diversity23,24, while continuous selfing can result 
in the absence of inbreeding depression as a consequence of purging of deleterious alleles over  generations16,25,26. 
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These effects lead to a strong population subdivision, creating a metapopulation dynamic with extinction in a 
site being balanced by recolonization. This dynamic may, therefore, favor selfing and clonal genotypes, due to 
their higher capacities of  recolonization20,27.

Understanding local spread dynamics is essential to elucidate how native weeds opportunistically reach broad 
range distributions, despite their tendency to form highly aggregated populations with low genetic diversity. 
Individuals within populations with reduced abundance and limited seed dispersal, for instance, are usually 
close-related at the beginning of  colonization28. With an increase in abundance after colonization, the general kin-
ship often reduces due to the greater overlapping of maternal seed shadows and successive introductions of new 
genotypes through seed dispersal from neighbor  populations28,29. Therefore, we expect that density-relatedness 
dynamics reduce the high SGS of populations of selfing and clonal species throughout colonization  stages28,30,31.

Deforestation is another key factor for native weeds to fasten their colonization and form abundant popula-
tions into newly disturbed  landscapes32–34. Oppositely, we also expect that coordinated actions of reforestation, 
or afforestation, should be an efficient strategy to control the weed spreading. Here, we integrate empirical and 
simulated genetic data to study the spreading dynamics of Tillandsia recurvata (L.) L., an epiphytic weedy bro-
meliad with selfing and clonal growth strategies, widely distributed in the American  continent35–37. This species 
is known by several popular names (e.g., ball-moss, Jamaican ball moss, musgo de bola, heno de bola, galinita, 
and cravo-do-mato), which refer to the dry aspect of leaves and the intense clonal growth from leaf axils that 
forms a “ball-like”  shape38 (see Fig. S1). The high abundance and dominance of T. recurvata in epiphytic com-
munities constitute a characteristic feature of open landscapes from Argentina to the southern United  State38,39 
and have long attracted the interest of naturalists and  ecologists38,40–42. Studies have described T. recurvata as 
the most xerophytic species among the tropical and subtropical  epiphytes43,44, with “…probably the greatest 
adaptability of any plant in the Western Hemisphere…”45. Several ecological and reproductive features, such as 
small size, absorbent leaf scales, CAM photosynthesis, wind-dispersed seeds, the spontaneous self-pollination 
underpinning its tiny cleistogamous flowers, and intense clonal growth have allowed T. recurvata to form dense 
populations even on isolated trees within recently disturbed  landscapes46–48. As an epiphytic weed, populations 
of T. recurvata develop on landscape in which each host tree performs as an isolated patch of habitat scattered 
in a harsh  matrix49,50, determining that the majority of dispersed seeds of T. recurvata fall close to the mother 
and establish on the same host  tree51–53.

The high adaptability of T. recurvata has fostered the species distribution in human-disturbed regions, form-
ing large populations in urban landscapes, actively growing on fences and electric light  wires54,55. Such great 
abundance and population density have led some authors to consider T. recurvata as an “epiphytic weed,” describ-
ing herbicides and other techniques to control its  spreading35,36. Although T. recurvata cannot be classified as a 
parasite, studies have listed deleterious effects that massive populations may have on co-occurring epiphytes and 
host trees, as it competes for light with new shoots, modifies barks, and affects seedling  growth38,42. Therefore, 
the reproductive biology, clonal growth, and opportunistic behavior of T. recurvata make this species a good 
model species for studying the temporal and spatial spreading dynamics of weeds.

Here, we specifically aimed to investigate (I) whether subpopulations of T. recurvata growing on neighbor 
trees of an anthropic landscape are genetically structured; as it occurs, we then tested (II) how such genetic 
structuring develops over time and varies in landscapes with distinct tree densities; and (III) whether abrupt 
human-induced changes in the landscape (deforestation or reforestation) affect the dynamics of T. recurvata. 
We hypothesize that T. recurvata exhibits high spatial genetic structure due to intrinsic features, such as clonal 
growth, selfing, and epiphytic habit. Such genetic structuring, however, might be reduced as subpopulations 
become denser and more connected by seed dispersal. Since this species is drought-adapted and its seeds are 
wind-dispersed, we also hypothesize that reductions in tree densities (i.e. deforestation) will lead to increased 
individual abundances and reduced genetic structure among subpopulations on trees.

To achieve our goals and properly test the outlined hypothesis we might gather numerous and continuous 
empirical genetic data over a long period in similar landscapes with varying tree densities, which would be 
intractable and very time  consuming56. To overcome this difficulty, we adopted a modeling approach, which 
has been helpful to simulate spatio-temporal dynamics of species genetic structure in natural  systems57,58. We 
introduce the TRec model, which takes advantage of the individual-based models (IBMs) by explicitly incorpo-
rating characteristics of each individual (e.g., life stage, size, and genotype) and simulating interactions among 
them and with the surroundings in multiple landscapes, which may produce complex and distinct  outcomes59. 
In the study presented, we employed the combined results from microsatellite markers and the TRec model to 
estimate and simulate the SGS of a T. recurvata population scattered on neighboring trees and to understand the 
emergence of the observed empirical patterns of genetic variation over colonization time and across landscapes 
with distinct tree densities.

Results
Empirical genetic diversity and structure. The empirical data was collected in a human-transformed 
landscape of ca. 0.2 ha in southwest Brazil (− 21.244289° S, − 48.300486° W) composed by a grove of 20 culti-
vated Handroanthus spp. (Bignoniaceae) of similar ages (ca. 20 years) apart from each other from 2.5 to 47.5 m 
and surrounded by a grassland matrix (ca. 100 tree/ha; Fig. 1). Based on seven microsatellite loci genotyped 
in a total of 224 individuals of T. recurvata hosted on 14 distinct trees (considered here as subpopulations), we 
observed moderate levels of genetic diversity within subpopulations, despite high endogamy and generally high 
genetic structure. The number of alleles (A) per subpopulation ranged from 19 to 30, while allelic richness  (AR) 
ranged from 2.20 to 3.54, and the number of private alleles  (AP) was up to 2 per subpopulation (see Table S1 
in Appendix S2). Expected  (HE) and observed  (HO) heterozygosities per subpopulation ranged from 0.27 to 
0.51, and from zero to 0.20, respectively (Table S1). The inbreeding coefficients (FIS) were significant and very 
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high in all sampled subpopulations, ranging from 0.52 to 1.0, due to significant heterozygosity deficit under 
Hardy–Weinberg equilibrium (Table S1). Pairwise subpopulation differentiation (FST) ranged from 0.01 to 0.31 
(Fig. S1). The Mantel test indicated a significant although weak isolation-by-distance (IBD) pattern among sub-
populations only when using Edward’s genetic distances (r = 0.243; p = 0.032). AMOVA analysis, in turn, showed 
lower genetic variance among subpopulations (17.26%) than within subpopulations (82.74%) although it was 
significantly greater than zero (p < 0.001).

The highest kinship  (Fij) was detected at the smallest distance interval (up to 2.5 m), which is significantly 
higher than expected by chance (p < 0.05; Fig. 2A). Kinship coefficients peaked outside the 95% confidence 
interval at almost all distance classes, showing a remarkable decay at three out of four distance classes higher 
than ca. 13 m (Fig. 2A), and a significant spatial genetic structure  (Sp = 0.024; p < 0.001). We detected turnovers of 
alleles and multi-locus genotype (MLG) of 0.031 and 0.537, respectively. MLGs were evenly spaced among sub-
populations, generally with few shared and one distinct dominant MLG in most of the subpopulations (Fig. 2B).

TRec model setting. The TRec model simulates the colonization of a landscape by multiple T. recurvata 
seeds with random multi-locus genotypes (MLG) that thrive on scattered trees (Fig. 3; see Appendix S1 for a 
detailed description of the model). The sensitivity test of the five varying parameters adopted in the TRec model 
(Fig. S3) showed that, in general, high rates of mutation and seed germination can significantly decrease the 
inbreeding coefficient (FIS); whereas strong winds, massive regional seed rains, and low rates of seed capturing 
likely reduce the SGS within T. recurvata populations (Fig. S2). The cross-validation showed significant cor-
relations between real and estimated values of each parameter (p < 0.01). Such analysis indicated wind speed 
and capture probability as, respectively the most and the least accurately predicted parameters (Fig. S3). The 
ABC framework (‘Approximate Bayesian Computatio’60) successfully constricted the prior distribution of the 
parameters. The posterior range of these parameters, as estimated by the ABC (Table 1) were, therefore, used to 
perform the subsequent simulations (Fig. 3E).

Time and density simulations. We divided the temporal patterns of individual abundance obtained through 
simulations of the spreading of T. recurvata populations in the empirical static landscape (hereafter referred to 
as time simulations) into three distinct phases, here referred to as Lag (ca. 0 to 10 years), Log (ca. 10 to 25 years), 
and Stationary (higher than 25 years) phases (Figs. 4A,B and S5). During the Lag phase, the simulations showed 
that individuals’ abundance was maintained at very low levels, while the MLL abundance grows at a linear rate 
up to ca. 65 MLLs, at the end of the Log phase (Figs. 4A, S5). Up to the half of the Lag phase, when the first few 
individuals start to clonally grow (i.e., emit new ramets) and reproduce, most of the calculated genetic statistics 

Figure 1.  Spatial distribution and histogram of the frequency of distance classes of pairwise trees within 
the studied landscape. Numbers refer to IDs of trees hosting the Tillandsia recurvata populations analyzed. 
Gray circles around each dot are representations of the crown area of each tree. Red dots and bars represent, 
respectively, the location and frequency of distances among pairs.
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resulted in unstable patterns. Following this initial period, our simulations showed that the increase in the pro-
portion of clones as well as in the aggregation of genotypes from the same MLL within each subpopulation lead 
the T. recurvata population to reach its strongest spatial genetic structuring (SGS), as evidenced by the highest 
values of FST and  SP (up to ca. 0.35 and 0.01, respectively), and the lowest mean number of alleles per locus and 
subpopulation (A; ca. 16) and expected heterozygosity  (HE; ca. 0.53). The simulations followed to the Log phase 
as individuals from the same MLL (commonly with the same genotype) started to disperse seeds to other trees, 
leading to a boom in individuals abundance and a subpopulation differentiation decay (Fig. 4B). At this phase, 
the individual abundance rapidly multiplied, mostly by clonal growth, reaching a peak of ca. 12,500 individuals 
(ca. 192 individuals/MLL; Figs. 4A, S5), increasing the gene flow among subpopulations and leading to a drop 
in the SGS (i.e. reducing  FST,  SP, and MLG and MLL turnover while increasing A and  HE). As the individual 
abundance saturated, at the Stationary phase, all measured variables from simulated genetic data suffered only 
small variations (Fig. 4B).

From the simulations with distinct tree densities (hereafter referred to as density simulations), we highlighted 
four key values of tree density in ascending order (see D1 to D4 in Figs. 4C,D, S5) that denote turning points 
in the individual abundance and SGS of T. recurvata populations. Landscapes with ca. 20 trees/ha (D1) showed 
the lowest individual abundance, A, and  HE, and the strongest SGS (i.e. the highest FST, Sp, and MLG- and MLL-
turnover). Conversely, landscapes with ca. 190 trees/ha (D2) and 275 trees/ha (D3) showed, respectively, the 
lowest SGS and the highest individual abundance (ca. 550,000 individuals from 220 MLLs). Finally, landscapes 
with increasing tree densities from 275 (D3) to 375 trees/ha (D4) tended to gradually hold fewer individuals 
and MLLs as long as the SGS enhances.

Dynamic simulations. From the simulations with dynamic landscapes (i.e. allowing tree growth, regeneration, 
self-thinning), we observed that removing up to 90% of the trees from a high-tree density landscape led to 80% 
less ground coverage, while the addition of new trees to lower-tree density landscapes led to smaller changes (ca. 
10%) in the ground cover (see shadowed areas in Fig. 5). Our model showed that deforestation resulted in the 
loss of up to 200,000 individuals and 120 MLLs of T. recurvata populations (Fig. 5C,D) but to smaller changes 
in terms of genetic diversity and structure (i.e. A and FST; Fig. 5E,F). The further effects of tree growth, regenera-
tion, and self-thinning, in turn, unfolded in the convergence of all simulated scenarios to tree densities of ca. 180 

Figure 2.  Spatial genetic structure of the empirical Tillandsia recurvata population. (A) correlogram from 
spatial autocorrelation analysis using the correlation coefficient  Fij59 and seven distance classes. The line and the 
narrow gray area around it represent the expected kinship and 95% confidence intervals of the null hypothesis 
with no spatial genetic structuring. Black lines around each average  Fij value represent their standard errors. 
(B) Adjacency matrix showing the occurrence of each genotype (MLG) of Tillandsia recurvata (columns) on 
subpopulations corresponding to each sampled tree (rows). Grey gradient colors represent the frequency of each 
genotype per subpopulation.
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Figure 3.  Schematic representations of the TRec model that simulates the Tillandsia recurvata spreading in a 
0.40 ha landscape. (A) is a landscape representation of the model implemented in NetLogo. Points with distinct 
colors represent T. recurvata individuals of distinct genetic lineages (MLLs). Larger circles with a gradient gray 
color and concentric smaller black circles represent the crowns and trunks of distinct trees. (B) shows a 3D 
representation of a cut area of the landscape in (A). (C) shows a summarized representation the life cycle of T. 
recurvata. The arrow width represents the amount of energy accumulated in each life stage. Dotted lines indicate 
the time for maturity and reproduction. Small rectangles indicate the minimal units of energy for individual 
reproduction. The amount of energy accumulated is variable according to the local shading rate, affecting both 
sexual reproduction and clonal growth. For the TRec model, the T. recurvata lifespan is 72 months. (D) shows a 
flowchart diagram with the steps to adjust the TRec parameters (in white squares) to run distinct simulations (in 
colored rounded squares) aiming to analyze the distinct aspects of the effect of tree density on the spatial genetic 
structure (SGS) of T. recurvata populations. I: delimits the main processes for parameters estimation based on 
the empirical data; II: delimits the main process for estimation of time for SGS stabilization and tree densities 
in which the highest and lowest SGS are achieved; III: delimits the main processes to analyze the SGS variation 
considering dynamic landscapes.
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trees/ha (Fig. 5A). The simulations also showed a tendency of convergence in the proportion of ground cover 
(ca. 100%; Fig. 5B) and MLL abundance of T. recurvata populations (ca. 140 MLLs; Fig. 5D) among such distinct 
scenarios after the first 60 years following the tree density changes. Populations from deforested and reforested 
landscapes, however, showed distinct patterns of individual abundance (Fig. 5C). While T. recurvata populations 
from deforested landscapes increased up to ca. 600,000 individuals between the 30th and the 60th year, popula-
tions from reforested landscapes shrank up to 35% of individuals from the 45th year onwards. The differences in 
the number of individuals per MLL (Fig. S6) resulted in reducing SGS over time in populations from deforested 
landscapes and an increasing SGS over time in populations from reforested landscapes (Fig. 5E). Compared to 
the low and moderate tree density changes, the scenario with a massive loss of 90% of trees led to a particularly 
weaker increment of individuals (Fig.  5C). Such increment resulted in individual abundances closer to that 
observed in reforested landscapes, but with a lower mean number of alleles per subpopulation (A; Fig. 5F).

Table 1.  TRec model parameters of Tillandsia recurvata populations. Prior ranges are based on literature or 
previous simulation tests, while posterior ranges are based on the ABC framework. *Each wind speed unit is 
multiplied by five to refer to the amount of ‘landscape patches’ in the model the seeds can fly freely at each time 
step of the model.

Parameter Definition Prior range (min–max) Prior distribution Posterior range (CI 95%) References

Regional seed rain Number of seeds that reach the land-
scape at each reproductive season 100–500 seeds/year Uniform 88–264 Previous simulations tests

Wind speed The magnitude of seed dispersal 1–20 units* Uniform 13.95–21.28 Previous simulations tests

Mutation rate Average SSR mutation-rate 10−6–10−2 (mean =  10−4; sd =  10−3.5) Normal 10−5.28–10−4.07 61–63

Germination rate Seed germination rate 0.0083–0.30 Uniform 0.162–0.297 48,64

Capture probability The probability of seeds be captured in 
the canopy 0.01–0.30 Uniform 0.150–0.296 65

Figure 4.  Patterns obtained from multiple simulations of the spreading of Tillandsia recurvata populations 
in the empirical static landscape (see Fig. 1) over 50 years (A, B), and in static landscapes with varying tree 
densities after 20 years of simulations (C, D). (A) and (C) show the abundance of individuals (solid line) and 
multi-locus lineages (MLLs, dotted line), as well as the clonal-growth proportion (lighter background). (B) 
and (D) show the pairwise subpopulation differentiation (FST, solid line) and the average number of alleles per 
subpopulation (dotted line). Yellowed areas around lines represent the 95% confidence intervals of each variable 
in a total of 2500 (A, B) and 7000 (C, D) simulations. In (A) and (B), “Lag”, “Log”, and “Stationary” phases are 
delimited by vertical lines. In (C) and (D), vertical lines highlight turning points in the individual abundance 
and FST of T. recurvata populations (D1–D4). Stars highlight the 4th simulated year, when the first arriving seeds 
reach maturity. Down and up arrowheads highlight tree densities with the lowest and highest FST, respectively.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20397  | https://doi.org/10.1038/s41598-021-99798-5

www.nature.com/scientificreports/

Discussion
In this study, we integrated empirical and simulated genetic data to provide insights into the spreading of the 
epiphytic weed Tillandsia recurvata, which is widespread into human-transformed landscapes. Our empirical 
data reveals a relatively high spatial genetic structure (SGS; i.e. low gene flow) in a small landscape (c.a. 0.2 ha) 
with low tree density and opportunistically colonized by a massive population of this species. Each tree in this 
system functions as habitat units, forming distinct subpopulations of T. recurvata that group specific sets of 
multi-locus genotypes (MLG). The data simulated by our TRec model indicate that the highest levels of SGS in T. 
recurvata occur at the very beginning of the colonization process and under extremely low or high tree densities. 
As expected, lower SGS occur at landscapes in which seed dispersal is limited neither by long distances among 
spaced trees nor by the low carry capacity of wind among dense canopies. The TRec model also shows that defor-
estation is a turning point for the opportunistic thriving of T. recurvata populations. Our results contribute to the 
understanding of the dynamics of species invasiveness and landscape invasibility and also on the consequences 
of human-induced changes for the spreading of opportunistic species, as we discuss below.

The patchy distribution of a T. recurvata population. Our empirical study in an anthropic land-
scape showed a relatively high to moderate SGS for a population of T. recurvata at a fine-scale (ca. 2000  m2), as 
indicated by the significant  Sp statistics and high subpopulation differentiation. Such SGS likely arises as an out-
come of the breeding system and life form of T. recurvata, which limits local gene flow, resulting in a significant 
isolation-by-distance, persistence of private alleles in six out of 14 studied subpopulations, as well as high MLGs 
turnover. Indeed, fine-scale SGS often results from limited gene  flow66,67, and other studies have reported similar 
genetic patterns for plants with, self-reproduction68,69, clonal  growth69,70, epiphytic  habit51,52,71, fast-growth72,73, 
and high-density  populations66,74. Our results indicate, therefore, that specific habits and breeding systems can 
foster the structuring of populations, even for opportunistic and widespread plants.

The few MLGs shared among subpopulations indicate that the T. recurvata spreading is gradually conducted 
by several multi-locus lineages (MLLs) following a phalanx pattern, rather than by a single leading  MLL40. 
The relatively low  SP observed for a selfing  species66, in turn, seems to be related to its dense  populations66,74. 

Figure 5.  Temporal patterns obtained from multiple simulations of the spreading of Tillandsia recurvata 
populations in dynamic landscapes (emulating tree growth, regeneration, and self-thinning of natural forests) 
with prior high and low tree densities after abrupt reductions (lines in red) or increments (lines in green) in tree 
densities (shaded areas). The first 30 simulated years, not shown here, correspond to the simulations in static 
landscapes presenting the lowest and highest  FST (considering high tree density conditions) showed in Fig. 4C,D. 
From the first to the last column, the figures show 30-years of posterior temporal variation in landscapes’ tree 
density (A) and ground cover (i.e. the relative number of simulated landscape patches not covered by tree trunks 
or crowns; (B); in the T. recurvata’s population abundance of individuals (C) and multi-locus lineages (MLLs; 
(D); and in subpopulation’ differentiation (FST; E) and the average number of alleles (A; F). Lines represent 
the averages of each represented variable in 2000 simulations. Solid, dashed, dotted-dashed, and dotted lines 
represent, respectively, absent, low, intermediate, and high anthropogenic changes in tree density (TDC).
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These results suggest that multiple and dense sources of T. recurvata propagules from the surrounding areas are 
responsible for the massively spreading over the studied landscape. Under such conditions, self-reproduction 
and clonal  growth46–48 may lead to a partial, and perhaps transitory, isolation among  subpopulations67. Beyond 
the effect of the breeding system and life form, the relatively high SGS of T. recurvata population may also result 
from founder events on each host  tree40,67. Nevertheless, the genetic drift resulting from consecutive founder 
events, as well as the increasing number of seeds released from large subpopulations, may intensify the meta-
population dynamics of successive local extinctions and recolonizations, reducing the genetic structure of the 
population over  time12,13,27.

Temporal patterns in the opportunistic spreading of T. recurvata. The temporal dynamics of the 
simulated T. recurvata population resembles the diffusion models of weedy species invasion in newly disturbed 
landscapes, with sequential Lag, Log, and Stationary  phases75. During the Lag phase (up to the 10th year), only 
a few T. recurvata individuals successfully establish in the landscape, despite the constant input of new genetic 
lineages (MLLs) per reproductive season. At this stage, as clonal growth continues and the proportion of clones 
increases, leading to aggregated individuals holding the same genotypes within each subpopulation, the popu-
lation reaches the highest genetic structure. The reproduction start of such large groups of genetically related 
individuals leads to a boom in the overall individual abundance, part of the newly produced seeds is exchanged 
among subpopulations and causes a gradual decrease in the genetic structure, as observed in other empirical 
 studies47,66. It is notorious, at this point, the impact of clonal-growth in T. recurvata spreading, overcoming the 
demographic stochasticity and the Allee  effect10,76,77, and leading the population to the following Log phase (10th 
to 25th year).

The rapid increase in individual abundance during the Log phase drives the interchange of seeds, and there-
fore MLGs, among subpopulations, leading to an overall reduction in subpopulation differentiation and genetic 
structuring. However, the saturation of the static system limits the establishment of a higher number of individu-
als and MLLs, maintaining all calculated statistics at a steady level after the 25th year (the Stationary phase). Such 
increment and further stabilization of gene flow at relatively high levels indicate a potential role of T. recurvata 
populations as a source of seeds for supporting the species spread into newly disturbed areas after ca. 25 years 
of colonization. Notwithstanding the specific characteristics of each species, this temporal pattern is typical for 
opportunistic organisms growing under optimal  conditions75. As observed for T. recurvata, a fast increase and 
stabilization in the individual abundance of populations and communities are expected for static  systems78,79. 
However, given their xerophytic preference, distinct patterns in the spreading of T. recurvata populations can 
came across in landscapes with varying tree densities, as we see in the following section.

Effects of tree density on T. recurvata spreading. Our model indicates that the highest gene flow 
(i.e. the lowest SGS) among T. recurvata subpopulations occur in landscapes with ca. 190 trees/ha, which likely 
represents the ideal condition for the species spreading. Landscapes with fewer trees tend to harbor fewer indi-
viduals of T. recurvata, from which the seeds have to cross longer distances that likely prevent gene flow. On the 
other hand, landscapes with more than 190 trees/ha counterbalance the effect of increasing habitat amount for 
epiphytic  hosting80,81 with the intensification of shading and wind friction for seed  dispersal82–84. Indeed, as we 
observed here, studies implementing IBM approaches for distinct biological systems have shown that the abun-
dance and genetic structuring of populations result from the interplay between habitat amount and resistance 
to gene flow across  landscapes57,58. For T. recurvata, unlike other  epiphytes80,85, the heavy overlapping of tree 
crowns in dense forests likely reduces the species’ fitness, resulting in small, transient, and isolated populations 
constrained to the driest and upper canopy  layers37,80,86,87. Further studies incorporating the genetic component 
of fitness into the models can give more insights into the colonization process and the invasiveness of this oppor-
tunistic species. The increasing number of genome-wide markers generated by high-throughput sequencing, as 
well as the constant development of computational methods, will also allow future investigation on the relative 
importance of natural selection on the genetic structure of such species.

Changing landscapes and opportunistic spreading of T. recurvata. The combined effect of abrupt 
reductions in tree density and natural self-thinning have enabled the opportunistic thriving of T. recurvata pop-
ulations in formerly densely forested landscapes. Indeed, studies have suggested that conditions found in dense 
forests typically prevent the colonization and development of this species, given the limited carrying capacity of 
wind for seed  dispersal80–84. Using our model approach, we observed an overgrowth of T. recurvata populations 
in recovering landscapes that suffered low to moderate tree removal, with a significant increase in gene flow. The 
massive deforestation (i.e. 90% of tree removal), in contrast, reduces drastically the number of available host 
trees, leading, as expected, to smaller populations of T. recurvata and increasing gene flow among subpopula-
tions as the forest regenerates.

Reforestation, in turn, slowly leads T. recurvata populations in the opposite direction. In our model, the 
presence of only 20% of uncovered ground (i.e. spaces uncovered by tree trunks or crowns and, thus, able to 
receive new trees) under lower-tree densities constrained the active increment of trees, reducing the differences 
among the distinct levels of reforestation. Despite the milder effects in comparison to deforestation, the active 
increase in tree density and the continuous growth of the former trees likely reduce the abundance of T. recurvata 
and the gene flow among subpopulations. The larger and older trees in reforested landscapes, compared to the 
smaller and younger trees in landscapes following deforestation, could play a major role in increasing shading 
and reducing the carrying capacity of wind for seed dispersal. Therefore, our results indicate that the control of 
T. recurvata spreading depends not only on the tree density of landscapes but also on the stage of forest recovery. 
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In other words, the positive effects of controlling weeds with posterior reforestation, besides costly, can be much 
more time-consuming than just avoiding deforestation.

Conclusion
Opportunistic species provide an excellent system to examine the process of successful colonization in novel 
 environments7. Here, we demonstrate that ‘weedy’ traits, such as selfing and clonal  growth13,18,19, may lead popu-
lations to distinct outcomes depending on the landscape conditions. In some landscapes, such traits undermine 
gene flow and genetic diversity, potentially increasing inbreeding in  populations18–22, but under ideal conditions, 
they can also mitigate the Allee effect by assuring the genet survival, seed dispersal, and genetic  transmission14–16. 
Our study also shows that anthropogenic deforestation is the turning point to increase the invasibility of land-
scapes, enabling the rapid thrive and spreading of T. recurvata especially onto recovering landscapes, where 
smaller trees produce reduced cover on once heavily shaded ground by larger trees. As have been shown by 
other  studies88–90, our findings reveal that reforestation has milder and slower effects on mitigating the impact 
of massive tree removal on the spreading of opportunistic species, highlighting the importance of maintaining 
forests instead of investing in restorations. On the other hand, landscape features determined by shading, as 
well as growth, reproduction, and competitiveness among trees likely lead to alternative outcomes for epiphytes. 
Testing the impact of distinct environmental conditions (e.g. soil, climate, etc.) on the assembling of tree groups 
would be a wise step toward a more global understanding of invasion ecology.

Methods
Empirical genetic data. The empirical study took place in a human-transformed landscape of ca. 0.2 ha 
in southwest Brazil (− 21.244289° S, − 48.300486° W) composed of a grove of 20 cultivated Handroanthus spp. 
(Bignoniaceae) of similar ages (ca. 20 years) apart from each other from 2.5 to 47.5 m and surrounded by a 
grassland matrix (ca. 100 tree/ha; Fig. 1). As it is common in many human-transformed landscapes, the empiri-
cal landscape results from the complete deforestation followed by a landscaping procedure that prevents non-
planted specimens to grow amongst introduced trees on which a massive T. recurvata population has colonized.

We sampled a total of 224 individuals of T. recurvata growing on 14 neighboring trees (16 individuals per 
tree; hereafter referred to as “subpopulations”) and extracted the total genomic DNA from leaf samples accord-
ing to Tel-Zur et al.91. The collection of plant material complied with national guidelines. Permits to collect in 
conservation units were granted by COTEC (Technical and Scientific Committee of the Forestry Institute, São 
Paulo, Brazil; permission number 006.221/2014) and SISBIO (Biodiversity Information and Authorization Sys-
tem, Brazil, permission number 44443–1). We characterized the multi-locus genotype (MLG) of each individual 
using seven microsatellite loci designed for other species and cross-amplified them as described by Chaves et al.92. 
We avoided sampling clones by collecting individuals at distinct branches of each host tree. Indeed, clonal indi-
viduals of T. recurvata (i.e., ramets) can be easily distinguished because they are formed on leaf axils and remain 
attached, conferring the typical "ball" shape of the  species38.

To describe the genetic diversity within each T. recurvata subpopulation, we calculated the number of alleles 
(A), allelic richness  (AR), the private number of alleles  (AP), expected  (HE) and observed heterozygosity  (HO), 
and inbreeding coefficient (FIS) and tested for departures from Hardy–Weinberg equilibrium using the R sta-
tistical package  diveRsity93. Furthermore, we tested whether subpopulations were isolated-by-distance using 
a Mantel test with Slatkin’s linearized FST (FST/(1 − FST))94, Nei’s95, Edward’s96, and Reynold’s97 pairwise genetic 
distances and the logarithm of geographical distance using the R statistical packages  poppr98 and  pegas99. We 
also measured pairwise subpopulation differentiation (FST) and tested the hierarchical partition of genetic vari-
ance among and within sampled subpopulations by performing an analysis of molecular variance  (AMOVA100), 
using the R statistical package  poppr98.

To investigate the spatial genetic structure (SGS) within the T. recurvata population sampled, we tested 
whether the distance among T. recurvata individuals (disregarding tree crowns) affects their relatedness. For 
this, we estimated the kinship coefficient  (Fij

101) between all pairs of individuals sampled within seven distance 
classes, each comprising the same number of pairs, using the R package  RClone102. To quantify the SGS under 
this approach, we calculated the  Sp statistics (i.e. the ratio between the kinship decay by increasing geographic 
distances and the mean kinship within the first interval  distance66) and tested the statistical significance of the 
mean kinship coefficient values in each distance class (confidence interval: 95%) by randomly shuffle (1000 ×) 
individual  locations66. We also quantified the partitioning of the genetic composition of the whole population 
by calculating the turnover of alleles and multi-locus genotypes among subpopulations  (MLG103,104), using the 
R statistical package  vegetarian105.

The TRec model. We implemented the TRec model in NetLogo 6.0.1106 and outlined it following the ODD 
(Overview, Design concepts, Details) protocol formulated by Grimm et al.107,108 (see Appendix S1 in Supporting 
Information). The model simulates a landscape composed of multiple 0.01  m2 patches of soil with scattered trees 
that are colonized by multiple seeds of T. recurvata with distinct MLGs (based on empirical alleles). Such seeds 
annually reach the landscape from outside (hereafter referred to as ‘regional seeds’) by wind dispersal and gener-
ate mature individuals that reproduce by self-fertilization and grow by producing new ramets (clonal growth) 
on trees within the landscape (Fig. 3). The wind speed is quantified in correspondence with the total distance 
(in units of ‘landscape patches’) in which seeds are carried at each time step. The colonization dynamics of the 
model is primarily based on the ‘energy budget’ of T. recurvata, which quantifies, under a simplified manner, the 
amount of energy each individual takes up by photosynthesis and expends during its life cycle through metabo-
lism, growth, and reproduction (including seed dispersal and clonal growth), depending on the shading rate and 
competition of its attachment site (Fig. 3). The energy budget approach is based on the Dynamic Energy Budget 
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theory of  Kooijman109 and has been adopted in IBMs to generally describe how individuals acquire and expend 
energy with simple and sufficient  realism110–112. Therefore, at each time step, the TRec model update the amount 
of energy of every individual simulated. The survival as well as the capacity of each T. recurvata individual to 
grow and reproduce depends on the amount of energy stocked up until the reproductive season (Fig. 3). In the 
TRec model, mature individuals (i.e. older than 48 months) with a energy budget with at least 10 units will grow 
clonally and produce and disperse new seeds in the reproductive season (Fig. 3). T. recurvata individuals can 
reproduce only once and die when they reach their lifespan (72 months) or whether they maintain a net-zero 
gain of energy, with expenses surpassing gain (i.e. energy equals to 0 units). For the TRec model, we assume that 
each seed that successfully develops and thrives in the landscape forms a multi-locus lineage (MLL) of multiple 
descendants, which can be traced back to the ancestor. Each new seed produced within the landscape can also be 
wind-dispersed by chance from the mother to other trees, but new ramets are always attached to the same host 
tree. Each MLL often groups multiple MLGs due to heterozygous loci (according to the heterozygosity observed 
in the empirical study). Another source of genetic variation within MLLs is simulated by a varying mutation rate 
(from  10–2 to  10–6) that simulates DNA replication slippages of SSR loci.

The simulation process using the TRec model was comprised of three subsequent phases (Fig. 3E): (I) param-
eters estimation based on the empirical data using approximate bayesian computation (ABC); (II) estimation of 
time for SGS stabilization and densities in which the highest and lowest SGS is achieved; and (III) analysis of the 
effect of gradual and abrupt changes of tree densities in a dynamic landscape. For phase I (Fig. 3E), we simulated 
250,000 microsatellite datasets generated by random combinations of five parameters with a priori estimates 
according to general assumptions or previous knowledge on the species (see Table 1). We then performed a 
Global Sensitivity Analysis to test whether summary statistics—i.e., the mean number of alleles (K), mean range 
of allele size (R), mean expected heterozygosity  (HE), mean inbreeding coefficient (FIS), global subpopulation 
differentiation (FST), and mean modified Garza-Williamson  statistic113,114—as well as T. recurvata abundance and 
the total number of MLL, are differently affected by the variation of each parameter. To improve the TRec model 
accuracy, we estimated posterior distributions of the model parameters in an ABC framework (‘Approximate 
Bayesian Computation’60). We employed the network algorithm implemented in the ‘abc’ R  package115 to estimate 
such distribution based on 0.1% retained simulations that most resembled the empirical SSR data according to 
the six above-mentioned summary statistics (i.e. K, R,  HE,  FIS,  FST, and NGW).

Time and density simulations. For the second phase of the simulation process (see Fig. 3E), we used the esti-
mated posterior range of each Trec parameter (see Table 1) to estimate the time needed for the stabilization of 
the spatial genetic structure (SGS) of T. recurvata populations (hereafter referred to as ’time simulation’) and the 
tree densities values for which the lowest and highest SGS values are achieved (hereafter referred to as ‘density 
simulation’). To reduce the bias effect inherent to dynamic landscapes (e.g. with growing and falling trees), we 
performed both time and density simulations in static landscapes. We performed 2500-time simulations that 
emulate 50 years of spreading of T. recurvata individuals on the empirical landscape representation (Fig. 1), and 
5000 density simulations of T. recurvata populations in ca. 0.40 hectares landscapes with five to 150 trees (maxi-
mum amount of trees that occupy the landscape) with random heights and same crown sizes. Yearly (for the time 
simulations) and after 30 years (for the density simulations), we recorded the individual and MLL abundances, as 
well as the MLG, MLL, and ramets’ origins (from clonal growth or sexual reproduction; hereafter referred to as 
‘clones’ and ‘seeds’ individuals) of up to 15 random T. recurvata individuals established on each host tree repre-
sentation of the empirical study (for the time simulations) or on up to 15 random trees for density simulations (for 
the density simulations). Based on the MLGs of each simulation, we calculated the average number of alleles (A), 
the expected heterozygosity  (HE), the inbreeding coefficient (FIS), and the global subpopulation differentiation 
(FST), using the arlsumstat console version of Arlequin 3.1; the MLG and MLL turnovers among subpopula-
tions (T/OMLG and T/OMLL), using the R package  vegetarian104,105; and the  Sp statistics considering seven distance 
classes as in the empirical  study66 using the R package  RClone102.

Dynamic simulations. To emulate the effect of human-induced changes of tree density on the SGS of T. recur-
vata populations (the phase III in Fig. 3E), the hereafter referred to as ‘dynamic simulations’ add distinct levels 
of changes that actively reduce or increase tree density mimicking either deforestation or reforestation. For this, 
the dynamic simulations firstly simulated 30 years (when the SGS stabilizes) of T. recurvata spreading over static 
landscapes with low (175 trees/ha; when T. recurvata populations showed the lowest SGS) and high tree densities 
(375 trees/ha; when T. recurvata populations showed the highest SGS in landscapes with high tree densities). 
After these first 30 years, the model emulates distinct levels of anthropogenic reductions (0, 10, 50, or 90% of 
the prior tree density) and increments in tree density (by adding 0, 25, 125, or 225 trees/ha) in high and low tree 
density landscapes, respectively. Thereafter, we yearly calculated individual and MLL abundances, A,  HE, and FST 
using the arlsumstat console version of Arlequin 3.1 over 30 additional years in landscapes allowing tree den-
sity variation as the result of tree-growth (an average DBH increase of 0.13 cm/year116), self-thinning (according 
to the Yoda’s law), and natural regeneration (a fixed rate at 15%; for further information, please see the ODD in 
the Supporting Information). Here, as in the time and density simulations, we also included the estimated poste-
rior range of the IBM parameters (see Table 1).

Data availability
The microsatellite data generated in this study, as well as all scripts used in the simulations, are stored at the 
FigShare repository [https:// doi. org/ 10. 6084/ m9. figsh are. 12797 846].

https://doi.org/10.6084/m9.figshare.12797846
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