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Tailoring plasmon excitations 
in α − T

3
 armchair nanoribbons

Andrii Iurov1*, Liubov Zhemchuzhna1,2, Godfrey Gumbs2,3, Danhong Huang4,5, 
Paula Fekete6, Farhana Anwar7, Dipendra Dahal8 & Nicholas Weekes1,9

We have calculated and investigated the electronic states, dynamical polarization function and the 
plasmon excitations for α − T

3
 nanoribbons with armchair-edge termination. The obtained plasmon 

dispersions are found to depend significantly on the number of atomic rows across the ribbon and the 
energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the 
strongest effect on both the plasmon dispersions and their Landau damping. We have determined the 
conditions when relative hopping parameter α of an α − T

3
 lattice has a strong effect on the plasmons 

which makes our material distinguished from graphene nanoribbons. Our results for the electronic 
and collective properties of α − T

3
 nanoribbons are expected to find numerous applications in the 

development of the next-generation electronic, nano-optical and plasmonic devices.

Graphene nanoribbons (GNRs) are now one of the most intensively investigated two-dimensional (2D) materials 
in the field of low-dimensional nanoelectronic devices. This is due to their sensitive dependence on the width 
and nature of their the edges of the nanoribbons. They also display a number of fundamental physical and tech-
nologically promising properties, as well as some unique and unprecedented physical phenomena in comparison 
with corresponding bulk materials1. These includes exotic and non-trivial topological electronic states (Majorana 
fermions)2,3, spin-momentum locked and correlated transport channels, and arrays of plasmonic nano-anten-
nas4. In addition, specific electronic quantum phases could be created at junctions of armchair nanoribbons5. 
Transport of charge carriers was studied in networks of armchair nanoribbons, and the possibility for creating 
a reproducible field-effect transistor with much higher carrier mobility was also demonstrated6. Furthermore, 
plasmonics is playing a major role in designing low-dimensional optical devices since the localized field induced 
by collective excitations could be closely confined within a nano-size ribbon, resulting in a distinct plasmon mode 
accompanied by a huge enhancement in the surrounding optical field7–10. Specific types of plasmon excitation 
in nanoribbons11 acquire some important and sometimes unexpected features and applications in sensing and 
nano-imaging12–14. Similarly, the plasmons were extensively studies in graphene15,16 and other bulk Dirac materi-
als. After more than a decade of uninterrupted efforts17–24, many-body theory on low-dimensional materials has 
finally been developed and becomes a huge resource for in-depth exploration of plasmon dynamical properties. 
This success is mainly attributed to accurately calculating the dynamical polarization function25, which is also 
related to the effect of static screening on transport properties of electrons.

From a physical point of view, we expect all nanoribbon electronic properties will depend strongly on their 
width and type of termination26,27 as well zigzag28,29 and armchair30–32. In practice, the studies of quantum size-
effect and nonlocality of plasmons, dielectric and optical responses in both nanoribbons33, and nanodisks have 
already revealed a substantial plasmon broadening, much larger for zigzag in comparison with the armchair 
case34. Meanwhile, a tunable bandgap, which is not present for graphene but could be produced by apply-
ing an optical field35–37, is desirable for most semiconductor devices and depends on the width of armchair 
nanoribbon27,32,38. Consequently, such a bandgap could be adjusted by employing armchair GNRs with various 
numbers of atomic cells across a ribbon.

OPEN

1Department of Physics and Computer Science, Medgar Evers College of the City University of New York, Brooklyn, 
NY 11225, USA. 2Department of Physics and Astronomy, Hunter College of the City University of New York, 695 
Park Avenue, New York, NY 10065, USA. 3Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 
4, 20018  San Sebastian, Basque Country, Spain. 4Air Force Research Laboratory, Space Vehicles Directorate, 
Kirtland Air Force Base, Albuquerque, NM 87117, USA. 5Center for High Technology Materials, University of New 
Mexico, 1313 Goddard SE, Albuquerque, NM 87106, USA. 6US Military Academy at West Point, 606 Thayer Road, 
West Point, NY  10996, USA. 7Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA  94720, 
USA. 8Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204, 
USA. 9Department of Information Systems and Cybersecurity, Grove School of Engineering, The City College of 
New York, 275 Convent Avenue, New York, NY 10031, USA. *email: aiurov@mec.cuny.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99596-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20577  | https://doi.org/10.1038/s41598-021-99596-z

www.nature.com/scientificreports/

Electronic and collective properties of a GNR could be used for high-frequency electronics, nano-scale 
circuit fabrication and production, of various kinds of very-long-wavelength sensing, and ultrafast electric and 
light modulations39. While low-loss graphene is technologically regarded as a promising replacement for high-
frequency plasmonic materials like metals, nanoribbons have become especially attractive since a very strong, 
induced electric field resulting from resonant plasmons can be sustained across a narrow spatially-confined 
channel, and furthermore, this resulting electric field could be modified by patterned electrostatic gating40–42.

It is important to point out that efficient, reliable and affordable techniques for fabrication of nanoribbons 
with a given width have already become accessible through chemical vapor deposition43–45, in addition to earlier 
atomically-precise bottom-up fabrication46 using chemically or lithographically unzipping a carbon nanotube47.

From another perspective, among all newly emergent and recently discovered 2D nanostructures48,49, the 
α − T3 model represents one of the most unusual and promising materials. Its atomic structure consists of a 
hexagonal-honeycomb lattice as in graphene plus an atom located at the center of each hexagon, i.e. a hub (or 
H) atom. The interaction strength, resulting from electron hopping integral between H and either remaining A 
or B rim atom, differs from that between nearest-neighbor rim atoms of the hexagon. In this case, the relative 
hopping parameter α = thub−rim/trim−rim varies only between 0 and 1, where α = 0 corresponds to graphene 
with a completely detached set of hub atoms, whereas α = 1 refers to the dice lattice. Therefore, such an α − T3 
model is regarded as an interpolation between graphene and a dice lattice. In reality, a number of α − T3 materi-
als have already been fabricated successfully50. The α − T3 lattice structure leads to a pseudospin-1 Dirac-Weyl 
Hamiltonian, and the resulting metallic (gapless) low-energy band structure involves a Dirac cone as well as an 
additional dispersionless flat band. This flat band makes the α − T3 topologically distinguished from any other 
Dirac materials and appears very to be stable and robust against the presence of external fields51–53, or a disorder. 
Another noticeable effects of this flat band appears as a reduced electron mobility in α − T3 material due to the 
zero group velocity ⋍ dε(k‖)/dki associated with this flat band for i = 1, 2 , as well as new physics features for 
plasmon excitations and their Landau damping22.

A bandgap could also be generated in a dice lattice54,55, similar to the situation for graphene. Recently, Dirac 
semimetals also showed some interesting electronic properties56,57, although they closely resemble but not com-
pletely the same as those of α − T3 . As a matter of fact, the unique electronic band structure of the α − T3 model 
has proven to be responsible for its unusual electronic, optical, collective, magnetic and topological properties58–77 
which have been investigated extensively over the last several years.

In spite of the fact that α − T3 materials were only discovered recently, there has just been a handful of crucial 
publications on the subject of nanoribbons made from such materials. Group velocities and current distributions 
in these ribbons were studied in Ref.78 with both armchair and zigzag terminations in the presence of a magnetic 
field. Importantly, a comprehensive investigation on dice lattice with α = 1 indicated a difference in electronic 
states compared to zigzag graphene nanoribbons79. Moreover, electronic states under a magnetic field were calcu-
lated in Ref.80 for both armchair and zigzag configurations. Meanwhile, mean-field computations on effects due 
to strain81 hsvr revealed a phase transition from antiferromagnetic to ferromagnetic behavior with increasing α 
value in analogy with the paramagnetic transition in bulk α − T3

82,83, and this ferromagnetic ordering in dice rib-
bons was further explored in Ref.84. For α − T3 materials, a valley dependence in both bulk51 and nanoribbons85 
is of the highest interest. Most previous theoretical papers on GNR plasmonics deal with a particular case having 
semi-metallic gapless energy bands and low-level electron doping, for which an approximate analytic calcula-
tion for plasmon dispersion could be performed in the long wavelength limit26,86,87. Although such simplified 
approaches are considered realistic and important, they are very limited because both the Dirac Hamiltonian 
and k · p model only work well for wide nanoribbons in which several subbands are populated even for moderate 
doping levels. However, an important case with a finite bandgap has seldomly received enough attention even 
for earlier studies on graphene nanoribbons. In view of this, the primary focus of our paper is on studying the 
dependence of plasmon dispersion and their damping on nanoribbon width, which determines the splitting gap 
between energy subbands, electron doping density, and especially on the relative hopping parameter α.

Phase‑dependent electronic states in nanoribbons
Our starting point here is a calculation of both the wave functions and low-energy dispersion of electrons in an 
α − T3 nanoribbon associated with a bulk pseudospin-1 Dirac-Weyl Hamiltonian22

In this notation, γ0 = �vF/
√
2 , kτ± = τkx ± iky depends on the valley index τ for two non-equivalent K and 

K ′ valleys. We emphasize that we confine our attention to low-energy states of electrons near these valleys with 
separation δKx = K − K ′ = 4π/

√
3 a0 and δKy = 0 where a0 is the lattice constant, as presented in Fig. 1d. For 

this, the relative hopping parameter α is related to the geometrical phase φ in Eq. (1) (also called Berry phase 
sometimes although the real Berry phase is ±π cos(2φ) for the conical bands and ∓2π cos(2φ) for the flat band 
of α − T3)51,88 by α = tan φ . As shown in Fig. 1a and b, a0 = 0.142 nm represents the lattice constant (bond length 
between two nearest identical atoms, e.g., B-to-B) and a = a0/

√
3 is the side length of a hexagon.

In bulk α − T3 , solutions for three low-energy bands are εστ ,φ(k) = σ �vFk with σ = ±1 labeling the valence 
(−) and conduction ( + ) bands, respectively, and they are identical to those of graphene. Apart from these two 
subbands, the Hamiltonian in Eq. (1) yields an additional solution εσ=0

τ ,φ (k) ≡ 0 which represents a dispersion-
less or flat band. Such general schematics with a lower valence, an upper conduction and a middle flat band are 
retained for nanoribbons. We also note that all these energy dispersions do not depend on the valley index τ in 
contrast to the phases contained in corresponding wave functions.

(1)H
τ ,φ
b (k) = γ0

{

0 kτ− cosφ 0
kτ+ cosφ 0 kτ− sin φ

0 kτ+ sinφ 0

}

.
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Chosen finite width and edge termination of a ribbon determine its electronic properties. These include the 
quantization of electron transverse momentum and the presence of splitting gaps between different electron 
subbands. The width WR of a ribbon determines the number of atomic rows NR across the ribbon through 
WR = (a0/2) (NR + 1) =

√
3a (NR + 1)/2 as shown in Fig. 1a through Fig. 1c. Here, NR is the total number of 

atomic rows including all types (A, B and H) of lattice atoms but excluding the two boundary rows where the wave 
function would vanish. The width of the ribbon shown in Fig. 1b is obviously 3.5NR.

The boundary conditions for the wave function are the same as those for a dice lattice79 by requiring that all 
three sublattice probability currents, including one for H atom, disappear at each boundary of a nanoribbon. 
This gives rise to ϕν(x)

∣

∣

x=0
= ϕ′

ν(x)
∣

∣

x=0
 and ϕν(x)

∣

∣

x=WR
= exp(iδKxWR) ϕ

′
ν(x)

∣

∣

x=WR
 , where ν = A , B and H, 

ϕν(x) and ϕ′
ν(x) correspond to wave function components belonging to K  and K ′ valleys, respectively. From the 

armchair boundary conditions, it is clear that the boundary conditions have mixed the electronic states from 
both K  and K ′ valleys, similar to graphene26, and therefore both valleys need to be considered.

The energy dispersions for an α − T3 armchair nanoribbon obtained in Sect. I of the Supplementary Informa-
tion appear to be the same for previously considered limiting cases of graphene (except for the presence of the 
flat band) and a dice lattice: εσn (ky) = σγ0

√

k2y + ξ 2
n  with σ = 0, ±1 . The dispersion relations look similar to 

bulk α − T3 but with quantized transverse momentum obtained from the condition

which determines the quantized transverse wave number ξn and energy subbands. These agree with previous 
results for graphene26,89 ( α = 0 ) and a dice lattice79 ( α = 1 ). The α-independent result in Eq. (2) tells us that 
the subband-energy dispersions εn(ky) will be the same for both graphene and α − T3 materials except for an 
additional flat band in the middle, which is similar to the case of two bulk materials. Explicitly, from Eq. (2) we 
obtain the quantized transverse wave number ξn of electrons, given by

The obtained dispersions imply that the n = 1 energy subband may not be the lowest one in contrast to the 
case for a quantum well. As expected, some of the calculated low-energy subbands εσN (ky) presented in Fig. 2a–c 
do depend on the quantum number n and the number of row atoms NR . Interestingly, the bandgap between the 
lowest conduction subband and the highest valence subband varies with WR or NR , becoming finite for NR = 49 
and 51 but zero for NR = 50.

As a matter of fact, the energy gap between the first valence (or conduction) subband and the middle flat 
band at zero energy, i.e., half of the bandgap, is found to be

where the minimal value of 3n− NR − 1 for a given ribbon width NR is assumed to be achieved for integer 
numbers n� , and �0(NR) becomes zero if NR + 1 becomes divisible by 3. Therefore, N0 = (NR + 1)/3 enables 
specifying the lowest pair of metallic subbands which touch each other, and the flat band as well, at the Dirac 
point. Otherwise, n� should be the smaller one of following two numbers, i.e., n±� = InP[(NR + 1)/3]± 1 , where 
InP(x) is a function by taking the integer part of a rational number x. The calculated �0(NR) as a function of 
NR is presented in Fig. 2d, from which we find �0(NR) does go to zero for a set of selected values of NR or WR . 
All the other (higher) subband dispersions are doubly degenerate, as seen in Fig. 2a–c. Meanwhile, we also find 

(2)2ξn WR = 2πn+ δKxWR, n = 0, ±1, ±2, ±3, · · · ,

(3)ξn =
πn
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−

2π

3a0
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√
3 a

(
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−
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3
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.
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Figure 1.   Schematic illustrations for three sublattices ( A, B, H ) of α − T3 armchair nanoribbons. Panels 
(a) and (b) depict representations of a nanoribbon with armchair termination for defining the width WR 
of a nanoribbon with inter-atom distance a and lattice constant a0 . Panel (c) demonstrates the edge-row 
configurations and transverse boundary conditions along the x axis for an armchair edge of α − T3 or a dice 
lattice, where the letters H , A, B label hub and hexagonal-rim atoms of two sublattices. Panel (d) illustrates the 
first Brillouin zone and the wave vectors K and K ′ of two valleys.
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that both subband separation and energy gap are greatly enhanced for a narrower ribbon, similar to the case 
for a quantum well, which makes it difficult to occupy more than one subband for a range of experimentally-
accessible doping levels.

The wave function for an armchair nanoribbon takes the form

Each of the two components in Eq. (5) is related to a specific valley ( τ = ±1 ) and formally written as

where L0 is the ribbon length,

and �n(ky) = tan−1(ky/ξn) . It is crucial to notice that only the electron/hole index σ = ±1 , not the subband 
index n, determines the ± sign of energy dispersions εσn (ky).

The eigenvalue equation in α − T3 allows for an additional zero-energy solution with for a flat band (σ = 0) 
which is

where

in which K  and K ′ valleys correspond to τ = ±1 and �n(ky) = tan−1(ky/ζn) and ζn = |ξn| given by Eq. (3).
As far as the obtained electronic states are concerned, we would like to emphasize that the type, structure and 

dependence of the wave functions in Eqs. (7) and (9) are very similar in nature to those for the bulk material. 
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Figure 2.   Calculated low-energy subbands εσn (ky) of α − T3 armchair nanoribbons with different widths 
WR . Panels (a) through  (c) present dispersion relations of some low-energy subbands as functions of the 
longitudinal wave vector ky for ribbons with NR = 49, 50, 51 atomic rows, respectively. Panel (d) shows the 
calculated half-bandgap �0(NR) of nanoribbons between the lowest conduction and the middle flat subband 
for various selected NR values. In our computations, we set units as k(0)F = (π/2) (108m−1) = 1.57× 108m−1 , 
L0 = 1/k

(0)
F = 6.33nm, E(0) = γ0 k

(0)
F = 93.15meV and �0 = 1.42× 1014Hz.
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However, the transverse wave vector ξn and the quantum phase �n(ky) , are now fully quantized (or discrete), 
and the quantization conditions in Eq. (3) are identical and include the mixing of K  and K ′ valleys.

Polarization function, plasmon dispersions and damping
For an ideal graphene nanoribbon without edge defects, by using standard many-body theory, the dielectric-
function tensor within the random-phase approximation (RPA) can be generally expressed as

where EF denotes the Fermi energy of the system, qy is the longitudinal transfer wave vector along a nanoribbon 
and ω is the angular frequency of a perturbing field. Here, each of the indices � , ρ , µ, ν is a composite one which 
includes the subband index i and band index σ for the conduction, valence and flat bands, i.e., � = {i, σ } . The 
plasmon modes of the structure can be computed from the zero determinant of the dielectric-function tensor 
in Eq. (10), leading to

The diagonal matrix elements in Eq. (10) are connected to dispersions of individual plasmon modes, while 
the off-diagonal matrix elements describe the couplings between different plasmon modes.

Within the RPA, the introduced subband polarization function �(0)
µ,ν(qy ,ω) in Eq. (10) is calculated as

where the integral with respect to wave vector ky is limited to the first Brillouin zone, gs = 2 takes into account 
the spin degeneracy, δ ≪ ω represents a homogeneous diagonal-dephasing rate of electrons and εµ(ky) is the 
subband energy, f0(x) is is the Fermi-Dirac distribution function for thermal-equilibrium electrons at tempera-
ture T and chemical potential u0(T) . At T = 0,

where EF is the Fermi energy and �(x) is a Heaviside step function.
Next, since the mirror symmetry between conduction and valence subbands is retained in our system, as it 

is for graphene nanoribbons, it guarantees that the orbital part of the wave function will not depend on band 
selection. Consequently, such a unique property greatly simplifies the Coulomb interaction V�,ρ

µ,ν (qy) employed 
in Eq. (10), leading to

which is significant only for j − j′ = 0 and m−m′ = 0 , as demonstrated in Fig. 3a. Moreover, the Coulomb 
interaction in Eq. (14) is also independent of the phase φ , and therefore, remains the same for all α − T3 materials 
including graphene89. In the long-wavelength limit qy → 0 , the Bessel function K0(x) of the second kind diverges 
as − log(x) , corresponding to ⋍ 1/

√

q2x + q2y  behavior for the 2D case. In this case, the Coulomb-interaction 
matrix elements connect two initial and two final states with the same band and subband indices, leading to one 
for intra-subband excitation only, i.e.

which is a regular 2D matrix ( 3N × 3N ), where ν = {n, σν} and N is the total number of subbands taken into 
consideration.

Finally, the determinant Det and the trace T r of the matrix in Eq. (15) are (see Sect.  II of our Supplementary 
Information) connected by

which was also employed in Ref.89 for graphene. In our calculation, the actual polarization function is obtained 
as the sum of ten lowest subbands around n0.

As a last step, we turn to calculate the wave-function overlaps (or prefactors) O n,n′
±1,0↔±1,0(ky , qy) introduced 

in Eq.  (12) for the polarization function. For α − T3 nanoribbons, it is explicitly defined by 

O
n,n′
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∣

∣
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∣

∣

∣

2
 where σ = 0, ±1 and the complete wave func-

tions �φ
σ (n | x, ky) and �φ

σ (n
′ | x, ky + q) have already been given by Eq. (5).
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Us i n g  e a r l i e r  w av e f u n c t i o n s  ( 5 ) ,  w e  g e t  O
n,n′
±1↔1(ky , qy) =

1
4

[

1± cos[�n,n′(ky , qy)]
]2+

1
4
cos2(2φ) sin2[�n,n′(ky , qy)] and O n,n′

0↔1(ky , qy) =
1
2 sin2(2φ) sin2[�n,n′(ky , qy)] which are the same as our 

obtained result for bulk α − T3
90 since O n,n′

±1,0↔±1,0(ky , qy) does not depend on the valley index τ while the wave 
function in Eq. (5) for an armchair nanoribbon is just a combination of states from these two valleys. Therefore, 
the overlap can be regarded as an average between two inequivalent valleys. On the other hand, the wave func-
tions in Eq. (5) do depend on the band indices so that the results are different, corresponding to various types 
of transitions (i.e., from and to valence, flat, and conduction bands). For graphene with α = 1 , we easily verify 
that O n,n′

±1↔±1(ky , qy) = (1± cos[�n,n′(ky , qy)])/2 as obtained in Ref.26. For the opposite limiting case of a dice 
lattice, however, we have O n,n′

±1↔±1(ky , qy) = (1± cos[�n,n′(ky , qy)])2/4.
Here, we would like to emphasize that the overlaps discussed above result in crucial difference between 

plasmons in nanoribbons and bulk α − T3 materials. The angle �n,n′(ky , qy) between the wave vectors ky and 
ky + qy (i.w., either 0 or π ) is quantized in a nanoribbon due to WR-dependent quantization of allowable values 
for the transverse wave number ξn (n′) , while the longitudinal wave numbers ky and ky + qy are always directed 
along the y−axis. Since the largest contribution to the polarization function comes from several of the lowest 
subbands with the minimal values for ξn (n′) , the resulting angles �n,n′(ky , q) are often close to 0 or π so that a 
large number of relevant overlaps are equal to either 1 or 0, especially in the long wavelength limit with qy → 0 . 
This nanoribbon-specific feature is drastically different from that of a bulk material.

Results and discussion
We begin our calculations for an armchair α − T3 nanoribbon with metallic (gapless) bandstructure. The lowest 
and the next subbands above are assumed well separated from each other. We adopt a single-subband model for 
calculating the polarization function previously employed for graphene nanoribbon26,86,87. Such a model could 
be considered sufficiently accurate for a narrow ribbon with low electron doping EF.

The transverse wave vector ξn at the Fermi surface becomes negligibly small, and then the angle θn associated 
with the wave vector {ξn, ky} becomes

The angle �n,n′(ky , qy) between two states {ξn, ky} and {ξn, ky + qy} is

(17)θn(ky) ≈
{

−π/2 if ky < 0,
π/2 if ky > 0 .
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Figure 3.   Panel (a) shows the Coulomb potential Vn2
n1
(|qy|WR) with n1 = i − j = 0 and n2 = m− n = 0 as a 

function of the transfer wave vector qy for chosen widths WR , and its inset (i1) displays the remaining potential 
elements with nonzero n1 or n2 , as labeled. Panels (b) through (d) present intra-subband ( n1 = n2 ) overlaps 
O

n1,n1
σ1↔σ2

(ky , qy) for various types of  intra  ( 0 ↔ 1 ) and inter-band ( 1 ↔ 1 ) transitions as functions of qy in (b), 
(c) and phase φ in (d). Here, NR is set as 50, 50, 200 in (b), (d). Other parameters are the same as those in Fig. 2.
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In all cases, this leads to sin[�n,n′(ky , qy)] = 0 , O n,n′
0↔1(ky , qy) = 0 , and O n,n′

±1↔1(ky , qy) = (1± cos[�n,n′ (ky , qy)])2/4 
is either 0 or 1 due to

where σ , σ ′ �= 0 and β = ±1.
For T = 0 , the Fermi distribution functions are reduced to (13), and the polarizability could be presented as

where the first term corresponds to zero doping (which is possible only for graphene with φ = 0 due to the 
momentum degeneracy in the flat band) and is equal to

The expansion of (20) looks similar to that for bulk graphene19. However, there is a crucial difference, i.e., the 
integration is performed only over one variable ky (there is no angular integral). The two terms with k ± q in the 
sum in Eq. (21) are substantially different and cannot replace one another. For that reason, there is no unified 
analytic expression for all three terms in Eq. (20). The two remaining terms of Eq. (20) which appear only for 
finite doping are

The zero-doping term in Eq. (21) is immediately evaluated as

and the other two terms in the expansion (20) are

and

which is equivalent to

which was demonstrated in Sect. III of the Supplementary Information. We have found that the two terms cor-
responding to finite doping always cancel each other. This is equivalent to finite-temperature behavior discussed 
in Ref.87 but differs from the results of Ref.86 for graphene. Our final result in Eq. (21) for the polarization function 
shows no dependence on α and is the same as for GNR’s86,89. The plasmon mode �p(qy) in the long-wavelength 
limit is immediately obtained as89

which also does not depend on the doing level EF and parameter α due to the absence of such dependence in 
Coulomb matrix elements (14).

In most realistic cases, however, the cross momentum ξn  = 0 and all the wave function overlaps are finite and 
depend on qy . This occurs if �n,n(ky , qy) differs from 0 and π which is achieved for a finite gap or ξn disregarding 
the ribbon width WR . However, for large WR , it approaches bulk α − T3 since the change in ξn with n decreases 
( ∝ 1/WR ). In this case, the dependence on qy in the range of qy/kF ≤ 1 also varies with ky and its dependence 
in ξn(ky) , as seen in Fig. 3.

The difference between graphene and other types of α − T3 lattices arises from transitions from/to the flat 
band22. Since the 0 ↔ 1 overlap contains the factor sin2(2φ) sin2[�n,n(ky , qy)] , it will be suppressed as α ⋍ 0 or 
φ ⋍ 0 , i.e., for all materials resembling graphene and small ξn in a wide ribbon. Consequently, we conclude that 
the α dependence of overlap in the range qy/kF ≪ 1 becomes appreciable only for a sufficiently wide ribbon, as 

(18)�n,n′(ky , qy) =







−π if ky > 0 and ky + qy < 0,
0 if ky(ky + qy) > 0,
π if ky < 0 but ky + qy > 0.

(19)O
N0,N0
σ↔σ ′ (ky , ky + βq) = δσσ ′ , sign[ky ·(ky+βq)] ,

(20)�(0)(q,ω) = −χ(−)
∞ (q,ω)+

∑

β=±1

χ
(β)
EF

(q,ω) ,

(21)χ(−)
∞ (q,ω) = gs

∑

β=±1

∫

dky

2π

O
N0,N0
−1↔+1(ky , ky + q)

εN0(ky)+ εN0(ky + q)+ β ω
.

(22)χ
(ρ=±)
EF

(q,ω) = gs
∑

β=±

∫

dky

2π
O

N0,N0
ρ↔+1(ky , ky + βq)

�
[

EF − εN0(ky)
]

εN0(ky)− ρ εN0(ky + βq)+ β ω

(23)χ(−)
∞ (q,ω) = −

2γ0

π

q2

ω2 − (γ0q)2
,

(24)

χ
(−)
EF

(q,ω) = gs
∑

β=±

∫

dky

2π
�

[

EF

γ0
− |ky|

]

�[−βky(ky + βq)] (γ0q+ βω)−1 = −
2γ0q

π

Min(q, kF)

ω2 − (γ0q)2
.

(25)χ
(+)
EF

(q,ω) =
2γ0

π

kF q

ω2 − q2

{

1−
(

1−
q

kF

)

�[kF − q]
}

,

(26)χ
(+)
EF

(q,ω) =
2γ0q

π

Min(q, kF)

ω2 − (γ0q)2
= −χ

(−)
EF

(q,ω) ,

(27)�p(qy) =
γ0

�

√

−q2y ln(qy WR) ,
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demonstrated in Fig. 3b through Fig. 3c. On the other hand, if qy/kF ∽ 1 is achieved, the α dependence of the 
overlap is noticeable for all ribbon widths (e.g., see Fig. 3d).

The imaginary part of the intra-subband polarization function for armchair nanoribbon is presented in Fig. 4. 
If there is no bandgap (metallic case, see Fig. 4a,b), the single-particle excitation spectrum is only a strong peak 
around the main diagonal �ω = γ0qy . This dissipation is slightly enhanced with increasing ribbon width since 
more electron subbands are occupied for the same doping value.

A very different situation occurs if NR is chosen such that the gap �0 > 0 . The previously narrow single-
particle excitation region now occupies a sizable area in the qy - ω plane, as shown in panels (a) through (h) of 
Fig. 4. It is split into two or more broad sub-domains bounded by semi-parabolic edges and separated by a gap, 
and the whole picture becomes qualitatively similar to bulk gapped graphene18 or α − T3

72. The lower domain 
corresponds to the intra-band (conduction-to-conduction) excitations while the upper one - to the inter-band 
(valence-to-conduction and vice versa) ones. Meanwhile, the magnitudes of dissipation within all the intra- and 
inter-band damping regions are modified greatly by the ribbon width (compare panels (c) and (d)).

Another area of finite Im
[

�(0)(q,ω)
]

 is uniformly distributed above the Fermi level. It arises due to inter-band 
electron transitions between the valence and flat bands. It is seen in all cases (panels (d), (f) and (h)) when α > 0 . 
We conclude that the difference between α − T3 and graphene ribbons is substantial for any ribbon width if a 
finite gap is present. The lower boundary of this area is found at frequency �ω ⋍ EF +�0 which corresponds 
to the energy separation between the flat band (zero-energy level) and the actual Fermi level above the gap. We 
also noticed that 0 ↔ 1 particle-hole mode consists of multiple separate sub-areas corresponding to the transi-
tions from and to the various discrete energy subbands (see panels (f) and (h) shown for the same nanoribbon 
but in different ranges of ω and q).

The plasmon frequencies for armchair nanoribbon with chosen ribbon widths NR and bandgaps �0 is shown 
in Fig. 5. as the peaks of the loss function S(qy ,ω |EF ,α) . The loss function, or the spectral function, is defined 
as Im[1/ǫ(qy ,ω)] through our calculated dielectric function ǫ(qy ,ω) , which has been utilized for graphically 
plotting Re[ǫ(qy ,ω)] = 0 or maximum values of Im[1/ǫ(qy ,ω + iδ)] with δ/ω ≪ 1 within the (qy ,ω)-plane91,92. 
On the other hand, the physically-defined loss function Im[S(q�,ω)] has been widely employed for describ-
ing power absorption of electron beam either parallel or perpendicular to the surface of an electronic system, 
where S(q‖,ω) is the surface response function, related to the inverse dielectric-function matrix ←→ǫ −1(q�,ω) 
of electronic system93,94.

As �0 = 0 , for a relatively narrow ribbon in Fig. 5a, the group velocity of intra-subband plasmon mode is 
increased greatly in comparison with a wider ribbon in Fig. 5c. When �0 becomes finite, the group velocity of 
intra-subband plasmon mode is reduced significantly, as shown in panels (b) and (d), similar to ⋍

(

1−�2
0/E

2
F

)

 
dependence for the plasmon group velocity in bulk. In comparison with panel (b), a wider ribbon in panel 
(d) further develops a unique concave-to-convex feature in plasmon dispersion, resembling bulk material and 
meanwhile acquiring an increased dissipation at this “crossing” point. For finite α , the plasmon becomes strongly 
damped at the Fermi level (above the bandgap), as shown in panels (e) and (f) of Fig. 5. Figures 4 and 5 are 
presented in a way that in most cases the particle-hole modes and the plasmons are demonstrated for the same 
nanoribbons (panels (a) and (b) in both graphs and some others).
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Figure 4.   Single-particle excitation spectrum in α − T3 nanoribbons. All panels (a) through (h) present density 
plots as functions of frequency ω and qy for the imaginary part of the non-interacting intra-subband polarization 
function �(0)

n,n(qy ,ω |EF ,α) with chosen widths NR = 20 , 21, 50 and 51. The material bandgap �0/E
(0) 

determined by NR is equal to zero in (a), (b) but 2.46 in (c), (d) and 1.04 in (e)–(h), respectively. The relative 
hopping parameter α was chosen as α ∽ φ = 0.1 for panels (c), (e) and (g), α = 0.32 (or φ = π/10 ) for (a) and 
(b) and φ = π/4 (a dice lattice) for the remaining plots (d), (f) and (h).
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The dielectric function is defined as determinant of the dielectric tensor (10), where the Coulomb poten-
tial was defined in Eq. (14) as V0

0 (qy) ∽ e2/(2ǫ0ǫr)K0(|qy|WR) ⋍ −2παǫ ln(|qy|WR) ∼ 2παǫ/(|qy|WR) . The 
dimensionless dielectric constant αǫ = e2/(4πǫ0ǫr) k

(0)
F /E(0) ⋍ 1.0 was chosen in our computation, correspond-

ing to ǫr = 2.4 for SiO2 substrate which is normally used for the plasmon calculation in graphene19. The role of 
background dielectric constant ǫr is certainly shaping out the plasmon branch which is very well seen in the long-
wave limit, where �p ∽

√
αǫ ∽ 1/

√
ǫr  , i.e., a larger ǫr leads to a smaller plasmon �p for fixed wave number qy.

For a metallic ribbon with no gap and for a reasonably small NR < 100 , we found that the plasmon dispersions 
remain the same for graphene and all other types of α − T3 materials including a dice lattice. The one-subband 
model for the polarizability showing no doping or α dependence seems to work well for all such ribbons (zero 
gap and a relatively small width). In a wide ribbon, however, many subbands need to be taken into account since 
a few of them will be populated under electron doping. We also need to keep in mind that one cannot apply the 
Dirac Hamiltonian approximation for bulk to a very narrow ribbon so that the previously addressed situation 
with low doping and large subband separation is transparent but very limited and cannot be employed for most 
realistic problems. The situation becomes drastically different if a gap is present. Both inter- and intra-band por-
tions of particle-hole modes are split into two separate regions in the ω-qy plane and a strong dependence on α 
is observed irrespective of the ribbon width.

Figure 6 demonstrates the effect due to relative hopping played by α in a very wide nanoribbon with NR = 200 . 
The separation between two adjacent subbands decreases to ∽ 0.7E(0) in order to occupy multiple subbands for 
chosen doping to approach bulk material. As a starting point, we first examine a (unrealistic) situation, as in 
Fig. 6a, by setting all overlaps to unity. In this case, we are able to see contributions from all transitions as well 
as a strong dissipation peak near the main diagonal �ω = γ0q.

When only the flat band 0 ↔ 1 transitions are considered, we expect Landau damping of plasmons due to 
the presence of particle-hole modes within the region �ω ≥ EF , as seen in Fig. 6b, which appears as a layer 
structured because of the nature of discrete subbands. Additionally, its contribution to Im

[

�
(0)
n,n(qy ,ω)

]

 at 
�ω = EF is about half its maximum, and it increases with ω since more subband contributions are included. 
Meanwhile, the flat-band dissipation becomes stronger with increasing wave vector qy for chosen ω . Such strong 
plasmon damping at relatively low qy is responsible for the significant change in plasmon dispersions from gra-
phene to α − T3 for both bulk and nanoribbon, as can be easily verified from Fig. 6e and f, where the plasmon 
branch also exhibits a unique shape for pinching when ��p(qy)/EF = 1 at the point where qy/k(0)F = 1 . Specifi-
cally, for a dice lattice we display both its plasmon dispersion in Fig. 6d and dissipation in Fig. 6c, where all 
intra-subband and inter-subband transitions among nine subbands have been considered. The trace of Landau 
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Figure 5.   Plasmon excitations in α − T3 nanoribbons. All panels (a) through (d) display density plots of the 
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 as functions of ω and qy with NR = 20 , 21, 50 
and 51. The undamped plasmon excitations correspond to sharp peaks of the loss function (ideally, S → ∞ ), 
therefore, the colorbars were not added to these panels. The values of the material bandgap are determined 
solely by the width of a nanoribbon and are exactly the same as we have for Fig. 4. The plasmon dispersions in 
(a) and (b) are related to metallic electronic spectra (a) and (c). However, they are to semiconducting ones in all 
other panels. Parameter α was chosen as π/4 (a dice lattice) for the lowest panels (e) and (f) but α ∽ φ = 0.1 for 
all the other plots. Panel (f) shows the same situation as (h) but for a larger (doubled) ranges of q and ω.
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damping of plasmons from flat-band 0 ↔ 1 transitions is clearly visible in Fig. 6c, in addition to plasmon damp-
ing due to intra-subband and inter-subband transitions.

We find that the nanoribbon plasmon frequency is much less sensitive to the electron doping or Fermi energy 
EF than in the case of bulk graphene (or a dice lattice), as demonstrated by the red-solid and black-dashed curves 
in Fig. 7a. As we showed above, the polarization function is completely independent of EF in one-subband 
approximation which represents the dominant contribution for narrow ribbons with metallic dispersions. In 
the general case, the polarization function becomes independent of EF if q > EF/γ0 , as explained by inset (i1) of 
Fig. 7a. At the same time, the strength of pinching in a wide nanoribbon can be enhanced by increasing α from 
zero to unity, as seen in Fig. 7b.

Summary and remarks
In this paper, we have calculated the dynamical polarization function, dielectric tensor, the resulting plasmon 
dispersions and Landau damping for various types of α − T3 nanoribbons with armchair edge termination. Arm-
chair nanoribbons are distinguished because their longitudinal ky and transverse ξn components of the electron 
momentum are not coupled to each other, the wave functions and their overlaps are similar to those for the bulk 
except for the quantized ξn and the energy dispersions, as well as the valley mixing.

The plasmon excitations in a nanoribbon and their Landau damping (single-particle excitation spectrum) are 
mainly determined by the energy bandgap in the electron dispersions which directly depend on the width of the 
ribbon or, specifically, on the number NR of atomic rows across the ribbon. The ribbon is metallic (zero bandgap 
between the valence, flat and conduction bands) if NR + 1 is an integer multiple of 3. For all other numbers NR , 
the ribbon has a ∽ 1/NR gap even though the bulk bandstructure is metallic which holds true for the ribbons 
made of all α − T3 materials including graphene and dice.

The main focus of our investigation has been to identify the role of the relative hopping parameter α or the 
distinctions between the plasmon modes in nanoribbons based on various α − T3 materials. These materials, 
specifically a dice lattice, stand out due to the presence of an additional dispersionless zero-energy band in the 
electron dispersions, and the electron transitions to and from this flat band. The overlaps of the transitions 
between the valence and partially occupied conduction band are also affected by α . An additional particle hole 
mode above the Fermi level is also observed for all nanoribbons with a finite gap, however, its lower boundary 
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(a) presents a (unrealistic) case when all overlaps O n,n′

σ1↔σ2
(ky , qy) ( σ1,2 = 0, ±1 ) are set to unity with an equal 

contribution to �(0)
n,n′(qy ,ω |EF ,α) . Panel (b) shows the contribution of transitions from and to the flat band 

only, i.e., setting On,n
±1↔±1(ky , q) = 0 , for a dice lattice with φ = π/4 . Panels (c) and (d) display the imaginary 

and real parts of �(0)
n,n(qy ,ω |EF ,α) for a dice lattice when all nine intra-band and inter-band transitions are 

included. Panels (e) and (f) exhibit the calculated plasmon dispersions by tracking peaks of a spectral-loss 
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are the same as those in Fig. 2.
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is shifted up to EF +�0 since the energy separation between the zero-energy flat band and the Fermi energy 
should also include the gap.

The most substantial difference between bulk α − T3 and nanoribbons stems from the quantization of the 
energy bandstructure. The discernible contribution from various energy subbands is clearly seen in separate 
regions of the single-particle excitation spectrum. Another feature of a nanoribbon is that the overlaps only 
depend on a single-subband index n, in a narrow ribbon, they become either equal or close to zero for some 
transitions which otherwise would be dominant in a bulk material so that in many cases the terms contribut-
ing to the polarization disappear. Finally, the dielectric tensor of a nanoribbon is such that only intra-subband 
( n ↔ n ) transitions need to be included in the polarizability.

In a nutshell, we have performed a comprehensive study on the plasmon excitations in an α − T3 nanoribbon. 
We discovered some very distinctive features of plasmon dispersion and the distribution of its finite Landau 
damping with respect to the width of a ribbon, absence/presence of a bandgap, electron doping density and a 
phase of the α − T3 lattice. These previously unreported plasmonic properties have the potential of being widely 
employed in next-generation nanoribbon-based electronic, optical and plasmonic quantum devices.
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