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Signal complexity indicators 
of health status in clinical EEG
Kelly Shen1*, Alison McFadden1 & Anthony R. McIntosh1,2

Brain signal variability changes across the lifespan in both health and disease, likely reflecting changes 
in information processing capacity related to development, aging and neurological disorders. While 
signal complexity, and multiscale entropy (MSE) in particular, has been proposed as a biomarker 
for neurological disorders, most observations of altered signal complexity have come from studies 
comparing patients with few to no comorbidities against healthy controls. In this study, we examined 
whether MSE of brain signals was distinguishable across patient groups in a large and heterogeneous 
set of clinical-EEG data. Using a multivariate analysis, we found unique timescale-dependent 
differences in MSE across various neurological disorders. We also found MSE to differentiate 
individuals with non-brain comorbidities, suggesting that MSE is sensitive to brain signal changes 
brought about by metabolic and other non-brain disorders. Such changes were not detectable in the 
spectral power density of brain signals. Our findings suggest that brain signal complexity may offer 
complementary information to spectral power about an individual’s health status and is a promising 
avenue for clinical biomarker development.

A growing literature suggests that some degree of brain signal variability is vital to optimal brain function. 
Although seemingly paradoxical, noisy (or complex) brain signals are related to a greater capacity for informa-
tion processing as compared to more predictable  signals1,2. Sample entropy is one way to capture the variability 
of a brain  signal3 and multiscale entropy (MSE), where complexity is examined across multiple  timescales4, has 
been particularly useful in broadening our understanding of the role of noise in brain health and disease. MSE, 
like other measures of entropy, captures the variability in a signal but can additionally differentiate variability 
induced by increasing randomness, such that white noise has low MSE  values4. MSE can therefore distinguish 
between the noise in brain signals induced by measurement and physiological variability. An increase in MSE 
has been observed in tasks requiring memory  retrieval5 or the integration of stimulus  features6 and seems to 
support accurate and stable  behavior6,7. MSE has been shown to have timescale-dependent shifts during brain 
 development8–11 and  aging12–14 that supports cognitive  function15,16, reflecting changes in the brain’s information 
processing capacity across the lifespan. MSE also reflects processing capacity changes related to various brain 
diseases including  stroke17,  dementia18–20, neurodevelopmental  disorders21–23, and psychiatric  disorders24–26.

In nearly all of these studies, brain signal complexity changes related to various brain diseases have been 
detected by comparing individuals with few to no comorbidities against matched healthy controls using data col-
lected in highly controlled laboratory environments. While MSE has been proposed for use as a clinical biomarker 
for various neurological  disorders27–29, whether differences in brain signal complexity can be detected across a 
heterogenous clinical population per se remains unknown. In this study, we leveraged the Temple University Cor-
pus EEG  database30 to test the utility of MSE as an indicator of health status in a large and heterogeneous clinical 
population. We found MSE of clinical-EEG signals differentiated various brain disorders. Interestingly, we also 
found MSE to differentiate between individuals with non-brain comorbidities and those without comorbidities.

Methods
Subjects. Clinical EEG data and corresponding physician reports were downloaded from the Temple Uni-
versity Hospital EEG Epilepsy Corpus (v0.0.1) containing 100 subjects deemed to have epilepsy and 100 subjects 
without epilepsy (https:// www. isip. picon epress. com/ proje cts/ tuh_ eeg/). 30. Subjects from the epilepsy group 
were included in our sample if the report indicated a previous diagnosis of epilepsy, if the EEG supported a 
diagnosis of epilepsy, or if the patient had experienced 2 or more unprovoked seizures occurring more than 24 h 
apart and the EEG did not contraindicate epilepsy. Subjects without epilepsy were included if they did not meet 
any of these criteria. Subjects from either group were excluded if a seizure occurred during the recording, if the 
subject’s level of consciousness was decreased, or if the subject was under the effect of a device likely to cause 
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substantial EEG artifact such as a pacemaker or ventilator. Subjects were also excluded if their recordings were 
deemed unsuitable in the preprocessing stage due to the presence of artifacts.

Demographic and clinical characteristics were extracted from the physician reports. For the various brain-
acting medications (anti-epileptic drugs, barbiturates, benzodiazepines, antipsychotics, and antidepressants), 
subjects were considered to be on them if their medication list included at least one medication of that category. 
The total number of other (i.e., not brain-acting) medications for each subject was computed by counting the 
number of total medications listed for the subject and subtracting the number of medications that fell into the 
brain-acting medication categories listed above. If the medication list stated “others” or a pluralized general 
category of medications (i.e. “antihypertensives”), two medications were added to the non-brain medication 
count. Most of the non-brain-acting medications reported (69.3%; 223/322) are those used to treat cardiovascular 
disease, diabetes or chronic respiratory illness.

Seizure classifications and terms were determined as outlined by the International League Against  Epilepsy31,32. 
A subject was considered to have experienced generalized or focal seizures if their physician’s report contained 
either a diagnosis falling in one of those categories or a description of seizures matching the expected presenta-
tion for that seizure classification. Thirty-four subjects experienced seizures of unknown classification and were 
excluded from analysis.

Brain disorders were grouped into broad classes to capture the range of disorders in the heterogeneous sample 
while maintaining reasonable sample sizes within each category. Accepted phrases for stroke included indication 
of a past or present ischemic stroke, hemorrhagic stroke, “CVA”, or intracerebral bleed. Accepted diagnoses for 
degenerative brain diseases included Alzheimer’s disease, Parkinson’s disease, and dementia. Accepted diagnoses 
for psychiatric disorders included anxiety, depression, bipolar disease, and schizophrenia. Accepted diagnoses for 
neurodevelopmental disorders included Down’s syndrome, ADHD, intellectual disabilities, and cerebral palsy. 
Finally, the other brain disorders and injuries group included patients that had not yet received a brain-related 
diagnosis at the time of data collection (48.1%; 13/27), patients that had experienced acute brain trauma (e.g., 
head trauma, hypoxic/anoxic injury; 25.8%; 7/27) or brain surgery (e.g., craniotomy, resection; 25.8%; 7/27).

Age or sex information was not available for three subjects and they were excluded from analysis. This resulted 
in a total sample size of 163 subjects.

EEG preprocessing & analysis. To allow for comparison with existing studies of MSE from EEG data col-
lected in the laboratory, we treated the clinical-EEG recordings as if they were “resting-state” data by following 
methods that have been previously  described12,13. Processing steps included epoching, bandpass filtering, rejec-
tion of trials with stimulation or excessive signal amplitude, and ICA-based artifact removal.

Each subject contributed one EEG recording. For subjects with multiple recordings, the recording correspond-
ing to the physician report containing the most complete clinical picture was selected. For recordings that were 
split into multiple segments, the longest of the segments was chosen for preprocessing. All preprocessing was 
performed using the FieldTrip toolbox in MATLAB (www. field tript oolbox. org)33. For each selected recording, 
19 scalp electrodes of the International 10–20 system that were common to all subjects were selected. These 
were electrode positions Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz. The 
resulting continuous recordings were segmented into 4-s trials, producing an average of 317 trials per subject, 
and bandpass filtered (Butterworth; 0.5 to 55 Hz). The majority of recordings were sampled at 250 Hz, but one 
subject that was sampled at 512 Hz was downsampled to 250 Hz before proceeding.

Two trial removal steps were then completed. The majority of subjects received photic stimulation. For these 
subjects, trials where photic stimulation began and ended were detected, and the trials within this range to 5 
trials past the end of stimulation were removed. Trials at the beginning of a recording where the amplitude of 
the photic channel was not zero were also removed. Next, trials with excessive signal amplitude were detected 
for removal. For each subject, 30% of the trials that were determined by visual inspection to be reasonably free 
of artifacts were selected. Global field power was calculated and its mean ± 5 std was used to reject trials with 
time points outside of this threshold. The average number of remaining trials per subject following both of these 
removal steps was 178.

Independent component analysis was next used to remove ocular and muscle artifacts. Components with 
topographical distributions typical of these artifacts were selected and their traces further examined. Where 
possible, probable ocular artifact components were confirmed via alignment of the component trace with the 
electrooculogram traces from the original recording. Probable muscle artifact components were confirmed by 
the presence of a high frequency component trace. Finally, any recordings not referenced to a common average 
were re-referenced.

MSE4,34 was computed by first coarse-graining the EEG time series of each trial into 20 scales. To produce 
the time series coinciding with a given scale t, data points from the original time series within non-overlapping 
windows of length t were averaged. Thus scale 1 represents the original time series, with 1000 data points per 
channel per trial resulting from 4 s of recording sampled at 250 Hz. Next, sample entropy was calculated for each 
time series across all scales. This measured the predictability of the amplitude between two versus three consecu-
tive data points (m = 2), with the condition that data points were considered to have indistinguishable amplitude 
from one another if the absolute difference in amplitude between them was ≤ 50% of the standard deviation of the 
time series (r = 0.5). The resulting values were averaged across trials to produce a single MSE curve per channel 
for each subject. As an entropy-based measure, MSE values are low for both completely deterministic as well as 
completely uncorrelated signals. We use the terms “finer” and “coarser” as relative descriptors for the range of 
timescales of MSE but there is no hard cutoff that distinguishes what is considered a finer or coarser timescale.

Spectral power (SPD) was calculated for each trial using the fast Fourier transform with a Hann window. 
To account for age-related global signal power changes, each recording was first normalized (mean = 0, SD = 1). 

http://www.fieldtriptoolbox.org
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Relative spectral power was then calculated for each trial, and results averaged across trials to acquire mean SPD 
per channel for each subject.

Partial least squares analysis. MSE and SPD measures were each correlated with the available demo-
graphic and clinical data using a Partial Least Squares (PLS)  analysis35,36. This multivariate statistical approach 
identifies a set of latent variables (LVs) that represent the maximal covariance between two datasets. First, the 
correlation between the MSE/SPD and clinical data was computed across subjects. Singular value decomposi-
tion was then performed on the correlation matrix to produce LVs, each containing three elements: (1) a set of 
weighted “saliences” that describe a spatiotemporal brain pattern of MSE/SPD measures; (2) a scalar singular 
value that expresses the strength of the covariance; and (3) a design contrast of correlation coefficients that 
express how the clinical data relate to the saliences. The mutually orthogonal LVs are extracted in order of mag-
nitude, whereby the first LV explains the most covariance between MSE/SPD and clinical data, the second LV the 
second most, and so forth. We report the relative percentage of total cross-block covariance explained by each 
LV, where the sum of this percentage across all LVs is 100. The significance of each LV was assessed with permu-
tation testing by randomly reordering subjects’ MSE/SPD pairing with clinical data to produce 1000 permuted 
sets for singular value decomposition, with the set of 1000 singular values forming the null distribution. The 
reliability of the MSE/SPD at each electrode in expressing the covariance pattern of each LV was assessed using 
bootstrap resampling. A set of 500 bootstrap samples was created by resampling subjects with replacement. The 
ratio between the saliences and the estimated standard error (bootstrap ratio) was taken as an index of reliabil-
ity. With the assumption that the bootstrap distribution is normal, the bootstrap ratio is akin to a Z-score and 
corresponding saliences are considered to be reliable if the absolute value of their bootstrap ratio is >= 2. For the 
clinical data, confidence intervals were calculated from the upper and lower bounds of the 95th percentile of the 
bootstrap distribution of the correlation with the scores from the MSE/SPD data. The scores are the dot-product 
of the saliences with the data for each subject and are similar to a factor score from factor analysis.

For the demographic and clinical data entered into the PLS analysis, age and number of non-brain medica-
tions were treated as continuous variables, while all other variables were categorical. Sex was coded as 0 (M) 
and 1 (F). The remaining variables were coded as 0 (not on drug or does not have condition) or 1 (on drug or 
has condition).

Note that because the data from the Temple University Hospital EEG Corpus were collected for clinical pur-
poses, the controls that are commonly a part of lab-based study designs (e.g., time of day of recording) cannot 
be considered or accounted for in our analysis. All analyses were performed and individual figures created using 
custom code in MathWorks MATLAB v.9.1 (https:// www. mathw orks. com/ produ cts/ matlab. html). Multi-panel 
figures were then created and labelled using Adobe Illustrator CS6 (https:// www. adobe. com/ ca/ produ cts/ illus 
trator. html). Editing of colors in Fig. 1 was also performed in Illustrator to enhance clarity.

Results
Demographic and clinical characteristics of the study sample are summarized in Table 1. Briefly, this hetero-
geneous sample spanned a large age range (7–91 years) with slightly more female (~ 56%) than male patients. 
Comorbidities were present in a proportion of the patients, with ~ 21% of patients having more than one brain-
related diagnosis, and ~ 15% were on more than one brain-acting medication. Nearly half (~ 48%) were on non-
brain-acting medications. There were more slightly more female than male patients in all but one brain disorder 
group. Each group had a wide-ranging span of ages, with the smallest range being over three decades. Figure 1 
illustrates medication use by patients with and without a diagnosis of epilepsy separately. A substantial proportion 
of patients in each group were either on multiple brain-acting drugs, on other non-brain-acting medications, or 

Figure 1.  Brain- and non-brain-acting medication use in study sample. (A) Medication use in patients 
diagnosed with epilepsy (N = 66); (B) Medication use in patients without a diagnosis of epilepsy (N = 97). 
Indicators of comorbidities (use of multiple brain-acting medications, non-brain-acting medications, or both) 
shown in green. BA: brain-acting; nonBA: non-brain-acting. Figure panels created in MATLAB v.9.1 and 
merged using Adobe Illustrator CS6; colors were also edited in Illustrator for clarity.

https://www.mathworks.com/products/matlab.html
https://www.adobe.com/ca/products/illustrator.html
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both (Fig. 1, green). These data together indicate that many patients were on multiple medications and/or had 
multiple diagnoses.

To determine whether different and heterogeneous clinical profiles can result in differences in brain signal 
complexity, MSE curves for each subject were correlated with their demographic and clinical data using a PLS 
analysis. The singular value decomposition of the correlation matrix resulted in two significant LVs. The first LV 
showed a differentiation between brain disorders, with a global shift towards greater signal complexity in finer 
time scales and lower signal complexity in coarser time scales across all electrodes for subjects who experienced 
generalized seizures or those taking antidepressants as compared to those with other brain conditions (i.e., focal 
seizures, stroke, neurodevelopmental disorders) or using other medications (i.e., anti-epileptics, barbiturates) 
(Fig. 2A,B). This shift in MSE was evident when a median-split was performed to classify subjects according 
to how much they expressed the patterns of the LV (i.e., a median split of the LV-scores, Fig. 2C). This LV was 
significant (p < 0.001) and accounted for 57.8% of the covariance across blocks.

The second LV differentiated older unhealthy (as indexed by the number of non-brain-related medications 
taken) males who did not have neurodegenerative disease from other subjects, and was associated with slightly 
higher entropy at the very finest scales and lower brain signal complexity across more coarse time scales (Fig. 3). 
This LV was significant (p < 0.01) and accounted for 29.0% of the covariance across blocks. The MSE profiles 
for each of the latent variables therefore reflected a unique timescale-dependent shift in brain signal complexity 
associated with different brain and non-brain disorders.

Changes in MSE can occur with changes in spectral  power8,37 so a similar analysis of SPD was performed. 
The singular value decomposition of the correlation matrix between SPD and the demographic and clinical 
data resulted in two significant and one marginally-significant LV. All three LVs differentiated between subjects 
with epilepsy from those without epilepsy. In the case of the first LV, the differentiation was between younger 
female patients with epilepsy and older unhealthy male patients with other neurological disorders (Fig. 4A). The 
other two LVs captured patients who experienced generalized (Fig. 4B) and focal seizures (Fig. 4C) in contrast 
to neurodevelopmental and neuropsychiatric diagnoses, respectively. Despite the first LV capturing a subset of 
unhealthy male patients, similar to that from the MSE analysis (Fig. 3), the SPD profiles themselves were highly 
similar across LVs, with a decrease in power the delta and theta ranges and an increase in power in the alpha, 
beta and gamma range for patients with epilepsy. The SPD profiles could not therefore differentiate the patients 
with non-neurological comorbidities (e.g., metabolic disease) from those without those comorbidities.

Table 1.  Demographic and clinical characteristics of study sample. Brain-acting medications include anti-
epileptics, barbiturates, benzodiazepines, antipsychotics, and antidepressants.

Variables Subjects (n = 163)

Age, mean (SD, range) 52.12 (19.88, 7–91)

Sex, n female (%) 91 (55.83)

Medication use

Brain-acting use, % 52.76

% of those with diagnosis of epilepsy 77.27

% of those without diagnosis of epilepsy 36.08

Anti-epileptic use, % 36.2

Barbiturate use, % 2.45

Benzodiazepine use, % 11.04

Antipsychotic use, % 9.82

Antidepressant use, % 11.04

Past medical history (% female, mean age, age range)

Diagnosis of any brain disorder 71.78 (62.39, 51.19, 7–87)

Diagnosis of epilepsy, % 40.49 (66.67, 45.12, 7–82)

History of stroke, % 19.02 (61.29, 64.55, 32–87)

Diagnosed degenerative brain disease, % 4.91 (62.5, 66, 47–84)

Diagnosed psychiatric disorder, % 12.27 (60, 59.1, 35–83)

Diagnosed neurodevelopmental disorder, % 3.68 (66.67, 42.5, 19–75)

Other brain disorder or injury, % 16.56 (40.74, 45.52, 19–79)

Indicators of comorbidity

Diagnosis of > 1 brain disorder, % 21.47

Use of > 1 brain-acting medication, % 15.34

Non-brain-acting medication use

% of study sample 47.85

Mean number of medications (SD, range) 2.26 (2.75, 0–13)
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Discussion
In this study, we examined whether brain signal complexity varied across individuals of a large and heterogene-
ous clinical population using a data driven approach. We found timescale-dependent differences in brain signal 
complexity for individuals who experience generalized seizures from individuals who have other brain disorders 
(e.g., focal seizures, stroke, neurodevelopmental disorders). We also found a timescale-dependent shift in brain 
signal complexity for older males on various medications not related to neurological or neurodegenerative dis-
ease that was not uniquely evident in the spectral power of the clinical-EEG recordings. Our findings suggest 
that brain signal complexity, as indexed by MSE, can provide additional insights into brain health status and 
function not captured by spectral power.

In line with the notion that the brain is a dynamical system in which “noise” allows for flexible functioning 
and a variety of metastable  states38,39, MSE can be considered as an index of functional  repertoire5. Changes to 
brain function and dynamics can occur with neurological disease and, indeed, differences in MSE from matched 
controls have been reported for both  epilepsy40 and neurodegenerative  disease28. Here we build on these previous 

Figure 2.  Brain signal complexity differentiates brain disorders. (A) Correlation coefficients and (B) bootstrap 
ratios of the first latent variable relating clinical data to MSE curves. (C) Average (± SEM) MSE curves, with 
subjects split into two groups according to their LV-scores. MSE curves were first averaged across electrodes 
within subjects, then averaged across subjects within each group. In (A), variables whose coefficients are 
significantly different from 0 are indicated in color for ease of interpretation. Figure panels created in MATLAB 
v.9.1 and merged using Adobe Illustrator CS6.

Figure 3.  Brain signal complexity differs for older unhealthy males. Correlation coefficients (A) and bootstrap 
ratios (B) of the second latent variable relating clinical data to MSE curves. (C) Average (± SEM) MSE curves, 
with subjects split into two groups according to their LV-scores. MSE curves were first averaged across 
electrodes within subjects, then averaged across subjects within each group. In (A), variables whose coefficients 
are significantly different from 0 are indicated in color for ease of interpretation. Figure panels created in 
MATLAB v.9.1 and merged using Adobe Illustrator CS6.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20192  | https://doi.org/10.1038/s41598-021-99717-8

www.nature.com/scientificreports/

Figure 4.  Spectral power density differentiates epilepsy from other brain disorders. (A) First latent variable 
(p < 0.001; 50.1% cross-block covariance) (B) second latent variable (p < 0.001; 29.9% cross-block covariance), 
and (C) third latent variable (p = 0.068; 10.1% cross-block covariance) of a PLS analysis relating clinical data 
to SPD. Left panels: correlation coefficients; middle panels: bootstrap ratios; right panels: average (± SEM) 
SPD, with subjects split into two groups according to their LV-scores. SPD functions were first averaged across 
electrodes within subjects, then averaged across subjects within each group. Figure panels created in MATLAB 
v.9.1 and merged using Adobe Illustrator CS6.
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reports by showing how the changes in MSE in these neurological conditions can be differentiated from each 
other. A complementary data-driven analysis of SPD showed changes in power across frequency bands that differ-
entiated epilepsy from all other diagnoses, consistent with numerous accounts of SPD changes in epilepsy when 
compared to healthy  controls41–45. That the shifts in SPD between patients with epilepsy and other neurological 
patients are opposite to previous comparisons between patients with epilepsy and healthy  controls43,46 suggest 
that there are differential changes to SPD in other neurological disorders as well. This is consistent with existing 
comparisons of these disorders with healthy  controls47–51. Interestingly, MSE profiles differentiated patients with 
generalized seizures from those with focal seizures but SPD profiles did not. The differentiation of individuals 
with non-neurological comorbidities was also unique to MSE. While the dominant patterns in SPD detected by 
our statistical model did not differentiate patients along the same lines as MSE, it does not preclude the possibil-
ity that certain subgroups could be differentiated if a direct comparison of particular subgroups was performed.

The MSE results replicate previous observations that the scale-dependent changes are indicative of neurode-
generative disorders (Fig. 3). Higher MSE at coarse-scales was shown to predict cognitive decline in Parkinson’s 
patients who would later develop  dementia18. The relative balance within subjects between finer and coarser scales 
also relates to cognitive status in  aging15. These results, considered in the context of the present data, suggest that 
the relative shifts of complexity across temporal scales may be a sensitive index to assist in clinical evaluation, 
particularly as a predictor of future cognitive  decline52. The demographic and clinical breakdown of the study 
sample, with its heterogeneity in medication use, comorbidities, age and sex across brain disorder groups suggests 
that any single variable in our model (e.g., age, sex, diagnosis) could not alone account for our findings. Instead, 
our data-driven approach suggests that, when considering all patients and all clinical profiles, the average MSE 
profiles for certain neurological conditions are similar (e.g., patients on antidepressants and those experiencing 
generalized seizures). It is possible that a different MSE feature may differentiate these groups of patients and 
further work is needed to determine the MSE features that are most valuable for the development of clinical tools.

Metabolic diseases such as diabetes mellitus are known to affect brain structure and cognitive  function53,54. 
More recently, changes to resting-state functional networks have been observed in individuals with diabetes 
mellitus compared to  controls55. Autonomic dysfunction, such as hypertension and heart failure, is also a well-
documented risk factor for cognitive  impairment56–58 and has been associated with changes to brain  structure59–61 
and  function62–64. As such, both diabetes mellitus and hypertension have been linked to neurological disorders 
such as  stroke65 and  dementia66. One previous report has shown how hypoglycemic conditions in individuals 
with Type 1 diabetes mellitus results in changes to brain signal  MSE67. We extend these previous findings by 
showing that the effects of various non-neurological diseases on the brain can be detected by MSE. Future work 
is needed to examine the mechanistic links between metabolic function and “noise” or information processing 
capacity of the brain.

We have demonstrated the dimensions along which MSE can differentiate clinical groups. An important 
next step will be to determine how well MSE performs within a predictive modelling framework. For example, 
machine learning approaches have great potential in clinical  applications68. In combination with larger clinical 
datasets, including the full Temple EEG  Corpus30, future work is needed to evaluate the utility of MSE in clas-
sifying and predicting patient populations. Together with evidence that MSE changes in response to medical 
 therapies69–72, MSE offers a promising avenue for the development of clinical biomarkers.
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