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A pre‑formulation study 
of tetracaine loaded in optimized 
nanostructured lipid carriers
Simone R. Castro1, Lígia N. M. Ribeiro1,2, Márcia C. Breitkreitz3, Viviane A. Guilherme1, 
Gustavo H. Rodrigues da Silva1, Hery Mitsutake3, Ana C. S. Alcântara4, Fabiano Yokaichiya5, 
Margareth K. K. D. Franco6, Daniel Clemens5, Ben Kent5, Marcelo Lancellotti7, 
Daniele R. de Araújo8 & Eneida de Paula1*

Tetracaine (TTC) is a local anesthetic broadly used for topical and spinal blockade, despite its systemic 
toxicity. Encapsulation in nanostructured lipid carriers (NLC) may prolong TTC delivery at the site of 
injection, reducing such toxicity. This work reports the development of NLC loading 4% TTC. Structural 
properties and encapsulation efficiency (%EE > 63%) guided the selection of three pre‑formulations of 
different lipid composition, through a  23 factorial design of experiments (DOE). DLS and TEM analyses 
revealed average sizes (193–220 nm), polydispersity (< 0.2), zeta potential |− 21.8 to − 30.1 mV| and 
spherical shape of the nanoparticles, while FTIR‑ATR, NTA, DSC, XRD and SANS provided details on 
their structure and physicochemical stability over time. Interestingly, one optimized pre‑formulation 
(CP‑TRANS/TTC) showed phase‑separation after 4 months, as predicted by Raman imaging that 
detected lack of miscibility between its solid (cetyl palmitate) and liquid (Transcutol) lipids. SANS 
analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae 
been decreased by TTC. As a result of this combined approach (DOE and biophysical techniques) 
two optimized pre‑formulations were rationally selected, both with great potential as drug delivery 
systems, extending the release of the anesthetic (> 48 h) and reducing TTC cytotoxicity against Balb/c 
3T3 cells.

Local anesthetics prevent pain by interrupting nerve excitation and conduction. They interact with voltage-gated 
sodium channels, blocking the propagation of nerve  impulses1,2. Tetracaine (TTC) is a potent anesthetic of the 
amino ester class, which fast metabolism by plasma esterases and high systemic  toxicity3 have restricted its use 
to topical anesthesia in ophthalmic procedures, oropharyngeal pain, skin anesthesia and spinal  block2,4,5.

In order to enhance the therapeutic effect and reduce the toxicity of local anesthetics, drug delivery systems 
(DDS) have shown promising results, in nanocarriers such as liposomes, cyclodextrins, polymeric  particles6, 
solid lipid  nanoparticles7,8, and nanostructured lipid carriers (NLC)9,10. NLC are colloidal systems, which consist 
of a lipid matrix composed of a mixture of solid and liquid (oils) lipids, plus a surfactant. The lipid matrix is a 
pseudo-crystalline structure with many  imperfections11 that confer superior physicochemical stability to the 
nanoparticle and allow drug insertion, increasing its solubility, permeability, bioavailability and reducing adverse 
 effects12. In comparison to other lipid-based carriers (e.g. liposomes, solid lipid nanoparticles), NLC have longer 
shelf stability and higher upload capacity for lipophilic  drugs10.

Here we report the development, among different lipid matrices, of novel DDS for tetracaine. Factorial design 
was used as a chemometric tool to elucidate the effect of excipients in the NLC supramolecular organization, pro-
viding robust systems with optimized structural properties for subsequent  analyses13. Among other biophysical 
techniques, Raman imaging and SANS analyses disclosed details on the lipid matrix organization, that reduced 
the shelf stability of one optimized formulation. Two pre-formulations were then selected, aiming at improving 
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TTC local anesthetic action (CP-DK/TTC and MM-CK/TTC) for further application in clinics. They showed 
excellent shelf-stability (> 1 year), high upload capacity (> 60%), prolonged drug release (> 48 h) and reduced 
cytotoxicity against Balb/c 3T3 fibroblasts.

Materials and methods
Tetracaine base (TTC) was purchased from AK Scientific, Inc. (Union City, USA). The surfactants Pluronic F68 
(P68) and Tween 80 were supplied by Sigma (St. Louis, USA); cetyl palmitate (CP) and Dhaykol 6040 (DK)—or 
capric/caprylic triglycerides—by Dhaymers Quím. Fina (Taboão da Serra, Brazil); myristyl myristate (MM) by 
Croda (Campinas, Brazil) and diethylene glycol monoethyl ether or Transcutol (TRANS) by Gattefossé (Lyon, 
France). HPLC-grade acetonitrile and methanol were purchased from J.T. Baker (Allentown, USA). 3T3 cells were 
from American type culture collection (ATCC, Manassas, VA, USA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT), RPMI medium, fetal bovine serum, penicillin, streptomycin and uranyl acetate 
were purchased from Sigma-Aldrich (Missouri, USA). All other reagents were of analytical grade. Deionized 
water (18 MΩ) was obtained from an Elga USF Maxima ultra-pure Water purifier.

NLC preparation. NLC of different matrices (CP-TRANS, CP-DK and MM-DK) were obtained by emulsi-
fication-ultrasonication14. The oily phase was prepared by melting solid and liquid lipids in a water bath, 10 °C 
above the melting temperatures of the solid lipid (42.6 and 55.0 °C for MM and CP, respectively)8,15. TTC was 
added to the mixture of melted lipids and stirred until complete solubilization. Simultaneously, an aqueous 
phase was prepared by dissolving the surfactant (P68) in heated deionized water. The aqueous phase was then 
poured into the lipid phase under stirring at 10,000  rpm (Ultra-Turrax T18, IKA T18 basic) for 3 min. The 
obtained microemulsion was sonicated in a tip sonicator (Vibracell, Sonics & Materials Inc.) at 500  W and 
20 kHz for 30 min, in alternating on/off 30 s cycles. The resulting nanoemulsion was immediately cooled to room 
temperature in an ice bath to produce the NLC.

Experimental design. Three  23 factorial designs were carried out, with triplicates at the central point, for 
each of the three lipid combinations: CP-TRANS, CP-DK and MM-DK. Experimental data were processed using 
Design-Expert software (version 9.0, State-Ease Inc., Minneapolis, USA). Analysis of variance (ANOVA) was 
applied to evaluate the significance of the effects, their interactions, and the lack of adjustment of the regression 
model, considering the confidence level of 95% (α = 0.05). Three independent variables were used: (a) surfactant 
concentration (% P68), (b) total lipid concentration (% TL), and (c) solid:liquid lipid ratio (expressed as % SL), 
eleven NLC formulations (of nine different compositions) containing 4% TTC were prepared in each of the  23 
factorial design. Table 1 shows the variables and levels used in this study, for each lipid combination.

The composition of the eleven formulations prepared according to the factorial design are shown in Table S1. 
They were all prepared in a random order and the central point triplicates encompassed all the sample prepara-
tion steps (authentic replicates).

Determination of particle size, polydispersity, zeta potential, concentration and pH. The par-
ticle size (hydrodynamic diameter) and polydispersity index (PDI) were determined by dynamic light scattering 
(DLS) and zeta potential (ZP) by electrophoretic mobility, in a Nano ZS90 analyzer (Malvern Instruments, UK), 
at 25 °C. The samples were diluted (1000×) in deionized water. The pH of NLC formulations were measured with 
a R-TEC7 pH meter (Tecnal Equip. Cient., Piracicaba, Brazil), at 25 °C (n = 3).

The concentration of nanoparticles in the formulations was determined by Nanotracking analysis (NTA) 
in a NS300 (NanoSight, Amesbury, UK) equipment. The samples were diluted in deionized water (5000×) and 
injected into the sample chamber with syringes. All measurements were performed at 25 °C, (n = 3).

Quantification of tetracaine by HPLC. TTC quantification, in triplicate, was performed in a Varian 
ProStar high-performance liquid chromatograph (HPLC) equipped with a PS 325 UV–Vis detector, PS 210 sol-

Table 1.  Experimental variables and their levels, responses and optimization goals for the  23 experimental 
designs of CP-TRANS, CP-DK and MM-DK nanostructured lipid carriers.

Independent variables

Levels

− 1 0 + 1

Surfactant concentration (% P68 w/v) 2 3.5 5

Lipid phase concentration (% TL w/v) 16 18 20

Solid:liquid lipid ratio (% SL:LL w/w) 70:30 80:20 90:10

Dependent variables  Goal

Particle size (nm)  Mini-
mum

Polydispersity index (PDI)  Mini-
mum

Zeta potential (|mV|)  Maxi-
mum
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vent delivery module and Galaxy Workstation software for data collection. A Luna (5 μ, 250 × 4.6 mm) reverse-
phase C18 column (Phenomenex, Torrance, US) was used. Isocratic elution was run with a mobile phase of 
ammonium phosphate (10 mM, pH 3.0): acetonitrile, 70:30 v/v. The flow rate, injection volume and wavelength 
detection were set at 1.5 mL/min, 30 µL and 280 nm, respectively. TTC retention time was = 5.3 ± 0.1 min. The 
assay method was validated, and the calibration curve was linear  (r2 = 0.9998) within the concentration range 
of 0.03–1.2 mM. The limits of detection and quantification of TTC were 4.47 ×  10–5 mM and 1.49 ×  10–4 mM, 
respectively.

Encapsulation efficiency and drug loading determination. TTC encapsulation by the three NLC 
formulations (CP-TRANS/TTC, CP-DK/TTC and MM-DK/TTC) was determined in triplicate, by centrifuga-
tion-ultrafiltration, using 10 kDa pore size Amicon regenerated cellulose filters (Millipore Corp., Bedford, USA). 
The samples were diluted in deionized water and centrifuged at 6000×g for 20 min. The filtered aqueous solution 
was collected and free tetracaine was quantified at 280 nm, by HPLC. The amount of TTC loaded in the NLC was 
expressed in terms of encapsulation efficiency (%EE), calculated according to Eq. (1), or drug loading capacity 
(%DL), accordingly to Eq. (2)16:

Transmission electron microscopy (TEM) images. The morphological analysis of the nanoparticles 
in all the three systems and their respective controls (prepared without TTC) was performed by transmission 
electron microscopy. 2% Uranyl acetate was added to the diluted samples, for contrast. Aliquots of the samples 
were then deposited on copper grids coated with carbon film and dried at room temperature. After drying, 
micrographs of the samples were obtained in a JEOL 1200 EXII microscope, at 60 kV and the images were edited 
with ImageJ software v.1.52a (https:// imagej. nih. gov/ ij/).

Infrared spectroscopy measurements (ATR‑FTIR). ATR-FTIR analyses were performed for excipi-
ents, lyophilized formulations containing 4% TTC (CP-TRANS/TTC, CP-DK/TTC and MM-DK/TTC) and 
their respective controls (CP-TRANS, CP-DK, MM-DK) without the anesthetic. Spectra were recorded in FTIR 
spectrophotometers (Bruker IFS 66 v/S or Perkin Elmer Spectrum 65) equipped with ATR cells, in the reflection 
mode, between 4500 and 500  cm−1.

Differential scanning calorimetry (DSC) analysis. DSC measurements of TTC, lyophilized NLC for-
mulations (CP-TRANS/TTC, CP-DK/TTC, MM-DK/TTC), their controls (CP-TRANS, CP-DK, MM-DK), and 
solid lipid excipients (CP, MM) were taken in a TA Q20 calorimeter (Thermal Analysis Instruments, New Castle, 
USA) equipped with a cooling system. The samples (5 mg) were placed in aluminum pans and the thermal pro-
files were obtained in the range of 0–250 °C, at a heating rate of 10 °C/min, under nitrogen flow.

X‑ray diffraction (XRD) analysis. X-ray powder diffraction (XRD) data were obtained in a Shimadzu 
XRD7000 diffractometer (Tokyo, Japan), using a Cu-Kα source at a scanning step of 2°  min−1, between values of 
2θ (5°–50°). Samples of lyophilized NLC containing 4% TTC (CP-TRANS/TTC, CP-DK/TTC, MM-DK/TTC), 
their controls (CP-TRANS, CP-DK, MM-DK), and solid lipid excipients (CP, MM) were analyzed.

Small Angle Neutron Scattering (SANS) analysis. SANS measurements were performed at the 
VSANS-V16 (time of flight/very small angle scattering) instrument at Helmholtz-Zentrum Berlin (Germany). 
The scattering data was gathered at two sample detector distances: 1.7 m with neutron wavelengths of 1.8–3.8 Å, 
and 11 m with 1.6–9.2 Å neutron wavelengths. The samples were placed in cuvettes (Hellma 110 QS) of 1 mm 
light path arranged in a sample holder that provides twenty positions per measurement. A waiting time of 30 min 
between measurements ensured the stabilization of the sample’s temperature. Samples of NLC formulations con-
taining 4% tetracaine (CP-TRANS/TTC, CP-DK/TTC, MM-DK/TTC) and their controls (CP-TRANS, CP-DK, 
MM-DK), were prepared in  D2O, and measured at 25 and 37 °C. The final data reduction included corrections 
for sample transmission, background detector counts, empty cell scattering and detector efficiency, and they 
were scaled to absolute intensity using a 1 mm  H2O standard measurement. The SANS data were radially aver-
aged and combined to give a total q range of 0.005–0.5 Å−1 17. To gain a further insight about the nanoparticles 
containing DK (for which hydrophobic clusters between SL–LL were observed), their SANS data were modelled 
using the empirical function shown in Eq. (3):

where A and B are constants, n and m are power-law indices, back refers to the incoherent background and ξ is the 
correlation  length17–24. The first term in the equation is a power law decay (Porod-like scattering) which describes 
the scattering from clusters or aggregates in the system. The second term is a Lorentzian function that corre-
sponds to the scattering of individual chains in solution (association contribution), where ξ is the key parameter.

(1)%EE =
TTCtotal − TTCfree

TTCtotal
× 100

(2)% Drug loading =
weight of encapsulated TTC

weight of nanoparticles
× 100

(3)I(q) =
A

qn
+

B

1+ (qξ)m
+ back

https://imagej.nih.gov/ij/
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Physicochemical stability study. The physicochemical stability of the NLC formulations was monitored 
(n = 3) for 12 months at 25 ± 2 °C and 60 ± 5% relative humidity (ICH 2009). The evaluated parameters were 
nanoparticle size (nm), PDI and ZP (mV), plus visual analysis. Analysis of variance (ANOVA, p < 0.05) and 
Tukey’s post-hoc tests were used to compare significant differences over time.

Lipid miscibility assessed by Raman mapping. The samples were prepared by heating the solid lipids 
(CP, MM) 10 °C above their melting temperatures, followed by addition of the liquid lipid (TRANS, DK) under 
stirring until a visually homogeneous mixture was obtained. The concentration of the liquid lipid was set to 
30% (w/w) for the analyses. The samples were cooled to room temperature in an aluminum cell and an area of 
1.95 × 1.95  mm2 was mapped in a Raman Station 400 (Perkin Elmer, Waltham, USA) using a laser of 785 nm 
as an excitation light and nominal power of 100 mW. The exposure time was set at 3 s/pixel, 2 exposures/pixel, 
50 µm pixel size, in the spectral range of 3200–600  cm−1, with 4  cm−1 resolution. Each sample provided a data 
cube whose dimension was 40 × 40 × 651, where 40 represents the number of pixels at x and y axis, and 651 is the 
number of spectral variable/Raman shift.

Chemometric analysis. Spikes on Raman spectra were excluded using an algorithm written in  Matlab25. 
After exclusion of spikes, the data cube was unfolded to a 2D matrix, where pixel position on axis x and y were 
rows, and spectral variables were the columns. Thus, each sample provided a matrix of 1600 spectra × 651 vari-
ables (Raman shifts). The spectra were smoothed using Savitzky-Golay (width = 5, order of polynomial = 2), with 
baseline correction by weighted least squares and normalization by unit vector. The spectral range was 1804–
724  cm−1 for CP-TRANS and MM-DK, and 2964–844  cm−1 for CP-DK samples. The classical least squares (CLS) 
method was used to generate the maps of concentration (chemical images). CLS considers that the spectrum of 
a mixture is the sum of the spectra of the pure compounds weighted by their  concentrations16,26. The standard 
deviation of the histograms  (SDhist) of these maps was used to assess the miscibility between SL and LL. Data 
analyses were performed using Matlab R2013b (Mathworks Inc., Natick MA, US) and PLS Toolbox version 8.2 
(Eigenvector Research Inc., Wenatchee WA, US).

In vitro release experiments. The in vitro release of TTC, free (in solution) or encapsulated by NLC (CP-
TRANS/TTC, CP-DK/TTC, MM-DK/TTC), was measured using a Franz vertical diffusion cell system under 
sink  condition27. The test samples (0.4 mL) were placed in the donor compartment of the diffusion cells, which 
was separated by a polycarbonate membrane (Nucleopore Track-Etch, 0.1 mm pore size, Whatman)28 from the 
acceptor compartment containing 4 mL of the release medium (5 mM PBS, pH 7.4 with 5% Tween 80). The 
system was kept at 37 °C under magnetic stirring (300 rpm). At predetermined intervals during 50 h, aliquots 
(0.2 mL) were extracted from the acceptor compartment and the volume was replaced with the release medium. 
The concentration of released TTC in the aliquots was determined by HPLC (n = 5).

The release curves were analyzed with the KinetDS 3.0  software29. Several kinetic models were tested and 
according to the coefficient of determination  (R2) the best fit for NLC formulation curves was reached with the 
Korsmeyer–Peppas model:

where Q is fraction of drug released at time t, k is the rate constant, and n is the release exponent that typifies the 
drug release mechanism: n = 0.43 indicates Fickian diffusion, n = 1 means zero-order release while 0.43 < n < 1 
values are related to anomalous  transport30.

Cell viability tests. Balb/c 3T3 murine fibroblasts were used and cell viability was measured by reduc-
tion of MTT. Cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% 
antibiotic (penicillin and streptomycin). Cells (1.0 ×  104 cells/mL−1) in RPMI medium and incubated in 96-well 
plates for 24 h at 37 °C under humidified atmosphere and 5%  CO2 were treated with different concentrations 
of the samples (free TTC, CP-TRANS/TTC, CP-DK/TTC, MM-DK/TTC) diluted in the medium, for 24 h. The 
treatment medium was removed, the plates washed with sterile PBS buffer pH 7.4, and 100 μL of MTT solution 
(0.5 mg  mL−1 in culture medium) was added to each well. After incubation for 3 h at 37 °C, the MTT solution 
was removed, and the formed formazan crystals were solubilized in 100 μL of ethanol. The plates were shaken 
for 5 min, and the absorbance of each well was read at 570 nm. Values were expressed as percent MTT reduction, 
in comparison to control (untreated cells). The analyses were performed in triplicate, and the results expressed 
as mean ± SD. The statistical analysis of the results was performed by One-way ANOVA, followed by Tukey’s test 
(p < 0.05).

Results and discussion
This study reports the development of three optimized NLC pre-formulations capable of encapsulating TTC 
at high doses (4%). The NLC were prepared with mixtures of solid and liquid lipids (CP-TRANS, CP-DK and 
MM-DK), plus P68 as a stabilizer. The choice of lipids and their concentrations was based on previous  reports8,16. 
Differently than a previous report in the literature in which TTC was incorporated in NLC aimed for topical 
 application31 the formulation in here is to be used by different routes of administration.

Experimental design. In order to analyze the factors that influence the different NLC formulations, three 
 23 factorial designs with triplicate at the central point were carried out. Using three independent variables: (a) 
surfactant concentration (% P68), (b) total lipid concentration (% TL), and (c) solid:liquid lipid ratio (expressed 

(4)Q = k · tn
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as % SL), eleven NLC formulations (of nine different compositions) containing 4% TTC were prepared in each 
of the  23 factorial design. Table S1 shows the composition of these systems and corresponding experimental 
responses (size, PDI, ZP), determined by DLS.

The mean particle size of the NLC ranged from 250 to 330 nm. Table S2 shows that in the formulations com-
posed of CP-TRANS/TTC, two variables significantly affected the particle size: % P68, % SL and their interactions 
(p < 0.05), as exemplified in Fig. 1A. For CP-DK/TTC and MM-DK/TTC only % P68 (Fig. 1D,G and Table S2) 
significantly influenced particle size. The positive effect of the amount of solid lipid (% SL) on the size of CP-
TRANS/TTC nanoparticles is a consequence of the higher viscosity of the lipid phase, reducing the effectiveness 
of particle breaking (homogenization and sonication)  processes32,33 and will also be discussed further (SANS 
and Raman Imaging data). For all the 3 NLC types the surfactant concentration (% P68) had a negative effect 
on the particle size, which means that the increase in the concentration of P68 decreases the particle size, due to 
the decrease of interfacial tension between the nanoparticles and the external  phase33.

The low PDI values (0.1 > PDI > 0.25) in Table S1 confirmed the homogenous distribution of particle sizes 
for CP-TRANS/TTC, CP-DK/TTC and MM-DK/TTC. Figure 1B,E,H and Table S2 revealed that only P68 had 
a significant (negative) effect, decreasing PDI in the 3 NLC formulations, a result that confirms that surfactants 
play a major role in determining the size distribution of the nanoparticles.

ZP values in the three types of formulations were in the range of − 20 to − 40 mV (Table S1) and P68 was 
the only variable that significantly affected ZP values in a negative way: the higher the P68 concentration the 
lower, in modulus, the surface electric potential of the NLC (Table S2, Fig. 1C,F,I). The negative ZP values are 
attributable to the polarization of surfactant P68, followed by adsorption of water molecules on the polarized 
surfaces of  NLC32–37.

Figure 1.  Response surfaces of the three different NLC formulations (CP-TRANS/TTC, CP-DK/TTC, 
MM-DK/TTC), at 18% total lipid concentration, regarding: size (A, D, G), PDI (B, E, H), and ZP (C, F, I).
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Desirability functions were used to determine the preferred formulation, following the criteria: lower par-
ticle sizes, minimum PDI and maximum ZP values. According to that, the following systems were selected: 
CP-TRANS/TTC = 20% TL, 70:30% SL, and 4.4% P68, CP-DK/TTC = 18% TL, 70:30% SL, and 4.4% P68 and 
MM-DK/TTC = 17% TL, 72:28% SL, and 5% P68. The subsequent experiments were conducted only with these 
optimized formulations.

DLS and NTA results. Table  2 shows the average size, PDI, ZP and nanoparticle concentration (NC) 
values for the optimized formulations revealed by Factorial Design, and their respective controls. The three 
types of NLC formulations displayed sub-micron diameters (~ 200  nm) and monodisperse size distribution 
(0.1 < PDI < 0.20) with proper electrical charge repulsion between the particles (ZP > |17| mV) to ensure good 
shelf-stability36–40. Visual analysis confirmed the homogeneous appearance of the fresh samples, with suspen-
sions of whitish coloring, liquid consistency and no evidence of aggregates.

NTA is an alternative methodology to DLS for in vitro characterization of nanostructured colloidal  systems9. 
NTA measurements allowed determination of the nanoparticles concentration (NC) in the optimized formula-
tions (Table 2), an analytical parameter used in nanotoxicity, pharmacokinetic and stability (rupture, aggregation) 
studies of  nanoparticles41,42. The slightly lower NC values of CP-TRANS/TTC, CP-DK/TTC, MM-DK/TTC 
reflect their higher sizes, in comparison to the controls without tetracaine.

Most importantly, we have used the NC values and %EE to estimate the number of molecules of each excipient 
per  nanoparticle8, as shown in Table S3. These numbers revealed a significant number of TTC molecules inside 
each particle (6–8 ×  105), corresponding to TTC:total lipid molar ratios of 0.14–0.17 that justify the increased 
diameter of TTC-containing nanoparticles.

Tetracaine encapsulation efficiency and drug loading. The three types of NLC formulations devel-
oped in this study showed very good capacity to carry TTC, with %EE values ranging from 63.7 to 68.1% and 
%DL > 11 (Table 2), reflecting the strong partition of the non-ionized form of TTC in the lipid  milieu43. Indeed, 
the encapsulation efficiency determined for TTC in these nanoparticles was in the range of those reported 
(> 55%) for other hydrophobic local anesthetics such as dibucaine, bupivacaine and  ropivacaine16,44,45 and higher 
(< 37%) than those observed in NLC with more hydrophilic agents such as lidocaine and  prilocaine8. The drug 
loading capacity is another parameter that expresses the upload capacity of DDS (Eq. 2). The DL values of the 
optimized formulations for TTC were 11.1% with CP-TRANS/TTC and 11.6% with CP-DK/TTC and MM-DK/
TTC, above those reported (%DL < 10) for other local anesthetics in  NLC16,46,47. %DL values were also in good 
agreement with the TTC:TL ratios (Table S3).

Transmission electron microscopy. TEM images showed that the nanoparticles, in despite of the differ-
ent lipid matrices, had spherical morphology with a well-delimited surface (Fig. 2). In addition, encapsulation of 
TTC did not affect the integrity of the nanoparticles (Fig. 2A,C,E vs. B,D,F).

Infrared analysis (ATR‑FTIR). ATR-FTIR analyses were performed to investigate possible interactions 
between the anesthetic and the lipid matrix of NLC. Figure 3A shows the spectra of NLC excipients and TTC, 
while the spectra of the optimized NLC formulations and their controls are given in Fig. 3B. TTC spectrum 
showed absorption bands at 3370 and 1532  cm−1 attributed to N–H groups and C–N stretching vibrations from 
the aromatic amine group, respectively, while the bands at 2952 and 2861   cm−1 are due to asymmetric  CH3 
stretching and symmetrical  CH2 stretching vibrations, respectively. Other bands at 1683  cm−1 corresponding to 
the C=O stretching vibration of ester and 1600  cm−1 due to C=C of the aromatic ring were detected, as well as 
those at 1168 and 1118  cm−1 which refer to antisymmetric and symmetric stretching of C–O–C,  respectively5,48.

Control NLC (CP-TRANS, CP-DK and MM-DK) showed bands related to their major components (the 
solid lipids CP and MM) at 2917  cm−1 and 2849–2850  cm−1 corresponding, respectively, to νaC–H and νs C–H 
vibration modes of  CH2. Other bands related to ester bonds were observed in 1733  cm−1 (ν C=O); 1463  cm−1 and 
1342–1343  cm−1 (δ C–H in  CH2)15,49. Finally, characteristic bands of P68 molecule were observed at 963  cm−1 to 
1108  cm−1 and attributed to the symmetrical structure of C–O and the asymmetric stretching vibrations of C–O 
in the ether groups of –OCH2CH2 residues, repeated throughout the structure of  P6850.

ATR-FTIR spectra of NLC loading TTC showed similarities to those of the control NLC spectra (without 
TTC), indicating that incorporation of the anesthetic did not affect the overall arrangement of the NLC excipients 

Table 2.  Particle size, polydispersity (PDI), zeta potential (ZP), nanoparticle concentration (NC), 
encapsulation efficiency (%EE) and drug loading capacity (%DL) of the optimized NLC formulations 
(mean ± SD, n = 3).

Formulation Size (nm) PDI ZP (mV) NC (×  1013/mL) %EE %DL

CP-TRANS 166.6 ± 1.4 0.115 ± 0.031 − 17.4 ± 0.6 7.81 ± 0.43 –

CP-TRANS/TTC 199.0 ± 2.5 0.187 ± 0.028 − 21.8 ± 1.5 7.77 ± 0.19 68.1 ± 3.5 11.1 ± 0.2

CP-DK 189.9 ± 2.9 0.112 ± 0.015 − 19.0 ± 0.9 11.50 ± 0.34 –

CP-DK/TTC 215.8 ± 1.8 0.172 ± 0.010 − 27.8 ± 0.5 9.20 ± 0.98 65.0 ± 2.5 11.6 ± 0.4

MM-DK 193.3 ± 2.7 0.139 ± 0.021 − 29.0 ± 1.7 10.80 ± 0.33 –

MM-DK/TTC 222.2 ± 2.6 0.154 ± 0.020 − 30.1 ± 0.3 6.77 ± 0.48 63.7 ± 4.2 11.6 ± 0.8
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Figure 2.  TEM images of NLC formulations and their controls (without TTC): CP-TRANS/TTC (A), 
CP-TRANS (B), CP-DK/TTC (C), CP-DK (D), MM-DK/TTC (E) and MM-DK. Magnification: ×60,000 (left) 
(E) ×100.000 (right). Images edited with ImageJ software v.1.52a (https:// imagej. nih. gov/ ij/).

Figure 3.  FTIR analysis of TTC, excipients (cetyl palmitate (CP), myristyl myristate (MM), Transcutol 
(TRANS), Dhaykol (DK), Pluronic F68 (P68), TTC-containing nanoparticles (CP-TRANS/TTC, CP-DK/TTC 
and MM-DK/TTC) and their controls (CP-TRANS, CP-DK, MM-DK).

https://imagej.nih.gov/ij/
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in the  nanoparticle8. Among all the NLC spectra, only those of formulations containing tetracaine exhibited 
typical bands of pure TTC at 1278  cm−1 (C–N stretching) and 1683  cm−1 (C=O stretching) which were shifted 
to 1281–1285  cm−1 and 1603–1606  cm−1, respectively. Such displacements confirm the insertion of TTC into 
the NLC, probably due to interactions between the amine groups of TTC and available groups of NLC matrices, 
as described  before49.

Differential scanning calorimetry (DSC) analysis. Figure 4A shows the thermograms obtained with 
the optimized NLC formulations, their major (solid lipid) excipients or TTC. The peak belonging to TTC 
(36.3 °C) could not be seen in any of the three optimized formulations, indicating insertion of the anesthetic 
inside the  nanoparticles51. In agreement with the literature, endothermic peaks corresponding to the melting 
of CP and MM were observed at 54.7 and 42.6 °C,  respectively15,52. Incorporation of the liquid lipids slightly 
changed the transition of cetyl palmitate to higher (CP-TRANS) or lower temperatures (CP-DK) or, in the case 
of myristyl myristate, to lower temperatures (MM-DK) plus the appearance of another transition at higher 
temperature (53 °C). The decrease in the transition of the solid lipid, observed with CP-DK and MM-DK, are 
expected since the liquid lipid causes a reduction in crystallinity of the solid  lipid51. As for the shift in the transi-
tion of cetyl palmitate to higher temperatures (56.5 °C in the case of CP-TRANS) it indicates an increase in the 
crystallinity index of the solid lipid inside the NLC, probably because of miscibility problems with TRANS (as 
will be discussed latter, in the Raman imaging results). This shift was also observed in the presence of tetracaine 
(56.8 °C for CP-TRANS/TTC).

X‑ray diffraction (XRD) analysis. X-ray diffraction experiments provided information regarding the 
crystalline structure of NLC and TTC. Figure 4B shows the diffractograms of the optimized NLC formulations, 
their controls, major excipients (solid lipids, CP and MM) and TTC. The diffractogram of TTC showed three 
typical peaks at 2θ = 8.66°, 12.90° and 17.23°, and other peaks of lower intensity, confirming the crystalline 
nature of the  anesthetic53. These narrow peaks were not detected in the diffractograms of the optimized formula-
tions, indicating that the anesthetic was solubilized in the lipid matrix of the NLC. In addition, diffractograms 
of control NLC (CP-TRANS, CP-DK and MM-DK) were different from those of the pure solid lipids (CP and 
MM), showing peaks of lower intensities (2θ = 6.94°, 21.72°, 24.02° for CP, and 2θ = 7.96°, 21.78°, 23.97° for MM, 
respectively). These data indicate the lower crystallinity of the NLC lipid matrix in relation to the pure lipids 
(CP, MM), thus reflecting a less ordered structure that results from the presence of liquid lipids in the core of 
the nanoparticles.

The diffraction patterns of TTC-containing particles CP-DK/TTC, MM-DK/TTC and their respective con-
trols (CP-DK and MM-DK) were similar, confirming that addition of TTC did not change the overall organiza-
tion of these nanoparticles, in agreement with TEM (Fig. 2) and DSC (Fig. 4A) data. In the case of CP-TRANS/
TTC sample there is a narrowing in the more intense CP peaks at 21.72° and 24.02° promoted by TTC, indicating 
that the anesthetic increases the crystallinity of cetyl palmitate, in agreement with DSC results.

Figure 4.  DSC (A) and XRD (B) analyses of nanostructured lipid carriers containing tetracaine (CP-TRANS/
TTC, CP-DK/TTC and MM-DK/TTC), their controls (CP-TRANS, CP-DK and MM-DK), major excipients 
(CP, MM) and TTC base.
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Small angle neutron scattering. SANS measurements were performed in order to get further informa-
tion on the structural organization of the optimized NLC, with and without tetracaine. The samples were pre-
pared in  D2O to reach a significant contrast between the solvent and the nanoparticles. First, all the NLC systems 
exhibit negligible changes when measurements were conducted at 25 °C and at 37 °C (as shown in Figure S1 
for CP-DK/TTC and MM-DK/TTC). SANS data then revealed several systematic tendencies in the internal 
arrangement of the nanoparticles (Fig. 5). For those prepared with cetyl palmitate and Transcutol (CP-TRANS/
TTC, CP-TRANS) correlation peaks in the SANS curves indicated the existence of lamellar structures inside 
the NLC (Fig. 5A), in agreement with previous reports in the literature, obtained with Electron Paramagnetic 
 Resonance45 and molecular  Dynamics54. Indeed, among the blends of solid and lipid lipids tested, cetyl palmitate 
and TRANS have the largest difference in polarity, and their SL:LL molar ratio (0.66) was the smallest among 
the three optimized formulations (Table S3). Because of that, the lamellar structure revealed by SANS results 
from the reorganization of CP molecules in the lipid NLC core, avoiding the contact with TRANS molecules 
(see “Discussion” below). Interestingly, and in agreement with that, the Design of Experiments study revealed 
that only for the CP-TRANS formulation (Fig. 1A) the amount of solid lipid (CP) played a significant effect, 
determining increased particles size.

Figure 5.  SANS data, measured at 25 °C, for the optimized NLC formulations and their controls (without 
TTC): (A) CP-TRANS, (B) CP-DK, (C) MM-DK. (D–F) Schematic representation of the lipid arrangements 
in the inner core of the three kind of nanoparticles (for the sake of clarify the surfactant molecules are not 
represented). Notice that a lamellar structure was detected in the core of CP-TRANS particles (D) while 
hydrophobic clusters (dotted lines) were observed between the lipids CP-DK (E) and MM-DK systems (F).
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Moreover, inclusion of tetracaine in the CP-TRANS nanoparticles induced a variation in the observed lamel-
lar structure, since the 1 0-plane spacing (d10) diminished from 259 Å in CP-TRANS, to 230 Å in CP-TRANS/
TTC. Such reduction in the lamellar interplanar distances (d10) suggests that tetracaine interacts with the CP 
molecules, decreasing the thickness or the lamellae by promoting lateral expansion, a phenomenon already 
observed for TTC in monolayers and  bilayers55,56. TTC really causes dynamic rearrangements in lamellar phases, 
as recently demonstrated by Hu et al. in dioleylphosphatidylcholine supported bilayers, increasing the lipid chain 
mobility and even inducing the formation of curved tubular structures prior to membrane disruption, at high 
TTC:lipid  ratios57.

No such correlation peaks were observed in the SANS profile of the NLC prepared with Dhaykol 6040 as 
the liquid lipid (Fig. 5B,C). But to gain a further insight about the DK-based NLC systems, we modeled the 
SANS data using Eq. (3), as shown in Figure S1 (“Supporting information”). The analysis of the correlation 
length parameter for the CP-DK and MM-DK samples showed that the latter had a bigger correlation length 
( ξMM−DK = 78.68 Å) than the former ( ξCP−DK = 44.69 Å) suggesting that MM-DK nanoparticles had greater 
hydrophobic clusters (nanoclusters formed by the hydrophobic interactions between solid and liquid lipids)52, 
in comparison to CP-DK.

In the representations at Fig. 5D–F we depicted the different organizations proposed for the solid and liquid 
lipids inside the NLC, revealing the hydrophobic clusters observed for CP-DK and MM-DK, but not CP-TRANS. 
The size of the hydrophobic clusters did not change in the presence of TTC, nor with temperature (Figure S1).

Physicochemical stability studies. A long-term stability study was conducted with the optimized NLC 
formulations and their controls, by monitoring particle size, PDI, ZP, pH and visual aspects such as color and 
homogeneity for 365 days at 25 °C. The pH of the formulations remained in the range of 8.0–8.5. CP-DK/TTC 
and MM-DK/TTC and their respective controls did not show any significant variation by visual inspection or 
in any of the analyzed parameters over time (Fig. 6), reflecting the physical stability of these formulations (i.e. 
maintenance of nanoparticles structure).

On the other hand, CP-TRANS/TTC and CP-TRANS showed a significant increase in nanoparticle size 
and polydispersity (254.7 nm and 0.29, respectively, for CP-TRANS/TTC after 120 days) with ZP values tend-
ing to zero (p < 0.05) during storage (Fig. 6). Visual analysis confirmed the instability of this formulation, with 
phase separation starting after 30 days that prevented analyses after 120 days. Therefore, CP-TRANS NLC was 
found unstable over time, with changes in particle size, polydispersity and ZP values compatible with particle 
 aggregation37,21.

Miscibility of lipid excipients measured by Raman mapping. In an attempt to get more information 
on the stability of the formulations, Raman imaging analyses were used to evaluate the miscibility of their lipid 
components. Figure S2 shows Raman spectra of solid and liquid lipids, and their mixtures. These spectra were 
very similar to prior reports in literature and also previous works from our  group16,22. As expected, solid lipids 
had narrower bands than liquid lipids because of their more ordered molecular structures. Assignment of the 
main bands of each excipient is given in Table S4.

In this case, univariate methods (i.e. single wavenumber) could not be used to treat the data due to the high 
spectral overlap (Figure S2). Therefore, and since the spectrum of each individual component was available, the 
multivariate CLS method was employed, allowing the use of all spectra information to generate the chemical 
images. Figure 7 shows chemical imaging and histograms obtained for the three pairs of solid and liquid lipids 
of the optimized NLC. Each pair of SL/LL is shown on the left and right sides, respectively of Fig. 7A–C. The 
predicted mean scores and their ranges for each component in the pixels are given in the histograms. The scores 
are in the same scale, so they can be directly compared to evaluate lipid miscibility.  SDhist values of 13.6, 3.2 and 
6.1 were found for the lipid mixtures CP-TRANS, CP-DK and MM-DK, respectively. Pixels with 0 or 100 score 
values would indicate full immiscibility between excipients, but they were not observed in any of the mixtures. 
CP-TRANS sample showed very wide histograms, with two maxima (Fig. 7A). Such behavior is a clear indication 
of aggregation, with CP concentrated in the right side (red in the chemical map) and TRANS condensed in the 
left side (green in the chemical map). The histograms of CP-DK were the narrowest ones (Fig. 7B), and MM-DK 
showed an intermediate behavior (Fig. 7C). It should be noted that unlike CP-TRANS, the last two systems 
showed a single distribution, with only one maximum for each (SL and LL) excipient. According to the Raman 
image analyses, the degree of miscibility in three mixtures decreased in the order: CP-DK > MM-DK >  > CP-
TRANS, corroborating the SANS results (Fig. 5). These results also explain the instability of CP-TRANS under 
storage, as revealed by DLS (Fig. 6), and confirm the applicability of Raman mapping for the selection of excipi-
ents in pharmaceutical  studies22,23. So, for stability reasons, only the formulations containing DK as the liquid 
lipid were used in subsequent steps.

In vitro release kinetics. The in vitro release of TTC, in solution and encapsulated in CP-DK/TTC and 
MM-DK/TTC formulation (Fig. 8), was measured during 48 h at 37 °C. TTC in solution reached equilibrium 
(100% release) in 6 h. The NLC formulations displayed slower TTC release: 40.9% and 93.0%, respectively for 
CP-DK/TTC and MM-DK/TTC, after 48 h. The release curves were treated with several kinetic models, and 
the better fit  (r2 = 0.9991, and 0.9978, for CP-DK/TTC and MM-DK/TTC, respectively) was found with the 
Korsmeyer–Peppas model (Eq. 4). The determined values of n were 0.47 (CP-DK/TTC) and 0.49 (MM + DK/
TTC). According to the Korsmeyer-Peppas model, n values from 0.43 to 1 indicate an anomalous, non-Fickian 
 transport30. This means that probably two mechanisms drove the release of TTC: an initial “burst” release due 
to the non-encapsulated TTC (ca. 35%, see Table 2), and a sustained release regimen related to the fraction of 
TTC loaded by the nanoparticles. The prolonged release of TTC encapsulated in CP-DK/TTC correlates well 
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with the higher degree of miscibility in the lipid core of these nanoparticles in comparison to MM-CK/TTC, as 
revealed by Raman Imaging (Fig. 7) and SANS (Fig. 5) data. This modeling confirmed the NLC ability to extend 
the release of local anesthetics, as previously  observed16.

In vitro cytotoxicity tests. Finally, we evaluated the cytotoxicity of the optimized (CP-DK/TTC and 
MM-DK/TTC) formulations through the MTT test (Fig. 9), in cultures of murine Balb/c 3T3 fibroblasts. After 
24 h of treatment, the  IC50 of free TTC was 0.6 mM, in good agreement with the  literature24. Slightly higher  IC50 
values were detected with CP-DK/TTC and MM-DK/TTC formulations (0.7 mM and 0.9 mM, respectively), 
showing that the NLC formulations decrease the intrinsic cytotoxicity of TTC, probably due to the sustained 
drug release over time. Similar observations were reported for TTC encapsulated in NLC composed of glyceryl 
monostearate, oleic acid and Tween  8031. Control formulations (CP-DK and MM-DK) were also tested, and they 
showed no (MM-DK) or low (CP-DK) effect over cell viability at the concentrations tested, indicating the safety 
of the nanocarrier systems.

Conclusions
In this study, three NLC pre-formulations for tetracaine (CP-TRANS/TTC, CP-DK/TTC and MM-DK/TTC) 
were optimized by factorial design and their supramolecular structure was scrutinized with biophysical meth-
ods that detected evidence on the interaction of TTC with the lipid core of the NLC. The optimized formula-
tions were capable of encapsulating TTC (%EE > 63%, %DL > 11%) at high doses (4%) and the nanoparticles 
promoted sustained release of TTC beyond 48 h, as evaluated in vitro, at pH 7.4 and 37 °C. But when SANS 
results revealed details on the lipid core of the NLC, a highly ordered (lamellar) arrangement was observed for 
CP-TRANS/TTC. In addition, Raman mapping analysis detected the low miscibility between the lipids CP and 
TRANS, explaining the instability of the CP-TRANS/TTC formulation during storage (Fig. 6), while CP-DK/
TTC and MM-DK/TTC remained stable for 365 days, at 25 °C. The two remaining pre-formulations promoted 
sustained release and reduced the intrinsic toxicity of TTC over cultured 3T3 cells (MM-DK/TTC > CP-DK/
TTC) in vitro. Therefore, the optimized nanoparticles prepared with DK show interesting properties as carriers 

Figure 6.  Stability of the optimized formulations during 365 days of storage at 25 °C, considering size (A), PDI 
(B), ZP (C) and pH (D).
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for TTC administration, by different routes. Further in vivo studies are necessary to evaluate the therapeutic 
effect of the optimized pre-formulations and possible reduction of the systemic toxicity of TTC, in comparison 
to commercially available TTC products.

Figure 7.  Raman images: distribution maps (top) and histograms (bottom) of predicted values for: (A) 
CP-TRANS; (B) CP-DK, and (C) MM-DK. For each sample, solid lipids (CP, MM) are represented in the left 
and liquid lipids (TRANS, DK) in the right.

Figure 8.  In vitro release profiles of 4% tetracaine in solution (free TTC) or encapsulated in optimized (CP-
DK/TTC and MM-DK/TTC) nanoparticles, at pH 7.4 and 37 °C (n = 6).



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21463  | https://doi.org/10.1038/s41598-021-99743-6

www.nature.com/scientificreports/

Received: 23 March 2021; Accepted: 30 September 2021

References
 1. Fozzard, H. A., Lee, P. J. & Lipkind, G. M. Mechanism of local anesthetic drug action on voltage-gated sodium channels. Curr. 

Pharm. Des. 11, 2671–2686 (2005).
 2. McLure, H. A. & Rubin, A. P. Review of local anaesthetic agents. Minerva Anestesiol. 71, 59–74 (2005).
 3. Adeleye, A., Sharp, L. & Rech, M. A. Neurotoxicity secondary to local tetracaine use. Am. J. Emerg. Med. 38(1984), e1-1984.e3 

(2020).
 4. Teixeira, R. S. et al. Effect of cyclodextrins and pH on the permeation of tetracaine: Supramolecular assemblies and release behavior. 

Int. J. Pharm. 466, 349–358 (2014).
 5. Inacio, R., Barlow, D., Kong, X., Keeble, J. & Jones, S. A. Investigating how the attributes of self-associated drug complexes influence 

the passive transport of molecules through biological membranes. Eur. J. Pharm. Biopharm. 102, 214–222 (2016).
 6. de Paula, E. et al. Micro and nanosystems for delivering local anesthetics. Expert Opin. Drug Deliv. 9, 1505–1524 (2012).
 7. Silva, G. H. R. et al. Bupivacaine (S75:R25) loaded in Nanostructured lipid carriers: Factorial design, HPLC quantification method 

and physicochemical stability study. Curr. Drug Deliv. 14, 1–9 (2017).
 8. Ribeiro, L. N. M. et al. Nanostructured lipid carriers as robust systems for topical lidocaine–prilocaine release in dentistry. Eur. J. 

Pharm. Sci. 93, 192–202 (2016).
 9. Ribeiro, L. N. M. et al. Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. Eur. J. Pharm. Sci. 

106, 102–112 (2017).
 10. de Araújo, D. R., Ribeiro, L. N. M. & de Paula, E. Lipid-based carriers for the delivery of local anesthetics. Expert Opin. Drug Deliv. 

16, 701–714 (2019).
 11. Uebbing, L. et al. Investigation of pH-responsiveness inside lipid nanoparticles for parenteral mRNA application using small-angle 

X-ray scattering. Langmuir 36, 13331–13341 (2020).
 12. Fang, C.-L., Al-Suwayeh, S. A. & Fang, J.-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. 

Nanotechnol. 7, 41–55 (2013).
 13. Terada, T. et al. Characterization of lipid nanoparticles containing ionizable cationic lipids using design-of-experiments approach. 

Langmuir https:// doi. org/ 10. 1021/ acs. langm uir. 0c030 39 (2021).
 14. Schwarz, C., Mehnert, W., Lucks, J. S. & Muller, R. H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, 

characterization and sterilization. J. Control. Release 30, 83–96 (1994).
 15. Islan, G. A., Tornello, P. C., Abraham, G. A., Duran, N. & Castro, G. R. Smart lipid nanoparticles containing levofloxacin and 

DNase for lung delivery. Design and characterization. Colloids Surfaces B Biointerfaces 143, 168–176 (2016).
 16. Rodrigues da Silva, G. H. et al. Optimised NLC: A nanotechnological approach to improve the anaesthetic effect of bupivacaine. 

Int. J. Pharm. 529, 253–263 (2017).
 17. Vogtt, K. et al. A new time-of-flight small-angle scattering instrument at the Helmholtz-Zentrum Berlin: V16/VSANS J. Appl. 

Cryst.47, 237–244 (2014).
 18. Asadujjaman, A., Ahmadi, V., Yalcin, M., Brummelhuis, Bertin, A. Thermoresponsive functional polymers based on 2,6-diami-

nopyridine motif with tunable UCST behaviour in water/alcohol mixtures. Bertin, Polym. Chem. 8, 3140–3153 (2017).
 19. Hammouda, B., Ho, D. Kline, S. SANS from Poly(ethylene oxide)/Water Systems. Macromol. 35, 8578–8585 (2002).

Figure 9.  Cytotoxicity evaluation—trough the MTT test—on Balb/c 3T3 fibroblasts treated for 24 h with 
TTC in solution (free TTC) or encapsulated in the nanoformulations (CP-DK/TTC, MM-DK/TTC), and their 
controls (CP-DK, MM-DK), n = 3.

https://doi.org/10.1021/acs.langmuir.0c03039


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21463  | https://doi.org/10.1038/s41598-021-99743-6

www.nature.com/scientificreports/

 20. Hammouda, B. SANS from Polymers—Review of the Recent Literature. Polymer Reviews, 50, 14–39 (2020). ICH 2009. Inter-
national Conference on Harmonisation; guidance on Q10 Pharmaceutical Quality System;availability. Notice. Food and Drug 
Administration, Fed Regist. 74, 15990–15991 (2009).

 21. Ferreira, M., Chaves, L. L., Lima, S. C. & Reis, S. Optimization of nanostructured lipid carriers loaded with methotrexate: A tool 
for inflammatory and cancer therapy. Int. J. Pharm. 492, 65–72 (2015).

 22. Mitsutake, H. et al. Comparison of different chemometric methods to extract chemical and physical information from Raman 
images of homogeneous and heterogeneous semi-solid pharmaceutical formulations. Int. J. Pharm. 552, 119–129 (2018).

 23. Mitsutake, H. et al. Evaluation of miscibility and polymorphism of synthetic and natural lipids for nanostructured lipid carrier 
(NLC) formulations by Raman mapping and multivariate curve resolution (MCR). Eur. J. Pharm. Sci. 135, 51–59 (2019).

 24. Lima, R. A. F. et al. Improvement of tetracaine antinociceptive effect by inclusion in cyclodextrins. J. Drug Target. 20, 85–96 (2012).
 25. Sabin, G. P., de Souza, A. M., Breitkreitz, M. C. & Poppi, R. J. Desenvolvimento de um algoritmo para identificação e correção de 

spikes em espectroscopia raman de imagem. Quim. Nova 35, 612–615 (2012).
 26. Amigo, J. M. & Ravn, C. Direct quantification and distribution assessment of major and minor components in pharmaceutical 

tablets by NIR-chemical imaging. Eur. J. Pharm. Sci. 37, 76–82 (2009).
 27. Gonzalez-Mira, E., Egea, M. A., Souto, E. B., Calpena, A. C. & García, M. L. Optimizing flurbiprofen-loaded NLC by central 

composite factorial design for ocular delivery. Nanotechnology 22, 045101 (2011).
 28. Tiyaboonchai, W., Tungpradit, W. & Plianbangchang, P. Formulation and characterization of curcuminoids loaded solid lipid 

nanoparticles. Int. J. Pharm. 337, 299–306 (2007).
 29. Mendyk, A. et al. KinetDS: An open source software for dissolution test data analysis. Dissolution Technol. 6, 11. https:// doi. org/ 

10. 14227/ DT190 112P6 (2012).
 30. Ritger, P. L. & Peppas, N. A. A simple equation for description of solute release. I. Fickian and non-fickian release from non-

swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5, 23–36 (1987).
 31. Liu, X. & Zhao, Q. Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid 

nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed. Pharmacother. 117, 109057 (2019).
 32. Fangueiro, J. F. et al. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. 

Colloids Surfaces B Biointerfaces 100, 84–89 (2012).
 33. Pradhan, M., Singh, D., Murthy, S. N. & Singh, M. R. Design, characterization and skin permeating potential of Fluocinolone 

acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 101, 56–63 (2015).
 34. Zhao, S. et al. Mixture of nonionic/ionic surfactants for the formulation of nanostructured lipid carriers: Effects on physical 

properties. Langmuir 30, 6920–6928 (2014).
 35. Lasoń, E., Sikora, E. & Ogonowski, J. Influence of process parameters on properties of nanostructured lipid carriers (NLC) for-

mulation. Acta Biochim. Pol. 60, 773–777 (2013).
 36. Jain, N. K. & Ram, A. Development and characterization of nanostructured lipid carriers of oral hypoglycemic agent: Selection of 

surfactants. Int. J. Pharm. Sci. Revier Res. 7, 125–130 (2011).
 37. Han, F., Li, S., Yin, R., Liu, H. & Xu, L. Effect of surfactants on the formation and characterization of a new type of colloidal drug 

delivery system: Nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 315, 210–216 (2008).
 38. Muller, R. H., Radtke, M. & Wissing, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 

242, 121–128 (2002).
 39. Tamjidi, F., Shahedi, M., Varshosaz, J. & Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioac-

tive food molecules. Innov. Food Sci. Emerg. Technol. 19, 29–43 (2013).
 40. Das, S., Ng, W. K. & Tan, R. B. H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Develop-

ment, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?. Eur. J. Pharm. Sci. 47, 139–151 
(2012).

 41. Mendes, L. P. et al. Biodegradable nanoparticles designed for drug delivery: The number of nanoparticles impacts on cytotoxicity. 
Toxicol. Vitr. 29, 1268–1274 (2015).

 42. Ribeiro, L. N. M., Couto, V. M., Fraceto, L. F. & de Paula, E. Use of nanoparticle concentration as a tool to understand the structural 
properties of colloids. Sci. Rep. 8, 982 (2018).

 43. de Paula, E. & Schreier, S. Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics 
on membrane structure. Biochim. Biophys. Acta 1240, 25–33 (1995).

 44. Chen, H. et al. Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery. Colloids 
Surfaces A Physicochem. Eng. Asp. 465, 130–136 (2015).

 45. Barbosa, R. M. et al. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics 10, 231 (2018).
 46. Nahak, P. et al. Physicochemical studies on local anaesthetic loaded second generation nanolipid carriers. RSC Adv. 5, 26061–26070 

(2015).
 47. Rodrigues da Silva, G. H. et al. Injectable in situ forming nanogel: A hybrid Alginate-NLC formulation extends bupivacaine 

anesthetic effect. Mater. Sci. Eng. C 109, 110608 (2020).
 48. Velez-Saboyá, C. S., Oropeza-Guzman, E., Sierra-Valdez, F. J. & Ruiz-Suárez, J. C.  Ca2+-mediated enhancement of anesthetic dif-

fusion across phospholipid multilamellar systems. Biochim. Biophys. Acta Biomembr. 1863, 183509 (2021).
 49. Rodenak-Kladniew, B., Islan, G. A., de Bravo, M. G., Durán, N. & Castro, G. R. Design, characterization and in vitro evaluation 

of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surfaces B Biointerfaces 154, 123–132 (2017).
 50. Seema, M. D. Organoclay Pluronic F68—Montmorillonite, as a sustained release drug delivery vehicle for propranolol hydrochlo-

ride. Eur. Chem. Bull. 3, 593–604 (2014).
 51. Nahak, P. et al. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid 

carrier: An attempt to enhance anticancer activity. Langmuir 32, 9816–9825 (2016).
 52. Kumar, V. V. et al. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride 

lipids on plasma pharmacokinetics. Int. J. Pharm. 335, 167–175 (2007).
 53. Giron, D., Draghi, M., Goldbronn, C., Pfeffer, S. & Piechon, P. Study of the polymorphic behaviour of some local anesthetic drugs. 

J. Therm. Anal. 49, 913–927 (1997).
 54. Khalkhali, M., Mohammadinejad, S., Khoeini, F. & Rostamizadeh, K. Vesicle-like structure of lipid-based nanoparticles as drug 

delivery system revealed by molecular dynamics simulations. Int. J. Pharm. 559, 173–181 (2019).
 55. Böttner, M. & Winter, R. Influence of the local anesthetic tetracaine on the phase behavior and the thermodynamic properties of 

phospholipid bilayers. Biophys. J. 65, 2041–2046 (1993).
 56. Pereira, A. K. V., Barbosa, R. M., Fernandes, M. A. C., Finkler, L. & Finkler, C. L. L. Comparative analyses of response surface 

methodology and artificial neural networks on incorporating tetracaine into liposomes. Braz. J. Pharm. Sci. 56, 17808 (2020).
 57. Hu, S., Zhao, T., Li, H., Cheng, D. & Sun, Z. Effect of tetracaine on dynamic reorganization of lipid membranes. Biochim. Biophys. 

Acta Biomembr. 1862, 183351 (2020).

https://doi.org/10.14227/DT190112P6
https://doi.org/10.14227/DT190112P6


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21463  | https://doi.org/10.1038/s41598-021-99743-6

www.nature.com/scientificreports/

Acknowledgements
We would like to thank the Brazilian funding agencies FAPESP (#14/25372-0, #14/14457-5), FAPEAM (S.R.C. 
fellowship) and INCT-Bioanalítica. The authors also thank Gatteffosé Foundation and Dhaymers Química Fina, 
for kindly supplying the lipids.

Author contributions
E.P., L.N.M.R., D.R.A.: conceptualization, writing—review and editing; S.R.C., G.H.R.S., V.A.G.: HPLC, DLS, 
NTA, DSC and release kinetics experiments; S.R.C., M.L.: cell viability tests. S.R.C., M.C.B., H.M.: factorial 
design, Raman imaging; A.C.S.A., L.N.M.R.: FTIR; F.Y., M.K.K.D.F., D.C., B.K.: SANS analysis; G.H.R.S., M.C.B., 
F.Y., M.K.K.D.F.: review and editing.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 99743-6.

Correspondence and requests for materials should be addressed to E.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-99743-6
https://doi.org/10.1038/s41598-021-99743-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers
	Materials and methods
	NLC preparation. 
	Experimental design. 
	Determination of particle size, polydispersity, zeta potential, concentration and pH. 
	Quantification of tetracaine by HPLC. 
	Encapsulation efficiency and drug loading determination. 
	Transmission electron microscopy (TEM) images. 
	Infrared spectroscopy measurements (ATR-FTIR). 
	Differential scanning calorimetry (DSC) analysis. 
	X-ray diffraction (XRD) analysis. 
	Small Angle Neutron Scattering (SANS) analysis. 
	Physicochemical stability study. 
	Lipid miscibility assessed by Raman mapping. 
	Chemometric analysis. 
	In vitro release experiments. 
	Cell viability tests. 

	Results and discussion
	Experimental design. 
	DLS and NTA results. 
	Tetracaine encapsulation efficiency and drug loading. 
	Transmission electron microscopy. 
	Infrared analysis (ATR-FTIR). 
	Differential scanning calorimetry (DSC) analysis. 
	X-ray diffraction (XRD) analysis. 
	Small angle neutron scattering. 
	Physicochemical stability studies. 
	Miscibility of lipid excipients measured by Raman mapping. 
	In vitro release kinetics. 
	In vitro cytotoxicity tests. 

	Conclusions
	References
	Acknowledgements


