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Association of TLR 9 gene 
polymorphisms with remission 
in patients with rheumatoid 
arthritis receiving TNF‑α inhibitors 
and development of machine 
learning models
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Toll‑like receptor (TLR)‑4 and TLR9 are known to play important roles in the immune system, and 
several studies have shown their association with the development of rheumatoid arthritis (RA) and 
regulation of tumor necrosis factor alpha (TNF‑α). However, studies that investigate the association 
between TLR4 or TLR9 gene polymorphisms and remission of the disease in RA patients taking TNF‑α 
inhibitors have yet to be conducted. In this context, this study was designed to investigate the effects 
of polymorphisms in TLR4 and TLR9 on response to TNF‑α inhibitors and to train various models using 
machine learning approaches to predict remission. A total of six single nucleotide polymorphisms 
(SNPs) were investigated. Logistic regression analysis was used to investigate the association 
between genetic polymorphisms and response to treatment. Various machine learning methods were 
utilized for prediction of remission. After adjusting for covariates, the rate of remission of T‑allele 
carriers of TLR9 rs352139 was about 5 times that of the CC‑genotype carriers (95% confidence interval 
(CI) 1.325–19.231, p = 0.018). Among machine learning algorithms, multivariate logistic regression 
and elastic net showed the best prediction with the area under the receiver‑operating curve (AUROC) 
value of 0.71 (95% CI 0.597–0.823 for both models). This study showed an association between a 
TLR9 polymorphism (rs352139) and treatment response in RA patients receiving TNF‑α inhibitors. 
Moreover, this study utilized various machine learning methods for prediction, among which the 
elastic net provided the best model for remission prediction.

Rheumatoid arthritis (RA) is a severe chronic inflammatory reaction that occurs in the synovium of joints. Mor-
tality hazards are 60%–70% higher in patients with RA than in those without the  disease1. Although the exact 
etiology of RA is still under investigation, several genetic studies have suggested a role of genetic  factors2, 3. The 
most well-known genetic risk factors for RA are variations in human leukocyte antigen (HLA) genes, especially 
the HLA-DRB1  gene4. However, many other genes with potential links to RA remain to be investigated in order 
to discover further genetic risk factors and therapeutic variations for RA.

Tumor necrosis factor alpha (TNF-α) inhibitors play important roles in inflammatory states, including  RA5. 
There are five TNF-α inhibitors available for RA treatment (adalimumab, certolizumab, etanercept, golimumab, 
and infliximab), and clinical efficacies in RA are known to be similar among these  agents6. Patients with advanced 
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RA are treated with TNF-α inhibitors; however, the efficacy of these treatments is still questionable as several 
studies have reported that only one-third of the patients benefit from the  treatment7, 8.

Toll-like receptors (TLRs) play vital roles in both innate and acquired immune  systems9, and several studies 
have shown their association with the development of  RA10–12. Notably, TLRs are known as inducers of TNF-α 
 transcription13. Triad3A is an E3 ubiquitin–protein ligase that induces degradation of TLR4 and  TLR914. Hence, 
reduction in endogenous Triad3A results in TLR activation. Since Triad3A acts specifically on TLR4 and TLR9 
among the 13 members of the TLR family, the genes encoding TLR4 and TLR9 are important for understanding 
RA pathogenesis and potential therapeutic  intervention15–18. A study showed that TLR4 is specifically required 
for production of osteoclastogenic cytokines, thus, involved in pathophysiology of  RA19. Moreover, an in vitro 
study reported that TLR4 is required for the TNF-α  expression20. Another study revealed that TLR9 level was 
elevated on circulating and synovial monocyte subsets of RA  patients21.

Nuclear factor-kappaB (NFkB) is associated with the response to TNF-α inhibitors in autoimmune  diseases22. 
Due to this association, several proteins activating NFkB have been discovered and investigated, including TLRs. 
As TLRs activate pro-inflammatory cytokines including TNF-α and transcription factors such as NFkB, their 
polymorphisms may potentially affect treatment  outcomes23.

Recently, machine learning methods have been utilized as tools for decision making and clinical predic-
tions. Compared to traditional predictive models that use selective variables for calculation, machine learning 
approaches are favorable when developing novel prediction models. Moreover, remission in RA is important 
since clinical remission is considered a treat-to target goal. Therefore, this study was designed to investigate the 
effects of polymorphisms in TLR4 and TLR9 on response to TNF-α inhibitor and by training predictive models 
utilizing various machine learning approaches for remission.

Methods
Study patients. This prospective observational two-center study enrolled 105 patients who were prescribed 
TNF-α inhibitors (adalimumab, etanercept, golimumab, or infliximab) at Ajou University Hospital and Chung-
buk National University Hospital between July 2017 and December 2019. Data collection was conducted using 
electronic medical records. Data on sex, age, weight, height, duration of RA, autoantibodies against rheumatoid 
factor, anti-cyclic citrullinated peptide, concomitant medications, and comorbidities were collected from elec-
tronic medical records. Additionally, baseline data on disease activity score (DAS)-28 and its subcomponents, 
which included tender joint count (TJC)-28, swollen joint count (SJC)-28, global health (GH), and erythrocyte 
sedimentation rate (ESR) or C-reactive protein levels, were collected.

A good clinical response to anti-TNF therapy was defined as the basis of the DAS-28 scores. Patients with a 
DAS-28 score of less than 2.6 after 6 months of TNF-α inhibitor therapy, were considered to be in  remission24. 
DAS-28 was calculated as 0.56 × √(TJC28) + 0.28 × √(SJC28) + 0.70 × ln(ESR) + 0.014 ×  GH24.

This study was approved by the Institutional Review Boards of the Ajou University Hospital (approval number: 
AJIRB-BMR-OBS-17-153) and Chungbuk National University Hospital (approval number: 2017-06-011-004). 
All patients submitted written informed consents for participation. This study was conducted according to the 
principles of the Declaration of Helsinki (2013).

Genotyping methods. To select single nucleotide polymorphisms (SNPs) of TLR4 and TLR9 that might be 
associated with RA remission, genetic information on TLR4 and TLR9 was obtained from the PharmGKB data-
base, Haploreg 4.1, the NCBI Database of SNPs (dbSNP), and previous  studies22, 25–29. A total of six SNPS, includ-
ing four SNPs of TLR4 (rs11536889, rs1927907, rs1927911, and rs2149356) and two SNPs of TLR9 (rs352139 
and rs352140), were selected. Tag SNPs were chosen with minor allele frequency (MAF) of ≥ 25% in Japanese 
and Han Chinese populations using Haploview 4.2. Among selected SNPs, TLR4 SNP rs1927907 and rs1927911 
and TLR9 SNP rs352139 were previously studied for autoimmune related  conditions19, 25, 26.

Genomic DNA of the patients was isolated from ethylenediaminetetraacetic acid (EDTA)–blood samples 
using the QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s 
protocol. Genotyping was performed using a single-base primer extension assay with TaqMan genotyping assay 
in a real-time PCR system (ABI 7300, ABI), according to the manufacturer’s recommendations (Supplementary 
section).

Statistical analysis and machine learning methods. Student’s t-test was used to compare continuous 
variables between patients who showed good clinical response (remission) and those who did not. Chi-square 
test or Fisher’s exact test was used to compare categorical variables between the two groups. Multivariable logis-
tic regression analysis was used to examine independent factors affecting remission; factors with a p-value less 
than 0.05 in univariate analysis along with clinically relevant confounders were included in multivariable analy-
sis. The Hosmer–Lemeshow test was performed to confirm the model’s goodness of fit.

This study employed a random forest–based classification approach to analyze the importance of different 
variables for factors that affect remission. To prevent over-fitting, we selected seven features that are most impor-
tant. Various machine learning methods such as multivariate logistic regression, elastic net, random forest, and 
support vector machine (SVM) were utilized for prediction of remission. All the methods were implemented with 
the caret R package (version 6.0-88, https:// github. com/ topepo/ caret/). The area under the receiver-operating 
curve (AUROC), to assess the ability of the risk factor to predict complication, and its 95% confidence interval 
(CI) of each machine learning prediction models were described in this study. A p-value of less than 0.05 was 
considered statistically significant. Univariate statistical analysis was conducted using IBM SPSS statistics, ver-
sion 20 software (International Business Machines Corp., New York, USA). All other analyses were performed 
using R software version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria).

https://github.com/topepo/caret/
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To measure performance of each machine learning model, internal validation was done. The dataset was 
randomly divided for model development and evaluation in prediction process. After partitioning one data 
sample into five subsets, one subset was selected for model validation while the remaining subsets were used to 
establish machine learning models. Each five-fold cross-validation iteration was repeated 100 times to evaluate 
the power of the machine learning models.

Results
Among the 105 patients enrolled in this study, 7 patients were excluded due to incomplete medical data. The data 
from 98 patients receiving TNF-α inhibitors were analyzed. The mean age of the included patients was 53 years 
(range: 20–82 years), and there were 79 (80.6%) females. The mean duration of RA was 9 years, and 29 patients 
reached remission. To determine the possible effect of disease status on response to TNF-α inhibitors, baseline 
DAS-28 and its subcomponents were examined. Baseline DAS-28 and its subcomponents were not statistically 
significant between the remission and non-remission groups (Table 1). Marginal significance was found accord-
ing to sex (p = 0.059) and hypertension (p = 0.060).

As shown in Table 2, statistically significant associations between genotypes and RA remission were found 
for both TLR9 SNPs: T-allele carriers of rs352139 and rs352140 experienced approximately 3.3 and 4.5 times 
more frequent remission than patients with the CC genotype, respectively. A table of SNP with three genotypes 
is provided in the Supplementary section (Supplementary Table S2).

Multivariable analysis (Table 3) included sex, age, and factors with p < 0.05 from the univariate analysis. 
Because significant linkage disequilibrium was observed between rs352139 and rs352140 (r2 = 0.95), only 
rs352139 was included in the multivariable analysis. Among the included factors, rs352139 was significantly 
associated with RA remission (95% CI 1.325–19.231, p = 0.018). After adjusting for related covariates, the remis-
sion rate in T-allele carriers of rs352139 was about 5.1 times that in patients with the CC genotype. The Hos-
mer–Lemeshow test showed that the fitness of the multivariable analysis model was satisfactory (χ2 = 0.907, 2 
degrees of freedom, p = 0.636).

As shown in Fig. 1, after feature selection using performing five-fold cross-validated random forest approach, 
four important variables from feature selection (rs352139, body mass index (BMI), sulfasalazine, and anti-
citrullinated protein/peptide antibody (AC-PA)) were included in machine learning models. After performing 
five-fold cross-validated multivariate logistic regression, elastic net, random forest, support vector machine 
(SVM) models, the average area under the receiver-operating curve (AUROC), values across 100 random itera-
tions were shown in Table 4. The AUROC values for multivariate logistic regression, elastic net, and random 
forest indicated good performances of the models; 0.71, 0.71, and 0.70 respectively (95% CI 0.594–0.827 for 
multivariate logistic regression and elastic models and 0.584–0.821, respectively). Linear kernel SVM and radial 
kernel SVM revealed sub-optimal performances of the models; AUROC values of 0.60 and 0.67, respectively 
(95% CI 0.416–0.782 and 0.53–0.813, respectively). Figure 2 showed AUROC curves of three models that exhibit 
good interpretability and prediction rate. Details for the packages used and parameters used for training models 
are provided in the Supplementary section (Supplementary Table S1).

Discussion
The main finding of this study is that rs352139 of TLR9 was associated with treatment response to TNF-α inhibi-
tors in RA patients. The remission rate in T-allele carriers of rs352139 was about 5 times that in patients with 
the CC genotype. Multivariate logistic regression and elastic net were proven to be the most suitable method in 
predicting remission in patients with RA, with AUROC values of 0.71 (95% CI 0.594–0.827 for both models).

TNF-α is a pro-inflammatory cytokine involved in the innate immune  response30. It is involved in the patho-
genesis of several inflammatory conditions, especially RA. As the TNF-α level is elevated in patients with RA, 
TNF-α inhibitors have been frequently used to treat of RA. Unlike other agents for RA therapy, TNF-α inhibitors 
target cytokines and are used to treat patients with advanced RA.

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules that activate the innate 
immune system by interacting with TLRs. This evokes innate immune responses, including induction of inflam-
matory  cytokines31. DAMPs play an important role in the initiation of inflammation during tissue injury without 
infection and are may also be involved in chronic inflammation including autoimmune  diseases12. Once DAMPs 
are released during tissue injury, TLRs are activated, and the inflammatory cycle is initiated. The binding of TLRs 
to DAMPS activates the receptors, up-regulating pro-inflammatory mediators including cytokines and resulting 
in various inflammatory conditions and chronic  inflammation12.

Ligand-bound TLRs interact with elements on the surface of pathogens and activate the MyD88-related 
 pathways31, resulting in NFkB activation and cytokine gene  expression10. This ultimately leads to the induction 
of molecules associated with inflammation and release of pro-inflammatory components such as TNF-α32. TLRs 
are known as inducers of TNF-α  transcription13. Several studies have shown an increased expression of TLR4 
on RA synovial fluid macrophages and RA synovial  fibroblasts33, 34 and of TLR9 in RA synovial tissue fibroblasts 
and RA peripheral blood  monocytes18, 35.

Our results revealed that TLR9 polymorphism was associated with the remission rate of RA patients taking 
TNF-α inhibitors. The T-allele carriers of rs352139 had a significantly higher remission rate than patients with 
the CC genotype. TLR9 is expressed by B cells and functions with the B cell receptor complex, resulting in the 
release of rheumatoid  factor36. Previously, Bank et al.22 have reported an association of the GG genotype of 
rs352139 with nonresponse to TNF-α inhibitors in inflammatory bowel disease patients, which is in line with 
our findings. This association is possibly attributable to alteration in TLR function; however, further research is 
required to validate our results, as there are no published mechanistic studies on the association between this 
polymorphism and TNF-α inhibition or treatment response in advanced RA patients.
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Table 1.  Patient characteristics according to the response at 6 months treatment of TNF inhibitors. BMI: 
body mass index; ACPA: anticyclic citrullinated peptide antibody; DAS28: disease activity score 28 joints; ESR: 
erythrocyte sedimentation rate; CRP: C-reactive protein.

Characteristics, n (%) Remission (n = 29) No remission (n = 69) p-value

Sex 0.059

Male 9 (31.0) 10 (14.5)

Female 20 (69.0) 59 (85.5)

Age 51.4 ± 13.4 53.6 ± 13.9 0.399

 < 65 26 (89.7) 53 (76.8) 0.142

 ≥ 65 3 (10.3) 16 (23.2)

BMI, kg/m2 23.4 ± 3.0 22.3 ± 3.8 0.220

 < 23 13 (44.8) 42 (60.9) 0.144

 ≥ 23 16 (55.2) 27 (39.1)

Duration of rheumatoid arthritis, months 103.9 ± 87.8 111.0 ± 69.2 0.666

Rheumatoid factor 0.329

Positive 20 (69.0) 54 (78.3)

Negative 9 (31.0) 15 (21.7)

ACPA 0.177

Positive 17 (34.6) 49 (79.0)

Negative 9 (65.4) 13 (21.0)

Concomitant drug

Hydroxychloroquine 0.902

 Yes 16 (55.2) 39 (56.5)

 No 13 (44.8) 30 (43.5)

Leflunomide 0.665

 Yes 10 (34.5) 27 (39.1)

 No 19 (65.5) 42 (60.9)

Methotrexate 0.319

 Yes 19 (65.5) 52 (75.4)

 No 10 (34.5) 17 (24.6)

Sulfasalazine 0.111

 Yes 7 (24.1) 7 (10.1)

 No 22 (75.9) 62 (89.9)

Tacrolimus 0.986

 Yes 5 (17.2) 12 (17.4)

 No 24 (82.8) 57 (82.6)

Comorbidity

Diabetes 0.669

 Yes 1 (3.6) 5 (7.2)

 No 27 (96.4) 64 (92.8)

Dyslipidemia 1.000

 Yes 3 (10.7) 9 (13.0)

 No 25 (89.3) 60 (87.0)

Hypertension 0.060

 Yes 1 (3.6) 14 (20.3)

 No 27 (96.4) 55 (79.7)

Osteoporosis 0.725

 Yes 4 (14.3) 7 (10.1)

 No 24 (85.7) 62 (89.9)

Vitamin D deficiency 0.272

 Yes 1 (3.6) 9 (13.0)

 No 27 (96.4) 60 (87.0)

Baseline DAS28 with its subcomponents

DAS28 5.8 ± 1.2 5.8 ± 1.1 0.696

Tender joint count 28 9.6 ± 8.3 10.7 ± 74.3 0.782

Swollen joint count 28 6.6 ± 7.1 7.5 ± 5.7 0.872

Global health 55.3 ± 18.5 62.4 ± 20.2 0.167

ESR 54.7 ± 29.5 49.5 ± 27.3 0.379

CRP 3.0 ± 4.4 2.1 ± 2.5 0.113
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The utilization of machine learning approaches to predict remission in patients with RA receiving TNF-α 
inhibitors is novel in clinical research. In clinical settings, these models can be helpful in decision-making pro-
cess. To overcome over-fitting, this study utilized random forest, an ensemble method of bootstrap aggregated 
binary classification  trees37 for feature selection. We also demonstrated that multivariate logistic regression and 
elastic net, a penalized linear regression model that combine penalties of the lasso and ridge  methods38, models 
outperformed other models. Hence, these models may be useful in predicting remission in patients on TNF-α 
inhibitor treatment.

The limitations of our study are its small sample size and the lack of a detailed mechanism. Nevertheless, to 
our knowledge, this is the first study to investigate the effects of genetic variations in the TLR4 and TLR9 genes 
on favorable response rates to RA treatment in patients taking TNF-α inhibitors. Moreover, this study provides 
important features and prediction models based on machine learning algorithms including logistic regression, 
elastic net, random forest and SVM for remission in patients with RA receiving TNF-α inhibitors. Since our 
study developed prediction models using TLR4 and TLR9 gene polymorphisms for remission of RA in patients 
taking TNF-α inhibitors, result of this study could be utilized to develop and design individually tailored TNF-α 
inhibitor treatments for RA patients.

Table 2.  Genotype association with the remission at 6 months treatment of TNF inhibitors. TLR: toll-like 
receptor; TNF-α: tumor necrosis factor-α.

Gene, rs number Remission (DAS28 < 2.6) No remission (DAS28 ≥ 2.6) p-value

TLR4 rs11536889 0.578

GG, CG 11 (39.3) 23 (33.3)

CC 17 (60.7) 46 (66.7)

TLR4 rs1927907 1.000

CC, CT 27 (93.1) 64 (92.8)

TT 2 (6.9) 5 (7.2)

TLR4 rs1927911 0.178

AA, AG 21 (72.4) 40 (58.0)

GG 8 (27.6) 29 (42.0)

TLR4 rs2149356 0.335

TT, TG 21 (72.4) 56 (81.2)

GG 8 (27.6) 13 (18.8)

TLR9 rs352139 0.017

TT, CT 25 (89.3) 45 (65.2)

CC 3 (10.7) 24 (34.8)

TLR9 rs352140 0.008

TT, CT 26 (92.9) 46 (66.7)

CC 2 (7.1) 23 (33.3)

Table 3.  Multivariate analysis to identify predictors for the remission rate at 6 months treatment of TNF 
inhibitors. Adjusted for age, sex, and TLR9 rs352139. OR: odds ratio; CI: confidence interval. a T carriers of 
rs352139.

Crude OR (95% CI) p-value Adjusted OR (95% CI) p-value

Age < 65 2.618 (0.699–9.803) 0.153

Male 2.653 (0.944–7.462) 0.064

TLR9  rs352139a 4.444 (1.217–16.129) 0.024 5.05 (1.325–19.231) 0.018
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Figure 1.  Variable importance using random forest to predict remission in patients with RA receiving TNF-α 
inhibitors. Figure was drawn using caret R package version 6.0-88 (https:// github. com/ topepo/ caret/).

Table 4.  Comparisons of AUC for logistic regression, elastic net, random forest, and SVM models. AUROC: 
area under the receiver-operating curve; CI: confidence interval; SVM: Support vector machine.

AUROC 95% CI

Logistic regression 0.71 0.594–0.827

Elastic net 0.71 0.594–0.827

Random forest 0.70 0.584–0.821

SVM (linear) 0.60 0.416–0.782

SVM (radial) 0.67 0.530–0.813

https://github.com/topepo/caret/
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