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A new optimization algorithm 
to solve multi‑objective problems
Mohammad Reza Sharifi1, Saeid Akbarifard1*, Kourosh Qaderi2 & Mohamad Reza Madadi3*

Simultaneous optimization of several competing objectives requires increasing the capability of 
optimization algorithms. This paper proposes the multi‑objective moth swarm algorithm, for the 
first time, to solve various multi‑objective problems. In the proposed algorithm, a new definition for 
pathfinder moths and moonlight was proposed to enhance the synchronization capability as well as to 
maintain a good spread of non‑dominated solutions. In addition, the crowding‑distance mechanism 
was employed to select the most efficient solutions within the population. This mechanism indicates 
the distribution of non‑dominated solutions around a particular non‑dominated solution. Accordingly, 
a set of non‑dominated solutions obtained by the proposed multi‑objective algorithm is kept in 
an archive to be used later for improving its exploratory capability. The capability of the proposed 
MOMSA was investigated by a set of multi‑objective benchmark problems having 7 to 30 dimensions. 
The results were compared with three well‑known meta‑heuristics of multi‑objective evolutionary 
algorithm based on decomposition (MOEA/D), Pareto envelope‑based selection algorithm II (PESA‑II), 
and multi‑objective ant lion optimizer (MOALO). Four metrics of generational distance (GD), spacing 
(S), spread (Δ), and maximum spread (MS) were employed for comparison purposes. The qualitative 
and quantitative results indicated the superior performance and the higher capability of the proposed 
MOMSA algorithm over the other algorithms. The MOMSA algorithm with the average values of CPU 
time = 2771 s, GD = 0.138, S = 0.063, Δ = 1.053, and MS = 0.878 proved to be a robust and reliable model 
for multi‑objective optimization.

Today, most of the engineering problems require dealing with multiple conflicting objectives instead of a single-
objective. For such problems, the multi-objective optimization (MOO) is an efficient technique for finding a set 
of solutions that define the best tradeoff between competing objectives while satisfying several criteria. MOO 
was introduced by Vilfredo Pareto and today, it became an important tool for decision-making in many fields 
of engineering, where the optimal decisions should be taken between conflict objectives. Various methods 
have been proposed for the MOO. In 1984, Schaffer introduced the innovative idea of employing evolutionary 
optimization algorithms for multi-objective  optimization1. Since then, several researchers have attempted to 
develop different types of multi-objective evolutionary  algorithms2–12. The several advantages of the evolutionary 
optimization algorithms such as the gradient-free mechanism and the local optima avoidance have made them 
readily applicable to real problems in different fields of science.

The literature shows that the multi-objective evolutionary algorithms are able to efficiently approximate the 
true Pareto optimal solutions of multi-objective problems. However, in 1997, Wolpert and Macready, by pro-
posing the No Free Lunch-NFL theorem, claimed that there is no optimization technique capable to solve all 
optimization  problems13. According to this theorem, the superior performance of an optimization method in a 
category of problems cannot guarantee its’ superiority on another category of problems. This theorem encour-
ages the researchers to propose new optimization evolutionary algorithms for new categories of problems in 
the study field.

Some of the most well-known multi-objective evolutionary algorithms which have had desirable perfor-
mance in solving large scale engineering problems are Strength–Pareto Evolutionary Algorithm,  SPEA14,15, 
Non-dominated Sorting Genetic Algorithm,  NSGA16, Non-dominated Sorting Genetic Algorithm version 2, 
NSGA-II2, Multi-Objective Particle Swarm Optimization,  MOPSO17, Multi-Objective Evolutionary Algorithm 
based on Decomposition, MOEA/D18, Pareto Archived Evolution Strategy,  PAES19, and Pareto–frontier Differ-
ential Evolution,  PDE20, Multi-Objective Water Cycle Algorithm, MOWCA 21, and Multi-Objective Grey Wolf 
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Optimizer,  MOGWO22, Pareto envelope-based selection algorithm-II, PESA-II23 and Multi-Objective Ant Lion 
Optimizer,  MOALO24.

All the aforementioned multi-objective algorithms are indeed the developed version of their single-objective 
algorithms. One of the strongest single-objective algorithms within the family of evolutionary algorithms is 
the moth swarm algorithm (MSA). The MSA has been proven to be superior to over 80 other evolutionary 
 algorithms25–33. Due to the novelty of the MSA, there is still no study in the literature to design a multi-objec-
tive version of this algorithm. Accordingly, this paper proposes the multi-objective moth swarm algorithm 
(MOMSA), for the first time, in order to optimize the problems with multiple objectives. The proposed algorithm 
was tested on 7 multi-objective benchmark problems having 7 to 30 dimensions and the results were compared 
with three well-known meta-heuristics of MOEA/D, PESA-II and MOALO.

The rest of the paper is organized as follows. “Methodology” section presents a brief overview on the single-
objective MSA, and next the modeling procedure of the multi-objective MSA followed by the utilized perfor-
mance metrics. Next, the utilized benchmark functions (ZDT and DTLZ) are introduced and thereafter the 
comparative multi-objective algorithms are briefly introduced. The last part of “Methodology” section is devoted 
to the sensitivity analysis on the algorithms parameters. “Results and discussion” section provides the qualitative 
and qualitative results as well as relevant discussion. Eventually, “Conclusion” section concludes the work and 
outlines some recommendations for researchers.

Methodology
Single‑objective MSA. Single-objective MSA, proposed by Mohamed et al.25, was inspired by the behavior 
of moths in the nature. Here, a brief overview on this algorithm is provided. More details and the mathematical 
explanations can be found in Mohamed et al.25.

In the MSA, three groups of moths (pathfinders, prospectors, and onlookers) and a light source are con-
sidered. Pathfinders are capable to find the best position over the optimization space with First-In, Last-Out 
principle to guide the movement of the main swarm. Prospectors tend to wander into a random spiral path 
nearby the light sources, which have been marked by the pathfinders. Onlookers drift directly toward the best 
global solution (moonlight), which has been achieved by prospectors’ moths. Therefore, the possible solution 
in MSA is represented by position of light source, and the quality of this solution is considered as luminescence 
intensity of the light source.

The MSA algorithm is performed through three phases of initialization, reconnaissance, and transverse 
orientation. At the beginning of the flight, the position of each moths (initial solution) is randomly determined 
by a randomization function (initialization phase). Then, the type of each moth in the population is selected 
based on the fitness value (objective function). The best moth is considered as pathfinder (light sources) and the 
best and worst groups of moths are considered as prospectors and onlookers, respectively. During the prospect-
ing process, the moths may be concentrated in some parts of the response space, led to entrapment in the local 
optima and reducing the quality of some moth populations. To prevent premature convergence and improve 
the diversity in solutions, a part of the moth population is required to prospect the areas with less swarm. 
Pathfinders are responsible for this role. Thus, they update their position through interaction with each other 
and crossover operations and with the ability to fly long distances (known as lévy mutation) and prevent the 
stop in local optima (reconnaissance phase). The flight path of moths toward a light source can be described 
by cone-shaped logarithmic spirals. Accordingly, a set of paths located on the surface of the cone, with a fixed 
central angle, can describe the flight path of moths to the light source. A group of the moth with the highest 
luminescence intensities is selected as the prospectors. The number of prospectors should be reduced in each 
iteration (transverse orientation phase).

During the optimization process in the MSA, by reducing the number of prospectors, the number of onlook-
ers increases. This leads to a faster convergence to the global solution. The increased convergence speed is in fact, 
due to the celestial navigation. An onlooker moth with the lowest luminescence can travel directly toward the 
best solution (moon). Hence, to control the recent movement, this step of the MSA algorithm is designed such a 
way that onlookers are forced to search more effectively through focusing on important points of prospector. To 
this purpose, the onlookers are divided into two parts with Gaussian walk and associative learning mechanism. 
In the MSA, the type of each moth is alternately varied. Thus, each prospector that provides a better solution 
(greater luminescence than the light source) is promoted to the pathfinder. At the end of each step, the new light 
and moonlight sources will be available as possible solutions.

The problem-solving steps of the single-objective MSA algorithm are shown by Algorithm 1 .
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Mathematical model of multi‑objective problems. Optimizing multi-objective problems (MOPs) 
involves more than one objective function that should be optimized simultaneously. Equation (12) expresses the 
mathematical form of the objective function of the MOP problem.

where X = x1, x2, x3, . . . , xd is the vector of variables, and d and m refer to the number of variables and objec-
tives, respectively.

The most common solution for MOPs is to keep a set of the best solutions in an archive and update it per 
iteration. In this method, the best solutions are defined as non-dominant solutions or Pareto optimal solutions. 
A solution can be considered as a non-dominant solution if and only if the following conditions are  met34:

Pareto dominance: U = (u1, u2, u3, . . . , un) < V = (v1, v2, v3, . . . , vn) if and only if U is slightly lower than 
V in the objective space, which means:

Algorithm 1: MSA algorithm steps
1 Start

2
Creating a random initial population based on Equation (1):

= [0,1] × ( − ) + , ∀ ∈ {1,2, … , }, ∈ {1,2, … , } (1)  
3 For i=1:n (number of moth)

4 Selecting each type of moth based on the fitness value (objective function)

5 End

6 Until the search process is complete (maximum number of algorithm iterations)

7

Producing new pathfinder moth using Equations (2) through (7):
( ) = √

2
×

1
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2( − )
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2
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(6)

+1⃗⃗⃗⃗⃗⃗⃗⃗ = {
⃗⃗⃗⃗ (⃗⃗⃗⃗ ) ≥ (⃗⃗⃗⃗ )

⃗⃗⃗⃗ (⃗⃗⃗⃗ ) < (⃗⃗⃗⃗ )
(7)

8 Updating the prospector moth based on Equation (8):
+1 = | − |. . cos(2 ) + , ∀ ∈ {1,2, … , }; ∈ { + 1, + 2, … , } (8)

9

Movement of onlooker moth based on their type using Equations (9) through (11):
+1 = + 1 + [ 2 × − 3 × ]; ∀ ∈ {1,2, … , } (9)
1~ ( ( )) ⊕ ( , × ( − )) (10)
+1 = + 0.001. [ − , − ] + (1 − ) . 1. ( − ) +

2
. 2. ( − ) (11)

10 Fitness value (objective function) for each new member of moth population is 
calculated. 

11 End

12 Best global solution (moonlight) is available

13 End

(12)F(X) = [F1(X), F2(X), . . . , Fm(X)]
T ,
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Pareto optimal solution: U vector is an optimal solution if and only if none of the other solutions can dominate 
U. A set of Pareto optimal solutions is called Pareto optimal front (PFoptimal).

Figure 1 shows that of the three solutions A, B, and C, the solution C has the maximum values for f1 and f2; 
as a result, it is considered the dominant solution. On the contrary, both solutions A and B can be taken into 
account as non-dominant solutions.

Multi‑objective MSA. In order to develop the single-objective MSA to an efficient multi-objective optimi-
zation algorithm, the dominant features of the algorithm must be properly defined. Accordingly, the definition 
for selecting the type of moths and the best value (moonlight) should be changed to a multi-objective space. 
In this way, the crowding-distance mechanism was employed to select the most efficient (best) solutions in the 
population as the pathfinder moths and moonlight (global optimum). This mechanism shows the distribution of 
non-dominant solutions around a non-dominant solution. Figure 2 shows the calculation of crowding-distance 
for point i (moth) from the Pareto front.

The crowding-distance for a moth can also be calculated by the following equations:

where NO refers to the number of problem objective functions, ̂Xl
f  refers to the Pareto front, f max

j  and f min
j  are 

the maximum and minimum values obtained for the jth objective function, and f i+1
j  and f i−1

j  are the values for 
the jth objective function for i + 1 and i − 1 moths.

(13)
{

fi(U) ≤ fi(V)∀i
fi(U) < fi(V)∃i

i = 1, 2, 3, . . . ,m.
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j

∣
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Figure 1.  Pareto optimal solutions (A and B) for 2D space.
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A lower crowding-distance value shows a greater distribution of solutions in a specific region. In multi-
objective problems (MOPs), this parameter is calculated in the objective spaces; hence, all the non-dominant 
solutions must be classified based on the values for one of the objective functions. These parameters should be 
calculated for each of the non-dominant solutions. An important step in the MOMSA is the selection of the 
moonlight and pathfinders from the population, as the best solution in each iteration. This affects the MOMSA 
synchronization capability and retains a good spread of non-dominant solutions.

The crowding-distance must be calculated for all non-dominant solutions and in all iterations of the algo-
rithm. It is essential to determine the solutions having the highest crowding-distance values. Then, the non-dom-
inant solutions are considered as the moonlight and the pathfinders. In addition, the prospectors and onlookers 
are determined based on the crowding-distance values. Some non-dominant solutions are made in proximity to 
the moonlight and pathfinders in the next iteration, and their distance values are reduced and declined.

It is essential to reserve the non-dominant solutions in an archive to achieve the Pareto front sets. This archive 
gets updated with each iteration and the dominated solutions are eliminated from the archive. Therefore, when-
ever the number of members in the Pareto archive becomes larger than the size of Pareto archive, the crowding-
distance is used to eliminate the non-dominant solutions that have the lowest crowding-distance values among 
the Pareto archive members. MOMSA has a great potential for the exploitation in the design space, it focuses on 
the near-optimal solutions and exploits the long-distance solutions.

Furthermore, the Lévy mutation and the collaborative learning mechanisms were used to improve the exploi-
tation and exploration capabilities of the developed algorithm, respectively. MOMSA usually starts with the 
exploitation phase, the prospectors move toward the pathfinders and the onlookers move toward the prospec-
tors. However, in the early iteration, these motions act as a heuristic factor. This trend can be considered as the 
MOMSA capability to find a wide range of design space, while focusing on the optimal non-dominant solutions.

In MOMSA, a simple approach is defined to handle the limitations of MOPs. After obtaining a set of solutions 
in each iteration, all the limitations are investigated and some solutions in the possible space are selected. Then, 
the non-dominant solutions are selected from the possible solutions and are imported into the Pareto archive. 
Finally, the moonlight and pathfinders are selected from this archive for the next iteration. Different problem-
solving steps of the MOMSA algorithm are shown in Algorithm 2. 

Figure 2.  Calculating crowding-distance for point i (moth).
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Performance metrics. In order to evaluate the performance of multi-objective evolutionary algorithms in 
optimization of multi-objective problems, four performance metrics of generational distance (GD), metric of 
spacing (S), metric of spread (Δ), and maximum spread (MS) were used. Here, these metrics are briefly intro-
duced.

GD, defined by Van Veldhuizen and  Lamont35, refers to the distance between the generated Pareto front with 
the Pareto optimal front. This metric determines the ability of an algorithms to find a set of non-dominant solu-
tions that has the lowest distance to the Pareto optimal front. In other words, the algorithms with the lowest GD 
have the best convergence with the Pareto optimal front. GD is calculated by Eq. (17)36:

Algorithm 2: Steps of MOMSA algorithm
1 Beginning
2 Selecting MOMSA initial parameters: n0, nf, np, n, T, and Pareto archive size.
3 Creating a random population based on Equation (1).
4 For i=1:n (number of moths)
5 Calculating the value of multi-objective functions for each moth in the initial population

6
Determining non-dominant solutions in the initial population of moths and reserving 
them in Pareto archive

7
Determining non-dominant solutions among possible problem solutions and 
reserving them in Pareto archive

8
Calculating crowding-distance for each member of the Pareto archive using 
Equation (14).

9 Selecting the type of each moth based on the crowding-distance value
10 End
11 Until the search process is completed (maximum number of iterations of the algorithm)
12 Generating novel pathfinder moths by Equations (2) through (7).

13 Updating prospector moths based on Equation (8).

14 Moving onlooker moths based on their type using Equations (9) through (11).

15 Calculating value of multi-objective functions for each moth in the novel population 

16 Determining possible novel solutions from the novel population

17
Determining novel non-dominant solutions among possible solutions and reserving 
them in Pareto archive

18 Eliminating any dominant solution from the Pareto archive

19
If the number of Pareto archive members exceeds the specified size, go to Line 20. 
Otherwise, go to Line 21.

20

Calculating the value of crowding-distance (Equations 14-16) for each member of 
the Pareto archive and eliminating additional members with lower crowding-
distance

21

Calculating the value of crowding-distance (Equations 14-16) for each member of 
the Pareto archive to select the type of each moth and determining moonlight and 
novel pathfinder moths 

22 End
23 Best global solution (moonlight) is available
24 End

(17)GD =
1

NPF

(

NPF
∑

i=1

d2i

)

1
2

,
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where NPF is the number of members in the generated Pareto front (PF) and d is the Euclidean distance between 
ith member in PFg and the nearest member in PFoptimal. Figure 3 shows a schematic view of the GD metric in 2D 
space. The best metric derived for GD is zero, so that PFg is exactly on PFoptimal.

S refers to the metric of spacing which indicates the distribution of non-dominated solutions obtained by an 
algorithm. This metric shows how well the obtained solutions are distributed among each  other37. This metric 
is calculated by Eq. (18)38:

where di = minj(
∣

∣

∣
f i1(x)− f

j
1(x)

∣

∣

∣
+

∣

∣

∣
f i2(x)− f

j
2(x)

∣

∣

∣
  , i,j = 1,2,…,NPF, and d is the mean of all di. The lowest value 

of S leads to the best uniform distribution in PFg. If all the non-dominant solutions are evenly distributed in PFg, 
the values of di and d are the same; as a result, the value of S is equal to zero. Figure 4 shows a schematic view of 
S metric.

Metric of spread (Δ) shows the extent of spread attained by the non-dominated solutions obtained from an 
 algorithm38. It is calculated by Eq. (19)38:

where df and dl are the Euclidean distance between the extreme solutions (starting and ending points) in PFoptimal 
and PFg respectively, and di refers to the distance between each point in PFg and the closest point in PFoptimal. 
The value of Δ is always larger than zero and its lower value means the best distribution and extension of solu-
tions. If Δ is equal to zero, the excellent conditions occur, indicating that extreme solutions of PFoptimal have been 
found and that di = d for all non-dominated points. Figure 5 shows a schematic view of Δ metric for a Pareto 
optimal front.

Maximum spread (MS) shows how much the starting and ending points of PF line overlap the similar points 
on the PFoptimal line; hence, the proximity of the two extreme points in PFoptimal and PFg is measured. In other 
words, this metric shows how much the lines of discovered non-dominant solutions overlap the Pareto line; 
therefore, the greater overlapping, the better. This metric is defined as Eq. (20)39:

where f max
i  and f min

i  are the maximum and minimum values of the ith objective in PFg, respectively, and Fmax
i  

and Fmin
i  are the maximum and minimum values of the ith objective in PFoptimal, respectively. A larger value of 

MS refers to better expansion of solutions.

Benchmark problems. In order to evaluate the capability and performance of the developed MOMSA 
algorithm, which was coded in the programming section of MATLAB R2014a software (www. mathw orks. com), 
several standard multi-objective benchmark functions were used. These problems were different types of multi-
objective problems (MOPs) with various features that were selected from a set of valid studies. In all the bench-
mark functions, in order to achieve reliable results, 10 independent runs of each algorithm were compared. In 
all these cases, the mean of the best results was shown. Moreover, for appropriate and fair comparison with the 
other algorithms, the number of iteration and the size of the Pareto archive for all MOPs were considered as the 
same and determined by the sensitivity analysis.

ZDT benchmark problems. The ZDT test suite, created by Zitzler et al.39 consists of six test problems. It is the 
most widely employed suite of benchmark multi-objective problems in the EA literature. Table 1 shows the ZDT 
standard bi-objective benchmark functions with different dimensions.

DTLZ benchmark problems. The DTLZ test suite, created by Deb et al.40 is unlike the majority of multi-objec-
tive test problems in which the problems are scalable to any number of objectives. Table 2 shows DTLZ1 and 
DTLZ2 standard tri-objective benchmark functions with 7 and 12 dimensions.

Comparative algorithms. To investigate the efficiency of the proposed MOMSA, the results were com-
pared with three well-known multi-objective algorithms of MOEA/D, SPEA-II and MOALO.

The MOEA/D algorithm, proposed by Zhang and  Li18, needs to decompose the target MOP. Zhang and  Li18 
used the Tchebycheff decomposition approach to serve this purpose. In MOEA/D, the population is composed of 
the best solution found so far for each subproblem. Only the current solutions to its neighboring subproblems are 
exploited for optimizing a subproblem in MOEA/D. The PESA-II algorithm, proposed by Corne et al.23, utilizes 
a selection technique for MOO algorithms in which the unit of selection is a hyper box in the objective space. In 
this technique, instead of assigning a selective fitness to an individual, the selective fitness is assigned to the hyper 
boxes in objective space which are currently occupied by at least one individual in the current approximation to 
the Pareto frontier. A hyper box is thereby selected, and the resulting selected individual is randomly chosen from 
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this hyper box. This method of selection is shown to be more sensitive to ensuring a good spread of development 
along the Pareto frontier than individual-based selection. The MOALO algorithm, proposed by Mirjalili et al.24, 
was inspired by the mimics the hunting mechanism of antlions and the interaction of their favorite prey, ants, 
with them in nature. In this algorithm, a repository is first employed to store non-dominated Pareto optimal 
solutions obtained so far. Solutions are then chosen from this repository using a roulette wheel mechanism based 
on the coverage of solutions as antlions to guide ants towards promising regions of multi-objective search spaces.

Sensitivity analysis. Sensitivity analysis is an essential ingredient of MOO algorithms building and quality 
assurance. In this study, a sensitivity analysis was carried out to obtain the best values of the algorithm’s param-

Figure 3.  Schematic of the GD metric for  MOPs35.

Figure 4.  A schematic view of S metric for  MOPs37.

Figure 5.  Schematic view of metric of spread (Δ) for  MOPs2,38.
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eters. Here the results of the sensitivity analysis on the number of iterations for all the utilized algorithms in 
solving the ZDT1 benchmark function are presented. As seen in Fig. 6, by increasing the number of iterations, 
the obtained Pareto front gets closer to the optimal Pareto front, so that, after 1000 iterations, the obtained Pareto 
front has been largely overlapped to the optimal Pareto front.

The quantitative values of performance metrics at the Table 3 confirmed the above results. This table shows 
that after 1000 iterations, all the performance metrics of the utilized algorithms have reached their best values. 
Accordingly, the number of iterations was considered to be 1000 for all the algorithms.

Table 4 provides the best values of MOMSA, MOEA/D, MOALO, and PESA-II algorithms’ parameters based 
on the sensitivity analysis. In all the benchmark functions, in order to achieve reliable results, 10 independent 
runs of each algorithm were compared. Furthermore, to have a fair comparison, the size of Pareto archive was 
considered the same.

Results and discussion
As mentioned in the introduction, this study proposes the multi-objective moth swarm algorithm to solve vari-
ous multi-objective problems. In order to evaluate the performance of the developed MOMSA algorithm, four 
evaluation metrics of GD, S, Δ, and MS were used. The results of MOMSA were compared with three well-known 
algorithms of MOEA/D, PESA-II and MOALO. Tables 5, 6, 7 and 8 indicate the values of the performance metrics 

Table 1.  ZDT multi-objective test function  suite39 (Incidentally, due to being binary encoded, ZDT5 has often 
been omitted from analysis elsewhere in the EA literature.

Function name d Problem Variable bounds Pareto front

ZDT1 30

OF1(x) = x1

OF2(x) = g(x)
(

1−

√

OF1(x)
g(x)

)

                            (21)

g(x) = 1+
9
∑d

i=2 xi
d−1

xi ∈ [0, 1]
i = 2, . . . , d

Convex

ZDT2 30

OF1(x) = x1

OF2(x) = g(x)
(

1−
OF1(x)
g(x)

)2

                            (22)

g(x) = 1+
9
∑d

i=2 xi
d−1

xi ∈ [0, 1]
i = 2, . . . , d

Non-convex

ZDT3 30

OF1(x) = x1

OF2(x) = g
[

1−

√

OF1(x)
g(x) −

OF1(x)
g(x) sin(10πxi)

]

   (23)

g(x) = 1+
9
∑d

i=2 xi
d−1

xi ∈ [0, 1]
i = 2, . . . , d

Convex, disconnected

ZDT4 10

OF1(x) = x1

OF2(x) = g
(

1−

√

OF1(x)
g(x)

)

                                   (24)

g(x) = 1+ 10(d − 1)+
∑d

i=2

[

x2i − 10cos(4πxi)
]

x1 ∈ [0, 1]
x2, . . . , xd ∈ [−5, 5]
i = 2, . . . , d

Non-convex

ZDT6 10

OF1(x) = 1− exp(−4x1)sin
6(6πx1)

OF2(x) = g(x)

[

1−

(

OF1(x)
g(x)

)2
]

                            (25)

g(x) = 1+ 9

(

∑d
i=2 xi
d−1

)0.25

xi ∈ [0, 1]
i = 2, . . . , d

Non-convex, Nonuniformly spaced

Table 2.  DTLZ1 and DTLZ2 tri-objective test  function39.

Function name d Problem Parameter domains Pareto front

DTLZ1 7

OF1 =
(

1+ g
)

0.5
∏M−1

i=1 yi

OFm=2:M−1 =
(

1+ g
)

0.5

(

∏M−m
i=1 yi

)

(1− yM−m+1)                   (26)

OFM =
(

1+ g
)

0.5(1− y1)

g = 100

[

k +
∑k

i=1((zi − 0.5)2 − cos(20π(zi − 0.5)))

]

[0, 1] Triangular-linear

DTLZ2 12

OF1 =
(

1+ g
)
∏M−1

i=1 cos(yiπ/2)

OFm=2:M−1 =
(

1+ g
)

(

∏M−m
i=1 cos(yiπ/2)

)

sin(yM−m+1π/2)   (27)

OFM =
(

1+ g
)

sin(y1π/2)

g =
∑k

i=1 (zi − 0.5)2

[0, 1] Inverted-concave
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(for 10 independent runs) of the utilized multi-objective algorithms in optimization of ZDT bi-objective and 
DTLZ tri-objective benchmark functions.

As can be seen, the developed MOMSA algorithm was superior in the majority of the standard bi-objective 
and tri-objective benchmark functions. In terms of CPU time, the proposed MOMSA algorithm had the low-
est executing time for all the bi-objective and tri-objective benchmark functions. For example, for the ZDT6 

Figure 6.  Sensitivity analysis on the number of iterations in the ZDT1 multi-objective test function.

Table 3.  Statistical results for Sensitivity analysis on the number of iterations in the ZDT1 multi-objective test 
function.

Algorithm MOMSA MOEA/D

Number of iterations 100 Iteration 500 Iteration 1000 Iteration 100 Iteration 500 Iteration 1000 Iteration

GD 0.062 0.026 0.017 0.244 0.075 0.008

S 0.062 0.056 0.044 0.059 0.054 0.049

Δ 0.972 0.754 0.581 1.514 1.008 0.865

MS 0.848 0.988 0.990 0.569 0.727 0.966

Algorithm MOALO PESA-II

Number of iterations 100 Iteration 500 Iteration 1000 Iteration 100 Iteration 500 Iteration 1000 Iteration

GD 0.098 0.083 0.022 0.164 0.091 0.048

S 0.084 0.072 0.066 0.083 0.074 0.063

Δ 1.793 1.360 1.247 0.923 0.812 0.719

MS 0.272 0.341 0.586 0.807 0.851 0.972
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Table 4.  Parameter setting of the MOMSA, MOEA/D, MOALO, and PESA-II algorithms in the multi-
objective test functions.

Algorithms Number of iterations Number of design variables Pareto front archive size

MOMSA 1000 7–10–12–30 100

MOEA/D 1000 7–10–12–30 100

MOALO 1000 7–10–12–30 100

PESA-II 1000 7–10–12–30 100

Table 5.  Statistical results for GD evaluation metrics on ZDT bi-objective and DTLZ tri-objective test 
function suite. The bold values in the table represnt the best values obtained by the utilized algorithms for each 
benchmark function.

Function ZDT1 (bi-objective) ZDT2 (bi-objective) ZDT3 (bi-objective) ZDT4 (bi-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

GD

Worst 0.048 0.224 0.080 0.109 0.056 0.098 0.052 0.109 0.024 0.431 0.056 0.171 0.668 9.818 42.430 28.987

Best 0.017 0.008 0.022 0.048 0.007 0.003 0.017 0.075 0.012 0.087 0.008 0.051 0.137 6.176 6.031 7.140

Average 0.028 0.159 0.044 0.079 0.029 0.033 0.033 0.095 0.017 0.220 0.028 0.087 0.391 7.901 21.070 17.466

Std. dev. 0.014 0.102 0.026 0.026 0.024 0.043 0.015 0.015 0.005 0.150 0.022 0.056 0.294 1.504 16.942 10.931

CPU time 2386 s 2512 s 3375 s 2693 s 2961 s 3079 s 3755 s 3090 s 2821 s 2842 s 3240 s 2909 s 1274 s 1371 s 1624 s 1595 s

Function ZDT6 (bi-objective) DTLZ1 (tri-objective) DTLZ2 (tri-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

GD

Worst 0.083 0.441 0.537 1.117 1.490 11.945 34.165 30.017 0.067 0.070 0.050 0.163

Best 0.030 0.018 0.058 0.052 0.013 3.468 26.593 22.179 0.009 0.007 0.019 0.128

Average 0.063 0.131 0.325 0.560 0.411 6.490 30.775 26.767 0.029 0.023 0.031 0.148

Std. dev. 0.024 0.207 0.198 0.464 0.720 3.869 3.570 3.296 0.026 0.031 0.015 0.016

CPU time 1579 s 1726s 1953s 2393 s 4194 s 4312 s 4846 s 4574 s 4184 s 4215 s 4581 s 4438 s

Table 6.  Statistical results for S evaluation metrics on ZDT bi-objective and DTLZ tri-objective test function 
suite. The bold values in the table represnt the best values obtained by the utilized algorithms for each 
benchmark function.

Function ZDT1 (bi-objective) ZDT2 (bi-objective) ZDT3 (bi-objective) ZDT4 (bi-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

S

Worst 0.054 0.055 0.076 0.075 0.077 0.062 0.064 0.062 0.156 0.263 0.213 0.255 0.101 0.688 0.278 0.558

Best 0.044 0.049 0.066 0.063 0.040 0.056 0.024 0.052 0.147 0.129 0.124 0.234 0.047 0.166 0.081 0.160

Average 0.050 0.051 0.071 0.068 0.055 0.059 0.044 0.056 0.151 0.169 0.171 0.244 0.076 0.336 0.146 0.365

Std. dev. 0.004 0.003 0.004 0.006 0.017 0.003 0.022 0.004 0.004 0.063 0.041 0.010 0.024 0.238 0.091 0.195

Function ZDT6 (bi-objective) DTLZ1 (tri-objective) DTLZ2 (tri-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

S

Worst 0.077 0.059 0.095 0.555 0.051 0.404 1.394 14.942 0.016 0.215 0.081 0.117

Best 0.045 0.036 0.063 0.072 0.014 0.008 0.552 2.723 0.007 0.186 0.012 0.087

Average 0.059 0.045 0.080 0.268 0.036 0.120 0.954 8.475 0.011 0.204 0.062 0.100

Std. dev. 0.016 0.009 0.014 0.204 0.018 0.190 0.415 5.016 0.004 0.012 0.033 0.014

Table 7.  Statistical results for Δ evaluation metrics on ZDT bi-objective and DTLZ tri-objective test function 
suite. The bold values in the table represnt the best values obtained by the utilized algorithms for each 
benchmark function.

Function ZDT1 (bi-objective) ZDT2 (bi-objective) ZDT3 (bi-objective) ZDT4 (bi-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

Δ

Worst 0.910 1.180 1.443 0.831 1.167 1.086 1.198 0.806 0.941 1.383 1.658 1.007 1.298 1.191 1.018 0.996

Best 0.581 0.865 1.247 0.719 0.858 0.978 1.006 0.647 0.872 1.288 1.476 0.916 0.921 1.132 1.001 0.936

Average 0.696 1.044 1.345 0.763 1.011 1.045 1.126 0.721 0.910 1.330 1.552 0.958 1.102 1.161 1.008 0.973

Std. dev. 0.148 0.133 0.081 0.052 0.153 0.048 0.091 0.065 0.033 0.044 0.082 0.037 0.160 0.031 0.008 0.029

Function ZDT6 (bi-objective) DTLZ1 (tri-objective) DTLZ2 (tri-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

Δ

Worst 1.622 1.202 1.493 1.420 1.306 1.104 1.696 1.708 1.296 1.069 1.514 1.462

Best 1.209 1.081 1.382 0.969 0.933 0.973 1.412 1.066 0.954 0.991 1.455 0.631

Average 1.476 1.137 1.425 1.211 1.052 1.042 1.581 1.389 1.122 1.019 1.488 1.049

Std. dev. 0.195 0.052 0.053 0.190 0.172 0.062 0.120 0.262 0.163 0.034 0.024 0.348
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bi-objective function, the CPU time for the MOMSA was 1579 s, while for the MOEAD, MOALO, and PESA-II, 
the CPU time was 1726s, 1953s, and 2393 s, respectively. Similar results were obtained for tri-objective func-
tions. For example, for the DTLZ2 benchmark function, the CPU time for the MOMSA, MOEA/D, MOALO 
and PESA-II was 4184 s, 4215 s, 4581, and 4438 s, respectively. This indicates that the MOMSA was the fastest 
model in running the code, it can achieve impressive results in a much shorter time.

In terms of the GD metric, the MOMSA with the lowest GD outperformed in all the ZDT bi-objective bench-
mark functions. For example, the average value of GD for ZDT3 benchmark function obtained by the MOMSA 
algorithm was 0.017, while the corresponding values for MOEA/D, MOALO and PESA-II algorithms were 
0.22, 0.028, and 0.087, respectively, indicating the higher performance of the MOMSA compared to the other 
algorithms. Therefore, it can be said that the MOMSA could find the non-dominant solutions with minimum 
distance from PFoptimal (GD metric) and had a better distribution than the three other algorithms. Also, for the 
tri-objective benchmark functions, the MOMSA though had the best results for DTLZ1, but for DTLZ2, it placed 
at the second rank after the MOEA/D algorithm.

For the S metric, while the MOMSA algorithm outperformed the other algorithms in optimizing the ZDT1, 
ZDT3 and ZDT6 benchmark functions, the MOALO and the MOEA/D algorithms demonstrated better results 
for the ZDT2 and ZDT6, respectively. In addition, for both the tri-objective standard functions (DTLZ1 and 
DTLZ2), the MOMSA was the superior model in terms of S.

The obtained results for Δ metric demonstrated that the MOMSA was superior for ZDT1 (Δ = 0.696) and 
ZDT3 (Δ = 0.910) functions, the MOEA/D was superior for ZDT6 (Δ = 1.137), DTLZ1 (Δ = 1.042) and DTLZ2 
(Δ = 1.019) functions and the PESA-II produced the best results for ZDT2 (Δ = 0.721) and ZDT4 (Δ = 0.973) 
functions.

As seen in Table 8, the MOMSA outperforms the other algorithms for most of the benchmark functions in 
terms of MS metric, and the MOEA/D obtained the second rank. Overall, it is found from Tables 5, 6, 7 and 8 
that the proposed MOMSA algorithm was superior to the three other studied algorithms, especially in GD and 
S metrics.

This superiority was also more evident in Figs. 7 and 8. These figures show a graphical comparison between 
the true (optimal) and the obtained Pareto fronts by the multi-objective algorithms in solving the ZDT and DTLZ 
standard multi-objective benchmark functions.

For ZDT1 and ZDT2 benchmark function, two algorithms of MOMSA and MOEA/D yielded more accurate 
results, very close to the optimal Pareto front, but the MOALO could not cover the optimal Pareto front and 
the SPEA-II failed to produce satisfactory distribution and spread for the non-dominated solutions. For ZDT3 
benchmark function, the proposed MOMSA was the only model. In addition, the proposed MOMSA was much 
more successful than the MOEA/D in optimizing the ZDT4 benchmark function, while the SPEA-II and MOALO 
algorithms were unable to produce reasonable results. For ZDT6 benchmark function, the distributions of the 
obtained fronts are similar for all the algorithms to some extent, slightly better for the MOMSA algorithm.

Similar results were obtained for the tri-objective benchmark functions of DTLZ1 and DTLZ2. As seen in 
Fig. 8, the proposed MOMSA was the only model that had impressive results. It could produce a better distribu-
tion and spread for the non-dominated solutions compared to the MOEA/D. In this case, the performance of 
MOALO and the SPEA-II was not acceptable. For the DTLZ2 benchmark function, the Pareto front obtained by 
MOEA/D algorithm was closer to the optimal Pareto front compared to the proposed MOMSA. Nevertheless, the 
MOMSA also gave quite good results. Both the MOEA/D and MOMSA algorithms were much more successful 
than the MOALO and SPEA-II algorithms. Comparing the graph of SPEA-II with that of MOALO indicates 
the superiority of the former algorithm in optimization of DTLZ2 benchmark function. All these results were 
quantitatively obtained in the previous section.

Figure 9 shows the boxplots of the metrics of spacing (S) derived from 10 independent runs of the MOMSA, 
MOEA/D, MOALO and SPEA-II algorithms in solving the ZDT multi-objective standard benchmark functions. 
As seen, the boxplots of the proposed MOMSA and the MOEA/D are narrower than the MOALO and SPEA-II 
for ZDT1, ZDT3 and ZDT6, indicating the superior performance of MOMSA and MOEA/D in solving those 

Table 8.  Statistical results for MS evaluation metrics on ZDT bi-objective and DTLZ tri-objective test 
function suite. The bold values in the table represnt the best values obtained by the utilized algorithms for each 
benchmark function.

Function ZDT1 (bi-objective) ZDT2 (bi-objective) ZDT3 (bi-objective) ZDT4 (bi-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

MS

Worst 0.978 0.819 0.359 0.834 0.944 0.926 0.130 0.947 0.922 0.718 0.625 0.784 0.719 0.317 0.197 0.328

Best 0.990 0.966 0.586 0.972 0.947 0.998 0.327 0.962 0.966 0.962 0.960 0.981 0.850 0.815 0.472 0.696

Average 0.986 0.924 0.499 0.916 0.945 0.961 0.254 0.953 0.946 0.847 0.835 0.881 0.769 0.571 0.309 0.531

Std. dev. 0.006 0.070 0.104 0.059 0.001 0.033 0.089 0.006 0.019 0.127 0.151 0.080 0.056 0.227 0.133 0.152

Function ZDT6 (bi-objective) DTLZ1 (tri-objective) DTLZ2 (tri-objective)

Index Algorithm MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II MOMSA MOEA/D MOALO PESA-II

MS

Worst 0.868 0.829 0.603 0.637 0.503 0.319 0.174 0.146 0.807 0.932 0.456 0.456

Best 0.878 0.946 0.899 0.726 0.928 0.668 0.400 0.256 0.987 0.999 0.626 0.626

Average 0.871 0.887 0.794 0.677 0.724 0.454 0.286 0.213 0.902 0.964 0.524 0.524

Std. dev. 0.005 0.060 0.133 0.036 0.209 0.153 0.112 0.053 0.095 0.032 0.072 0.072
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a 

b 

Figure 7.  (a) Obtained Pareto optimal solutions by MOMSA, MOEA/D, MOALO, and PESA-II for ZDT1. 
(b) Obtained Pareto optimal solutions by MOMSA, MOEA/D, MOALO, and PESA-II for ZDT2. (c) Obtained 
Pareto optimal solutions by MOMSA, MOEA/D, MOALO, and PESA-II for ZDT3. (d) Obtained Pareto optimal 
solutions by MOMSA, MOEA/D, MOALO, and PESA-II for ZDT4. (e) Obtained Pareto optimal solutions by 
MOMSA, MOEA/D, MOALO, and PESA-II for ZDT6.
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Figure 7.  (continued)
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benchmark functions. These results prove that these two algorithms were able to provide remarkable convergence 
and coverage ability in solving multi-objective problems. For the ZDT2, the MOEA/D followed by PESA-II has 
narrower boxplots indicating the better efficiency of those algorithms compared to the MOMSA and MOALO. 
In ZDT4 benchmark problem, the MOMSA was the best model, it has the narrowest boxplot and located under 
the minima of MOALO, MOEA/D, and PESA-II algorithms. For ZDT6 benchmark function, the boxplot of all 
the algorithms are similar to some extent, slightly better for the MOEA/D algorithm. After that, the proposed 
MOMSA, and the MOALO placed in the next ranks. The results of PESA-II algorithm in solving the ZDT6 were 
poor. Similar results were observed for the three other performance metrics (GD, MS and Δ).

For the tri-objective benchmark functions of DTLZ1, as illustrated by Fig. 10, the boxplot of the MOMSA 
algorithm was super narrow and located under the minima of the other algorithms. After the MOMSA, the 
MOEA/D demonstrated better results followed by MOALO. The performance of PESA-II was poor. For the 
DTLZ2 benchmark function, the MOMSA had the lowest and the narrowest boxplot of S metric among all, 
indicating its highest efficiency in solving the DTLZ2 benchmark function. Similar results were obtained for the 
performance metrics of GD, MS and Δ.

Conclusion
As the superiority of single-objective moth swarm algorithm (MSA) in solving various engineering problems 
was confirmed by previous studies, this study proposed the multi-objective version of MSA, called MOMSA, 
to solve various multi-objective problems. Accordingly, a series of improvements was applied in algorithms’ 
synchronization capability and selection method. The capability of the proposed MOMSA in comparison with 
three well-known multi-objective algorithms of MOEA/D, PESA-II, and MOALO were tested on 7 standard 
benchmark functions having 7 to 30 dimensions including five bi-objective ZDT functions and two tri-objective 
DTLZ functions. The results were evaluated by four performance metrics. It was found that the performance 
of the proposed MOMSA algorithm became more evident with increasing the dimensions and the complexity 
of the problem (ZDT1 to ZDT3). So that, in the ZDT1 problem with 30 decision variables, the MOMSA algo-
rithm showed better performance (GD = 0.028, S = 0.050, Δ = 0.696, MS = 0.986) than the MOEA/D algorithm 
(GD = 0.159, S = 0.051, Δ = 1.044, MS = 1.518), and the MOALO algorithm (GD = 0.044, S = 0.071, Δ = 1.345, 
MS = 0.499), and the PESA-II algorithm (GD = 0.079, S = 0.068, Δ = 0.763, MS = 0.916). Also, the Pareto front 
derived by the MOMSA algorithm in most cases was more regular and at a more appropriate level than the 

e

Figure 7.  (continued)
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Figure 8.  (a) Obtained Pareto optimal solutions by MOMSA, MOEA/D, MOALO, and PESA-II for DTLZ1. (b) 
Obtained Pareto optimal solutions by MOMSA, MOEA/D, MOALO, and PESA-II for DTLZ2.
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Figure 9.  Boxplot of the statistical results for S evaluation metrics on ZDT bi-objective test function suite.
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MOAE/D, MOALO and SPEA-II algorithms. The results indicated the superior performance of the MOMSA 
and the MOEA/D algorithms over the other two algorithms in both the ZDT and DTLZ benchmark functions. 
The results also showed that, the dispersion of MOMSA and MOEA/D algorithm distances was smaller than the 
MOALO and the SPEA-II algorithms with theoretical solutions to the almost all of the ZDT and DTLZ bench-
mark functions. In addition to the strong convergence to the exact Pareto front, the proposed MOMSA had less 
dispersion in solutions and achieved the desirable solution in most of the benchmark problems. Regarding the 
impressive results of the MOMSA algorithm, this study recommends it as a robust and reliable multi-objective 
optimization model for various optimization problems.
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