
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20002  | https://doi.org/10.1038/s41598-021-99506-3

www.nature.com/scientificreports

Predicting cognitive impairment 
in outpatients with epilepsy using 
machine learning techniques
Feng Lin1, Jiarui Han2, Teng Xue3, Jilan Lin1, Shenggen Chen1, Chaofeng Zhu1, Han Lin1, 
Xianyang Chen2, Wanhui Lin1* & Huapin Huang1*

Many studies report predictions for cognitive function but there are few predictions in epileptic 
patients; therefore, we established a workflow to efficiently predict outcomes of both the Mini-Mental 
State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) in outpatients with epilepsy. 
Data from 441 outpatients with epilepsy were included; of these, 433 patients met the 12 clinical 
characteristic criteria and were divided into training (n = 304) and experimental (n = 129) groups. 
After descriptive statistics were analyzed, cross-validation was used to select the optimal model. 
The random forest (RF) algorithm was combined with the redundancy analysis (RDA) algorithm; 
then, optimal feature selection and resampling were carried out after removing linear redundancy 
information. The features that contributed more to multiple outcomes were selected. Finally, the 
external traceability of the model was evaluated using the follow-up data. The RF algorithm was the 
best prediction model for both MMSE and MoCA outcomes. Finally, seven markers were screened by 
overlapping the top ten important features for MMSE ranked by RF modeling, those ranked for MoCA 
ranked by RF modeling, and those for both assessments ranked by RDA. The optimal combination of 
features were namely, sex, age, age of onset, seizure frequency, brain MRI abnormalities, epileptiform 
discharge in EEG and usage of drugs. which was the most efficient in predicting outcomes of MMSE, 
MoCA, and both assessments.

Epilepsy is a disease resulting from abnormal synchronized neuronal discharge and is prone to influence cogni-
tive  function1. Approximately 30–40% of adult patients with epilepsy experience changes in  cognition2. Many 
studies have suggested cognitive decline in memory, executive function, and attention in adult patients with 
 epilepsy3. Meanwhile, some studies in the last decade have revealed that epilepsy and dementia have a common 
underlying etiological  basis4–7. Moreover, it has been reported that some anticonvulsant drugs, such as valproate 
(VPA), may affect cognitive function in patients taking the  drug8,9.

Most epilepsy patients are treated in outpatient clinics or emergency departments in China. Convention-
ally, Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scales have gained 
popularity for cognitive screening. However, independent inspection and extra time are required to complete 
these scales. Early identification and rational management of epilepsy, including interventions, may reduce 
further impairment in cognitive function. Therefore, a fast and straightforward method to identify and predict 
cognitive function is urgently needed.

Machine learning is an artificial intelligence  algorithm10 that helps clinicians make precise diagnoses and 
helps clinicians filter risk factors faster than  ever11–13. For example, in a cross-sectional study, random forest (RF) 
regression analysis was used to investigate the relationship between daily total perceived data and MMSE  scores10. 
However, the outcome of machine learning to predict cognitive function in epileptic patients is still unknown. 
In particular, MMSE and MoCA serve as screening tools, while the optimal features to predict either the MMSE 
or MoCA outcome are often not good for the other. A workflow to efficiently predict both MMSE and MoCA 
outcomes is important to determine the cognitive function in epilepsy patients at the first visit to the clinic.

In this study, we retrospectively reviewed clinical data of 433 consecutive outpatients with epilepsy. In the end, 
304 cases were retained as the training dataset and 129 cases were designated as the validation dataset. Training 
dataset was used to better train stable, effective and reliable machine learning model; The validation dataset was 
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to further verify and explore the generalization ability outside the model. First, the optimal model was selected by 
the machine learning method, and then the characteristic features with a high contribution rate were identified 
by the Youden index. Finally, redundancy analysis (RDA) combined with a machine learning algorithm achieved 
the optimal feature combination, and the optimal markers with RF exhibited the best prediction efficiency for the 
two outcomes of both the MMSE and MoCA. The results showed the highest classification accuracy of positive 
cases and the highest predictive power.

Materials and methods
Subjects and data preprocessing. The data of epileptic patients who consecutively visited the epileptic 
specialist clinic of the Fujian Medical University Union Hospital from January 1, 2015, to January 31, 2019, were 
retrospectively collected. This study was approved by the Union Hospital Ethics Committee (approval number: 
2017KY085), and research involving human research participants must have been performed in accordance with 
the Declaration of Helsinki. All study subjects signed informed consent forms.

Inclusion criteria: Data were included for all patients equal to or older than 12 years. All patients matched the 
practical clinical definition of epilepsy established by the International League Against Epilepsy (ILAE) in 2014. 
All epileptic patients were examined by electroencephalogram (EEG), magnetic resonance imaging (MRI) and 
screening tools. Seizure types were categorized by the presence or absence of generalized tonic–clonic seizures 
tools clonic seizures. Positive family history was defined as a family history of epilepsy in the father, mother, 
sibling, or child of a participant. Brain trauma or surgery was determined according to past medical history. 
Epileptiform discharge was defined as a transient discharge obviously different from background activity in EEG 
recordings. The positive criterion for MRI was an abnormal focal signal increase or decrease. Positive electroen-
cephalogram (EEG) results indicated that an epileptiform discharge was detected. Patients with primary epilepsy 
syndromes were excluded from this study.

Our study included patients who had undergone a neuropsychological outpatient assessment comprising 
MMSE and/or MoCA scales. Cognitive impairment was defined by MMSE scores ≤ 17 points (illiterate), ≤ 20 
points (education level of primary school), or ≤ 24 points (education level of secondary school or above). 
MoCA scores ≥ 26 were considered to indicate normal cognition.

Feature selection. We aimed to select common features that could be used to predict cognitive function. 
The characteristic features selected included the following demographic information and clinical features: sex 
(female/male), Seizure frequency, frequent—twice every six months; Occasional—semiannually; Rare—more 
than once a year, Seizure type—status epilepticus, negative ≤ 5 min; positive > 5 min; family history of epilepsy, 
febrile convulsion, and seizures, Seizure types were categorized by the presence or absence of generalized tonic–
clonic seizures, status epilepticus (negative/positive), family history (negative/positive),positive family history 
was defined as a family history of epilepsy in the father, mother, sibling, or child of a participant., history of 
brain trauma or surgery (negative/positive).Brain trauma or surgery was determined according to past medical 
history., intracerebral diseases (negative/positive), lesions in brain MRI (negative/positive),The positive crite-
rion for MRI was an abnormal focal signal increase or decrease, epileptiform electroencephalogram (EEG) dis-
charges (negative/positive),positive electroencephalogram (EEG) results indicated that epileptiform discharge 
was detected., and usage of valproate sodium (yes/no). The measurement data included the patients’ current age 
and age of onset (years).The original dataset was randomly divided into a training dataset (70%) and a validation 
dataset (30%). The training data set included 304 cases, and the test data set included 129 cases. The classified 
features in the included data were analyzed. The measured data are represented by the mean ± SD.

Data preprocessing. All patient data collected included both MMSE and MoCA scores. Data lacking 
MMSE or MoCA scores were screened out. Data with incomplete information were removed (Fig. 1). A set 
of observation features was selected to predict the cognitive function of these patients by a machine learning 
method, and a model was established to estimate the rank of features that predict cognitive function.

Machine learning-based classification. All statistical analyses were conducted using R (US version 
3.6.3) and R studio (US version 1.1.456). If there were missing values, the median was used to interpolate classi-
fied features, and the mean was used to interpolate continuous features.

Before binary classification, tenfold cross-validation was carried out to select the optimal prediction model 
for MMSE. We used four machine learning algorithms: logistic regression (LR), DT, RF and SVM. Each model’s 
accuracy, positive predictive value, and specificity are described. The area under the curve (AUC) and the optimal 
threshold were determined by the receiver operating characteristic (ROC) curve.After the optimal model was 
selected, the first ten features with high contributions to the model were selected. At the same time, the original 
data were analyzed by RDA, the first ten characteristic features were selected, the features selected by the two 
methods were intersected, and the Monte Carlo method was used to verify the internal tenfold cross-validation 
of cognitive impairment in patients with epilepsy. Then, the test set was used to verify outcomes. Before analysis, 
data from derived sets were randomly divided into separate training and validation datasets, comprised of 70% 
and 30% of the cases, respectively. All meaningful tests are bilateral. P < 0.05 was statistically significant.

Model evaluation. To evaluate the performance of the training model, we used the following representative 
indicators: sensitivity, specificity, accuracy, precision, recall, and AUC. The greater the value of sensitivity, the 
more the “sick individuals were considered to be sick.” At the same time, a more significant value of specificity 
indicated that “healthy individuals were considered to be healthy”. Accuracy refers to the proportion of the cor-
rectly predicted samples to the total predicted samples. Precision refers to the ratio of correctly predicted posi-
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tive samples to all predicted positive samples. Recall refers to the ratio of correctly predicted positive samples to 
the total number of true positive samples. The AUC of a classifier is equivalent to the probability that the clas-
sifier will rank a randomly chosen positive instance higher than a randomly chosen negative  instance14. From 
a clinician’s perspective, high accuracy means that our predictions are rarely overreported and indicates that 
patients are more likely to have cognitive impairment. At the same time, a high recall rate indicates that many 
positive examples in the sample are predicted correctly.

Ethics approval. This study was approved by the Union Hospital Ethics Committee (Approval Number: 
2017KY085), and all study subjects signed informed consent forms.

Results
Patient demographics. In order to make the influence of missing data reach a relatively unbiased and 
controllable state after the imputation method was applied, eight cases with over 30% missing clinically relevant 
information from a total number of 441 were  excluded15. A total of 433 patients with complete information 
were analyzed and divided into a training group (n = 304) and a test group (n = 129). Data were included for all 
patients equal to or older than 12 years. The results of Wilcoxon rank sum test of age showed that the grouping 
of MMSE was different (training group: W = 5378, p = 1.295E-05; test group: W = 927.5, p-value = 0.003), there 
is no difference for MOCA (training group: W = 9284.5, p-value = 0.290; test group: W = 1595, p-value = 0.244). 
According to this result, we did not target age groups, and multivariate statistics can analyze the statistical laws 
of multiple objects and indicators when they are correlated with each other.

The database consisted of 12 features, including two different categories, in which two features provided 
demographic information and the other 10 features provided clinical symptom features used to monitor clini-
cal outcomes. Descriptive statistical analysis was performed on 12 clinical features. Table 1 showed the details 
of the selected features.

Prediction modeling for MMSE scores of patients with diagnosed epilepsy. In total, there were 
304 patients in the training dataset. We identified patients with cognitive impairment using the MMSE scale 
according to educational level. Seventy patients with epilepsy were found to have cognitive impairment. logistic 
regression (LR), DT, RF and SVM model’s accuracy, positive predictive value, and specificity are described in 
Table 2. The AUC values of these four models (LR, DT, RF, and SVM) were 0.67, 0.63, 0.72 and 0.70, respectively. 
Meanwhile, the mean AUC after internal cross-validation within RF modeling, which was 0.72, was significantly 
higher than that of the other models. The RF was selected as the optimal modeling approach.

Furthermore, we obtained the ranking of the importance of each feature in the RF model. The top ten features 
in the ranking of feature importance were age, age of onset, sex, usage of drugs, history of brain trauma or sur-
gery, seizure type, seizure frequency, epileptiform discharge in EEG, brain MRI abnormalities, and other brain 
diseases. (Table 3). Mean decrease in accuracy, the higher the value, the greater the importance of the variable.

Prediction modeling for MoCA scores of patients with diagnosed epilepsy. We used the same 
strategy described above to build four common machine learning models. Our results showed that the AUC val-

Figure 1.  Clinical data screening process.
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ues of these four models (LR, DT, SVM, and RF) were 0.62, 0.61, 0.60, and 0.71, respectively (Table 4). Therefore, 
in terms of generalization of the different machine learning algorithms, the RF model achieved an AUC of 0.71; 
thus, it performed better than others using MoCA data.

We determined the variable importance in the RF model. The top ten features in the ranking of feature 
importance were status epilepticus, history of brain trauma or surgery, seizure frequency, sex, usage of drugs, 
age, epileptiform discharge in EEG, family history, brain MRI abnormalities and age of onset (Table 5).

RDA contributes to variable constraint. Unlike other single outcome features, RDA can explain the 
comprehensive relationship between dual outcomes and exposure features. Then, the degree that the critical 
features explain the double outcome can be determined, and the redundant information can be removed. There-
fore, the RDA model was used in this study as a method to study the correlation between the outcome variable 

Table 1.  Features of epileptic patients.

Features N (%) or mean ± SD

Sex

Female 194 (44.80%)

Male 239 (55.20%)

Age 26.00 ± 4.24

Age of onset 24.50 ± 2.12

Seizure frequency

Frequent 75 (17.32%)

Occasional 180 (41.57%)

Rare 178 (41.11%)

Seizure type

Without generalized tonic–clonic seizures 142 (32.79%)

With generalized tonic–clonic seizures 291 (67.21%)

Status epilepticus

Negative 417 (96.30%)

Positive 16 (3.70%)

Family history

Negative 415 (95.84%)

Positive 18 (4.16%)

History of brain trauma or surgery

Negative 365 (84.29%)

Positive 68 (15.71%)

Other brain diseases

Negative 390 (90.06%)

Positive 43 (9.94%)

Brain MRI abnormalities

Negative 333 (76.90%)

Positive 100 (23.10%)

Epileptiform discharge in EEG

Negative 74 (17.09%)

Positive 359 (82.91%)

Usage of drugs

Valproate sodium (1) 136 (31.40%)

No drugs (2) 23 (5.31%)

Others (3) 274 (63.29%)

Table 2.  Results of cross-validation for different machine learning algorithms using MMSE data.

Model Sensitivity Specificity Accuracy Precision Recall AUC 

LR 0.68 0.75 0.73 0.48 0.68 0.67

DT 0.41 0.89 0.78 0.70 0.41 0.63

RF 0.69 0.80 0.78 0.63 0.69 0.72

SVM 0.60 0.90 0.83 0.73 0.60 0.70
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matrix and the exposure variable matrix. Eigenvalues of RDA1 and RDA2 were 0.719 and 0.281, respectively. The 
accumulated constrained eigenvalues showed the contribution of features (Table 6, Fig. 2).

The features of the top ten contribution rates for MMSE and MoCA outcomes were age, age of onset, sex, 
usage of drugs, seizure frequency, epileptiform discharge in EEG, brain MRI abnormalities, status epilepticus, 
seizure type and family history ranked by RDA1 values.

Selection of the optimal combination of features. In the RF modeling of MMSE or MoCA data, we 
obtained the top ten characteristic variables with contribution rates. Additionally, we selected the top ten fea-
tures according to the contribution rate with bivariate outcomes from the RDA model. The optimal candidate 
features were filtered by Venn analysis, and there were 7 overlapping features, namely, sex, age, age of onset, 
seizure frequency, brain MRI abnormalities, epileptiform discharge in EEG and usage of drugs (Fig. 3).

Validation for the optimal combination of features. To determine the optimal combination of fea-
tures, we chose the optimal combination of features through the optimal model for internal validation of binary 
classification, the top ten features of RDA modeling, the top ten features of MoCA outcomes in RF modeling, 
and the top ten features of MMSE outcomes in RF modeling for external validation.

Table 3.  Ranking of feature importance in the RF model (MMSE). CK control check; DIS disease—people 
with epilepsy.

CK DIS Mean decrease in accuracy

Age 12.12 12.67 13.78

Age of onset 10.76 10.94 12.92

Sex 4.85 4.70 6.18

Usage of drugs 3.13 3.50 4.51

History of brain trauma or surgery 3.12 1.62 3.39

Seizure type 2.91 0.70 2.75

Seizure frequency 2.26  − 1.35 1.17

Epileptiform discharge in EEG 2.34  − 1.40 1.12

Brain MRI abnormalities 0.49 0.70 0.82

Other brain diseases 0.41 0.61 0.64

Family history  − 0.90 2.39 0.53

Status epilepticus  − 0.67 0.41  − 0.25

Table 4.  Results of cross-validation for different machine learning algorithms using MoCA data.

Model Sensitivity Specificity Accuracy Precision Recall AUC 

LR 0.57 0.76 0.64 0.84 0.57 0.62

DT 0.73 0.53 0.67 0.78 0.73 0.61

SVM 0.66 0.76 0.69 0.87 0.66 0.60

RF 0.51 0.81 0.60 0.88 0.51 0.71

Table 5.  Ranking of feature importance in the RF model (MoCA).

CK DIS Mean decrease in accuracy

Status epilepticus  − 3.27  − 2.31 3.66

History of brain trauma or surgery 0.90 3.32 3.09

Seizure frequency 1.27 1.97 2.46

Sex  − 2.46 4.65 2.39

Usage of drugs 0.26 2.96 2.30

Age 2.35 0.6 1.78

Epileptiform discharge in EEG  − 1.95  − 0.87 1.68

Family history 1.01 1.52 1.62

Brain MRI abnormalities 1.28 0.13 0.90

Age of onset  − 1.07 1.49 0.71

Other brain diseases 1.72  − 0.56 0.56

Seizure type  − 2.86 1.69 0.34
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Validation for MMSE outcomes. Verification results of various variable combinations for RF models 
showed that the ROC value of the optimal combination of features, which was 0.786, was the highest (Fig. 4). 
After analyzing all the combinations of features details, the optimal combination of features revealed that highest 
candidate variable combinations had specificity, accuracy, and precision values of 0.90, 0.82, and 0.61, respec-
tively (Table 7).

Validation for MoCA outcomes. Verification results of various variable combination models showed that 
the ROC value of the optimal combination of features, which was 0.702, was the highest (Fig. 5). All the combi-

Table 6.  The contribution of features in the RDA model.

RDA1 RDA2

Age 0.86 0.11

Age of onset 0.69 0.17

Sex  − 0.32  − 0.27

Usage of drugs  − 0.29 0.20

Seizure frequency 0.20  − 0.30

Epileptiform discharge in EEG 0.18  − 0.01

Brain MRI abnormalities 0.18  − 0.38

Status epilepticus 0.13 0.16

Seizure type  − 0.07  − 0.23

Family history  − 0.05 0.33

History of brain trauma or surgery  − 0.01 0.45

Other brain diseases  − 0.00 0.32

Figure 2.  RDA analysis plot. The length of the arrow shows the strength of the correlation between the variable 
and the result variable. The longer the arrow length, the stronger the correlation. The vertical distance reflects 
the correlation between them. The smaller the distance, the stronger the correlation.
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nations of features in detail and the specificity and precision of the optimal combination of features, which were 
0.90 and 0.90, respectively, were also the highest (Table 8).

Evaluation for dual MMSE and MoCA outcomes. Different candidate variables had different clinical 
values. The optimal combination of features was used not only to predict MMSE and MoCA scores but also to 
predict the results of double outcome variables. We plotted the mixed matrix of four combinations predicting 
two MMSE and MoCA outcomes and calculated the accuracy (Table 9). The column names in the table are 
expressed as MMSE outcomes (0 indicates normal and 1 indicates cognitive function) and MoCA outcomes (0 
indicates normal and 1 indicates cognitive function).

The results showed that the best predictor of noncognitive function (MMSE = 0, MoCA = 0) was the top ten 
features of RDA, followed by the candidate variable combination; prediction accuracy was 38.47% and 38.1%, 
respectively. In particular, the best predictor for cognitive function (MMSE = 1, MoCA = 1) was the optimal 
combination of features, and the accuracy was 50.00% (Table 9). All the results above indicate that candidate 
features were the optimal combination of features not only for the prediction of MMSE or MoCA outcomes 
individually but also for both.

Discussion
Epilepsy is a common neurological disease and is associated with impairments in cognitive function. There are 
several factors related to cognitive comorbidities, such as disease duration, seizure types, usage of VPA, and 
others. However, cognitive function prediction lacks a valid and convenient tool that could be used in clinical 
practice until now. We used retrospective clinical data to construct a promising prediction model of MMSE and 
MoCA outcomes using machine learning.

In our study, 12 features were used for statistical analysis and modeling. We found that the RF algorithm is 
the most effective model to predict cognition outcomes in this kind of patient. Significant features, such as sex 
(R1), age (R2), age of onset (R3), seizure frequency (R4), brain MR focus (R10), EEG (R11), and drugs (R12), 
were screened out. Interestingly, correlation analysis showed no significance for these factors. This may be due 
to the heterogeneity of the study population in the real world and the small sample size.

The order of significant features is different between the MMSE and MoCA scales. For example, MRI abnor-
malities and age at onset (AAO) are important in MoCA outcomes, and sex and seizure types are important 
in MMSE outcomes, while age is important for both scales. These results are partly consistent with previous 
 studies16–18. This could be due to two scales focusing on the different aspects of function. The MMSE focuses on 
memory, while the MoCA focuses on executive  function19. It is possible that different factors may contribute to 
various aspects of cognitive function  decline20. Jan Bressler et al. analyzed the relationship between age accel-
eration, and cognitive function using three neuropsychological tests that represent different cognitive domains 
that decline with age to different  degrees21, and cognitive function declines with  age22–24. At the same time, the 
frequency of seizures is also strongly linked to cognitive function. Previous studies have shown that the rapid 

Figure 3.  In the Venn diagram, each circle represents the difference variable in a model, the number of overlaps 
in the circle represents the number of common variables in the two models, and the overlap area represents the 
number of unique variables in each model (purple: MMSE; Yellow: MOCA; Green: RDA).
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decline in cognitive function in patients with seizures may be associated with  seizures25,26. Frequent seizures 
can also interfere with normal neuronal physiology and brain development, disrupt various neurocognitive pro-
cesses (such as plastic memory encoding and language processing), and cause developmental delay, regression, 
or interruption. For instance, Landau-Kleffner syndrome is characterized by language degradation in normally 
developing children and is associated with changes in electroencephalography, mainly during  sleep27. Cognitive 
function in patients with epileptic encephalopathy was improved after normalization of  EEG28.

Until now, most of the exploration in epilepsy with cognitive impairment has used traditional advanced 
statistical methods, such as  LR29. These methods have an overt restriction on the sample size of the research 
population. These methods are not easy in clinical application because the results vary in age and clinical phe-
notype. Moreover, traditional methods cannot predict dual MMSE and MoCA outcomes. Our study found an 
approach to efficiently predict the dual outcome of MMSE and MoCA assessments.

Figure 4.  ROC curve of MMSE’s prediction model. (red: the optimal combination of variables; blue: the top 
ten features of RDA; green: the top ten features of MMSE RF analysis; purple: the top ten features of MoCA RF 
analysis).

Table 7.  Validation dataset validated all the combinations of features (MMSE). MMSE Mini-Mental State 
Examination; MoCA Montreal Cognitive Assessment.

Model Susceptibility Specificity Accuracy Precision Recall

The optimal combination of features 0.55 0.90 0.82 0.61 0.55

The top ten features of RDA 0.76 0.69 0.70 0.4 0.76

The top ten features of MMSE RF analysis 0.52 0.83 0.76 0.47 0.52

The top ten features of MoCA RF analysis 0.62 0.55 0.56 0.28 0.62
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Figure 5.  ROC curve of MOCA’s prediction model. (red: the optimal combination of variables; blue: the top 
ten features of RDA; green: the top ten features of MMSE RF analysis; purple: the top ten features of MoCA RF 
analysis).

Table 8.  Validation dataset validated all the combinations of features (MoCA).

Model Susceptibility Specificity Accuracy Precision Recall

The optimal combination of features 0.41 0.90 0.57 0.90 0.41

The top ten features of RDA 0.48 0.76 0.57 0.81 0.48

The top ten features of MMSE RF analysis 0.67 0.62 0.65 0.78 0.66

The top ten features of MoCA RF analysis 0.39 0.81 0.53 0.81 0.39

Table 9.  Different candidate variables predict the correct probability at the same time.

Model (0, 0) (%) (0, 1) (%) (1, 0) (%) (1, 1) (%)

The optimal combination of features 38.10 70.00 21.43 50.00

The top ten features of RDA 38.47 72.97 13.16 46.67

The top ten features of MMSE RF analysis 16.67 28.57 0 4.88

The top ten features of MoCA RF analysis 10.00 39.53 4.55 9.09
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A method based on machine learning has been applied to in the field of epilepsy research to a certain 
 extent30–32. In the present study, we established a workflow to efficiently predict dual outcomes of the MMSE 
and MoCA in outpatients with epilepsy. Obviously, compared with the traditional method of directly eliminat-
ing excess factors, the introduction of RDA can undoubtedly improve the screening accuracy of the model for 
potential patients, and the correct rate can be improved to 50%. The main reasons may be due to the stable inter-
nal verification premise, the clear choice of modeling algorithm, the effective control of redundant information, 
and the balance adjustment of model parameters. First, we selected a series of necessary candidate features to 
distinguish the different cognitive levels of patients with baseline epilepsy. These features include age, age of onset 
and seizure frequency. Whether VPA was used previously is also an important factor affecting cognitive function. 
Second, we carried out robust internal verification to compare the stability of traditional linear algorithms and 
machine learning nonlinear algorithms. Then, the characteristics that contribute more to multiple outcomes were 
screened out through the variable importance of the unsupervised learning model and the variable importance 
of the restricted model. In particular, the RF algorithm was combined with the redundancy analysis algorithm. 
After the linear redundant information was removed, optimal feature selection and resampling were carried out. 
Finally, the follow-up data were used to backtrack the model, further confirming the external rigor and predic-
tive efficiency of the workflow. Therefore, we output a more accurate classifier based on a supervised learning 
algorithm and linear constraint algorithm for early screening of cognitive impairment in patients with epilepsy.

This study was the first to use machine learning to predict cognitive functions in specific epilepsy categories 
so far. More importantly, we have proposed a method for predicting dual outcomes that can be used with other 
prediction models in other diseases. However, this study included only a small sample of adolescents patients and 
did not include patients under 12 years of age, which is a result of the nature of our neurology department, which 
emphasizes adult patients. The lack of complete outpatient data leads to a significant decrease in the number of 
patients enrolled in this study. From a clinical point of view, it would be more relevant to know the contribution 
of common different antiepileptic medications to the model. Data processing A more effective prediction model 
could be created by expanding the sample size in the future.

Our study addressed the statistics of features in the real world, which has high heterogeneity. This prediction 
using a variable combination with machine learning could be used in the research of heterogeneous epileptic 
patients. This approach may help clinical experts conveniently identify and avoid impairment of epilepsy patients’ 
cognitive function by determining patients’ cognitive functions early.

Conclusion
Our research clarified that the cognitive function of patients could be predicted by common clinical information 
via machine learning. Moreover, we found that our optimal variable combination with RF modeling is the best 
way to predict the cognitive function of outpatients with epilepsy. This can help clinicians assess outpatients’ 
cognitive function and prevent further damage at the first visit.

Data availability
The corresponding author had full access to all the data in the study and take responsibility for the integrity of 
the data and the accuracy of the data analysis.

Received: 26 April 2021; Accepted: 27 September 2021

References
 1. Beheshti Nasr S. M., Moghimi A., Mohammad-Zadeh M., Shamsizadeh, A. & Noorbakhsh S. M. The effect of minocycline on 

seizures induced by amygdala kindling in rats. Seizure 22, 670–4 (2013).
 2. Xia, J., Wang, H., Zhang, Q. & Han, Z. Modulation of P2X purinoceptor 3 (P2X3) in pentylenetetrazole-induced kindling epilepsy 

in rats. Med. Sci. Monit. 24, 6165–6177 (2018).
 3. Oyegbile, T. O. et al. The nature and course of neuropsychological morbidity in chronic temporal lobe epilepsy. Neurology 62, 

1736–1742 (2004).
 4. You, J. C. et al. Epigenetic suppression of hippocampal calbindin-D28k by DeltaFosB drives seizure-related cognitive deficits. Nat. 

Med. 23, 1377–1383 (2017).
 5. Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80, 858–870 

(2016).
 6. Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 

23, 678–680 (2017).
 7. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimer’s disease: causes and 

clinical relevance. Lancet Neurol. 16, 311–322 (2017).
 8. van den Dungen, P. et al. Case finding of mild cognitive impairment and dementia and subsequent care; results of a cluster RCT 

in primary care. PLoS ONE 11, e0156958 (2016).
 9. Volpato, N., et al. Level of physical activity and aerobic capacity associate with quality of life in patients with temporal lobe epilepsy. 

PLoS ONE 12, e0181505 (2017).
 10. Hoseini, F., Shahbahrami, A. & Bayat, P. AdaptAhead optimization algorithm for learning deep CNN applied to MRI segmentation. 

J. Digit. Imaging. 32, 105–115 (2019).
 11. Zeng, X. & Luo, G. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selec-

tion. Health Inf. Sci. Syst. 5, 2 (2017).
 12. Chander, R. J. et al. Development and validation of a risk score (CHANGE) for cognitive impairment after ischemic stroke. Sci. 

Rep. 7, 12441 (2017).
 13. Kimura, N. et al. Modifiable lifestyle factors and cognitive function in older people: A cross-sectional observational study. Front. 

Neurol. 10, 401 (2019).
 14. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2005).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20002  | https://doi.org/10.1038/s41598-021-99506-3

www.nature.com/scientificreports/

 15. Fairclough, D. L., Peterson, H. F. & Chang, V. Why are missing quality of life data a problem in clinical trials of cancer therapy?. 
Stat. Med. 17, 667–677 (1998).

 16. Choromanska, M. et al. Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia 
patients. Can Salivary AGE be a Marker of Dementia? Int. J. Mol. Sci. 18, (2017).

 17. Sasai, T., Matsuura, M. & Inoue, Y. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid 
eye movement sleep behavior disorder. Sleep 36, 1893–1899 (2013).

 18. Shi, J., Tian, J., Wei, M., Miao, Y. & Wang, Y. The utility of the Hopkins Verbal Learning Test (Chinese version) for screening 
dementia and mild cognitive impairment in a Chinese population. BMC Neurol. 12, 136 (2012).

 19. Dalise, A. M. et al. Autonomic nervous system and cognitive impairment in older patients: Evidence from long-term heart rate 
variability in real-life setting. Front. Aging Neurosci. 12, 40 (2020).

 20. Strandberg, M. et al. A functional MRI-based model for individual memory assessment in patients eligible for anterior temporal 
lobe resection. Open Neuroimag. J. 11, 1–16 (2017).

 21. Bressler, J. et al. Epigenetic age acceleration and cognitive function in African american adults in midlife: The atherosclerosis risk 
in communities study. J. Gerontol. A Biol. Sci. Med. Sci. 75, 473–480 (2020).

 22. Zhu, A., Yan, L., Shu, C., Zeng, Y. & Ji, J. S. APOE epsilon4 modifies effect of residential greenness on cognitive function among 
older adults: A longitudinal analysis in China. Sci. Rep. 10, 82 (2020).

 23. Horng, L. Y. et al. Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in 
neuronal cells, reverses memory impairment. Br. J. Pharmacol. 172, 4741–4756 (2015).

 24. Liguori, C. et al. Sleep dysregulation, memory impairment, and CSF biomarkers during different levels of neurocognitive function-
ing in Alzheimer’s disease course. Alzheimers. Res. Ther. 12, 5 (2020).

 25. Tai, X. Y. et al. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal 
lobe resections. Brain 139, 2441–2455 (2016).

 26. Pooler, A. M., Phillips, E. C., Lau, D. H., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal 
activity. EMBO Rep. 14, 389–394 (2013).

 27. Tebartz van Elst, L., Pick, M., Biscaldi, M., Fangmeier, T. & Riedel, A. High-functioning autism spectrum disorder as a basic dis-
order in adult psychiatry and psychotherapy: psychopathological presentation, clinical relevance and therapeutic concepts. Eur. 
Arch. Psychiatry. Clin. Neurosci. 263 Suppl 2, S189–96 (2013).

 28. Holmes, G. L. & Lenck-Santini, P. P. Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav. 8, 
504–515 (2006).

 29. Zhan, Q. & Hu, W. An epilepsy detection method using multiview clustering algorithm and deep features. Comput. Math Methods 
Med. 2020, 5128729 (2020).

 30. Colic, S. et al. Prediction of antiepileptic drug treatment outcomes using machine learning. J. Neural Eng. 14, 016002 (2017).
 31. Reddam, V. R. et al. Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy. Seizure 

61, 8–13 (2018).
 32. Del Gaizo, J. et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 7, e00801 (2017).

Acknowledgements
This work was supported by Joint Funds for the Innovation of Science and Technology, Fujian Province (Grant 
Number 2017Y9058), Fujian Provincial Health Technology Project (Grant Number 2019-ZQN-38), and Fujian 
Provincial Science and Technology Project: Nervous acid intervenes in the process of Alzheimer’s disease by 
regulating the intestinal flora and metabolism (Grant Number 2020J011271).

Author contributions
F.L., X.C. and J.H. were involved in the study concept and design. F.L., J.L., S.C., C.Z., H.L. and W.L. provided 
the tools and patient specimens. T.X. and J.H. performed the experiments. T.X., J.H., and X.C. analyzed and 
interpreted the results and edited the manuscript. T.X. and J.H. organized the results and drafted the manuscript. 
F.L. and H.H. approved the final version. All authors participated in the critical revision of the manuscript for 
important intellectual content.

Funding
This work was supported by Joint Funds for the Innovation of Science and Technology, Fujian Province (Grant 
Number 2017Y9058) to Dr. Huapin Huang, Fujian Provincial Health Technology Project (Grant Number 2019-
ZQN-38) to Dr. Wanhui Lin; and Grants from Fujian Provincial Science and Technology Project: Nervous acid 
intervenes in the process of Alzheimer’s disease by regulating the intestinal flora and metabolism (Grant Number 
2020J011271) to Dr. Feng Lin.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.L. or H.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20002  | https://doi.org/10.1038/s41598-021-99506-3

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Predicting cognitive impairment in outpatients with epilepsy using machine learning techniques
	Materials and methods
	Subjects and data preprocessing. 
	Feature selection. 
	Data preprocessing. 
	Machine learning-based classification. 
	Model evaluation. 
	Ethics approval. 

	Results
	Patient demographics. 
	Prediction modeling for MMSE scores of patients with diagnosed epilepsy. 
	Prediction modeling for MoCA scores of patients with diagnosed epilepsy. 
	RDA contributes to variable constraint. 
	Selection of the optimal combination of features. 
	Validation for the optimal combination of features. 
	Validation for MMSE outcomes. 
	Validation for MoCA outcomes. 
	Evaluation for dual MMSE and MoCA outcomes. 

	Discussion
	Conclusion
	References
	Acknowledgements


