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lncRNA‑disease association 
prediction based on latent factor 
model and projection
Bo Wang*, Chao Zhang, Xiao‑xin Du & Jian‑fei Zhang

Computer aided research of lncRNA‑disease association is an important way to study the development 
of lncRNA‑disease. The correlation analysis of existing data, the establishment of prediction model, 
prediction of unknown lncRNA‑disease association, can make the biological experiment targeted, 
improve the accuracy of biological experiment. In this paper, a lncRNA‑disease association prediction 
model based on latent factor model and projection is proposed (LFMP). This method uses lncRNA‑
miRNA association data and miRNA‑disease association data to predict the unknown lncRNA‑
disease association, so this method does not need lncRNA‑disease association data. The simulation 
results show that under the LOOCV framework, the AUC of LFMP can reach 0.8964. Better than the 
latest results. Through the case study of lung and colorectal tumors, LFMP can effectively infer the 
undetected lncRNA‑disease association.

lncRNA refers to long non-coding RNAs (lncRNAs) with a length of more than 200 nucleotides. In the past, it 
was thought that lncRNAs had little effect on gene  expression1. However, in recent years, studies have shown that 
lncRNAs are closely related to various human diseases, which has triggered a research upsurge in bioinformatics 
on the association between lncRNAs and  diseases2. Studies have shown that lncRNAs are involved in diseases 
through abnormal  sequence3 and spatial  structure4, abnormal expression  level5 and abnormal interaction with 
binding  proteins6, thus affecting human health, including  diabetes7, cardiovascular  disease8, and various types of 
 cancer9. With the development of computer, big data technology is gradually mature. The application of artificial 
intelligence technology in the research of associations between lncRNA and diseases can accelerate the discovery 
of the potent association between lncRNA and diseases, improve the accuracy of biological experiments, and 
reduce the efforts of bioinformatics researchers and the cost of biological experiments. In medicine, the associa-
tion between lncRNA-diseases can help doctors improve the detection of early diseases and targeted treatment of 
some  diseases10; in biology, the association between lncRNA-diseases can help researchers systematically under-
stand the pathogen nature of complex  diseases11. Therefore, it is necessary to analyze the existing data through 
big data technology and establish a prediction model to predict the association between lncRNA-diseases.

At present, lncRNA-disease association prediction model can be roughly divided into two parts. Part of it is 
based on single association data. For example, Chen et al. proposed a new lncRNA-disease prediction method 
(LRLSSP)12 based on Laplacian regularized least squares and spatial projection. Firstly, by integrating the above 
information and Gaussian kernel similarity to make up for the lack of semantic similarity of disease, an accurate 
lncRNA-disease similarity network was reconstructed, and then Laplacian regularized least squares method 
was used Small two multiplication is used to estimate the association between lncRNA-diseases and solve the 
problem of lncRNA-disease sparsity. However, this model has some disadvantages, such as requiring a large 
number of combined data, and relying too much on the known lncRNA-disease association data; in view of 
Chen et al.’s problem, the models established by the following scholars do not need to rely on Xie et al. proposed 
a novel prediction method of human lncRNA-disease Association (NCPHLDA)13 based on network consistent 
projection. The model integrates the above information, including lncRNA cosine similarity network and disease 
cosine similarity network. NCPHLDA has no requirement for parameters and has good prediction performance. 
However, there are some limitations. If the known lncRNA-disease correlation is small, the prediction results 
will be biased. In order to solve the problem of insufficient data set of lncRNA-disease association, Zhang et al. 
constructed a prediction model of lncRNA-disease association based on comprehensive spatial projection frac-
tion (LDAI-ISPS)14. In addition, Li et al. proposes a new network consistency prediction lncRNA-disease associa-
tion model (NCPLDA)15. The probability matrix of lncRNA-disease association is calculated by integrating the 
above information. Then the lncRNA similarity and disease similarity are obtained based on Gaussian kernel 
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similarity. Finally, the lncRNA-disease association score is obtained by combining the disease space projection 
score and lncRNA space projection score the effect of prediction. The disadvantage is that this method depends 
on the quality of the data, and the above methods have achieved good prediction results. A hybrid computing 
framework (SDLDA)16 was proposed by Zeng et al. It is a lncRNA-disease association prediction model based 
on singular value decomposition and deep learning. The model uses singular value decomposition and deep 
learning to extract the linear and nonlinear features of lncRNA-disease respectively, and combines the linear and 
nonlinear features to train SDLDA. The combination of linear and nonlinear features can enhance each other 
to obtain relatively high-quality features, and the connected vectors are used for the association prediction of 
lncRNA-disease. The performance of the prediction model has been greatly improved. The disadvantage is that 
it is difficult for SDLDA to determine the parameters. However, biological association information is generally 
affected by a variety of  factors17, only through a single data prediction has certain limitations. The other part is to 
use multiple association data for prediction. Ding et al. Proposed a novel lncRNA-disease association prediction 
(TPGLDA)18. By integrating gene disease association and lncRNA-disease association, we can better describe the 
heterogeneity of coding non coding gene disease association and effectively identify potential lncRNA-disease 
association. Fu et al. proposed Matrix factorization-based data fusion for the prediction of lncRNA-disease asso-
ciations (MFLDA)19. In this way, the weights of the data sources and the correlation matrix of the disease can be 
assigned to the data sources with less weight to break the potential association of lncRNA-disease. The biggest 
advantage of this model is that it is easy to predict the correlation between different research objects by sorting 
out a variety of heterogeneous data sources. However, MFLDA is more inclined to study data sparse matrix, and 
its performance depends on low-quality and unrelated internal relational data sources. Considering the different 
correlations between the incidence matrix and multiple internal incidence matrices, Wang et al. improved the 
MFLDA model proposed above, and proposed a model  WMFLDA20 which decomposes the weighted matrix 
of multiple relational data. Firstly, the model constructs a heterogeneous network for different types of entities 
and multiple relational intranets works for the same type of entities. Then the weights are assigned to these 
networks, and the cooperative low rank matrix is decomposed. Then, the association between lncRNA-diseases 
was predicted based on the optimized low rank matrix. WMFLDA model can be applied to all kinds of link 
prediction problems, and can collect data sources among and within relationships. However, this model ignores 
the different correlations of multiple relational matrices to target prediction tasks. In addition, Liu et al. Proposed 
a method A Weighted Graph Regularized Collaborative Matrix Factorization Method for Predicting Novel 
lncRNA-Disease Associations (WGRCMF)21. When the known information is insufficient, the performance of 
the matrix factorization method decreases significantly. The model A Probabilistic Matrix Factorization Method 
for Identifying lncRNA-disease Associations (PMFLDA)22 developed by Xuan et al. Established a new weighted 
lncRNA-disease association network through three association networks of lncRNA-miRNA, miRNA disease 
and lncRNA-disease. The KNN algorithm based on disease semantic similarity and lncRNA function similar-
ity is further updated. Finally, the potential lncRNA-disease association is inferred based on probability matrix 
decomposition. However, this model relies not only on miRNA and lncRNA association data, miRNA-disease 
association data, but also on lncRNA-disease association data. The above methods use multi-source data to pre-
dict the association between lncRNA and disease, but these methods still need the association between lncRNA 
and disease. However, lncRNA-disease association data are too sparse. In order to solve these problems, a new 
lncRNA-disease association prediction method LFMP is proposed in this paper. lncRNA-miRNA association 
data and miRNA-disease association data were used to calculate lncRNA similarity and disease similarity. The 
lncRNA-disease potential association was constructed through these two data sets. In the absence of known 
lncRNA-disease association data, the prediction of unknown lncRNA-disease association data is realized. The 
simulation results show that the AUC of LFMP can reach 0.8964 under the LOOCV framework. Better than the 
latest results. Through case studies of lung and colorectal tumors, it is proved that LFMP can effectively infer the 
undetected lncRNA-disease association.

Results
Evaluation metrics. In order to evaluate the performance of LFMP model, we used the ROC curve and 
AUC value generated by Leave One Out Cross Validation (LOOCV) as the evaluation measure, and compared 
it with other advanced models, namely  CFNBC23,  NBCLDA24. Under the framework of LOOCV, we take the 
association between each lncRNA and the disease one by one as the test set, By comparing the calculated results 
with the given threshold, we get four evaluation indexes: True Positive (TP), False Positive (FP), True Negative 
(TN), False Negative (FN).The True Positive Rate (TPR) and False Positive Rate (FPR) were calculated by the 
following formula:

AUC is a performance index to measure the performance of the model. When AUC = 1, the model is per-
fect; When AUC = [0.85, 0.95], the model is excellent. When AUC = [0.7, 0.85], the performance of the model 
is general.

Comparison with other methods. As shown in the Fig. 1. Based on a 190 known lncRNA-disease associ-
ated data set, the AUC values of LFMP under the LOOCV framework and fivefold framework are 0.9085 and 

(1)TPR =
TP

TP + FN
,

(2)FPR =
FP

FP + TN
.
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0.9072 respectively. Considering that the biological information used by CFNBC, and NBCLDA is the same 
as that of LFMP, we compare LFMP with the above three prediction models in the framework of LOOCV. The 
ROC and AUPR comparison chart based on LOOCV is shown in Fig. 2. It can be seen from ROC comparison 
chart and AUC value comparison table that CFNBC model is best 0.8576, NBCLDA model is 0.8521, and LFMP 
model is 0.8964. Obviously, LFMP model is slightly better than other models in ROC curve and AUC value.

Analysis of parameters. In this model, we introduce the parameter ω, whose value range is [0,1]. This 
parameter is used to adjust the ratio of lncRNA projection fraction and disease projection fraction in the final 
result calculation. We conducted the experiment with the parameter of 0 and the increment of 0.1, and the 
results are shown in Fig. 3. It is easy to see that when ω = 0, only lncRNA-miRNA is used to calculate functional 
similarity, AUC is 0.8892; when ω = 1, only lncRNA-disease is used to calculate functional similarity, AUC is 
0.8693, while the fused lncRNA similarity matrix is used and the AUC is 0.8964, when ω = 0.3, which proves that 
the fusion functional similarity has certain advantages.

Case studies. In order to further prove LFMP’s potential ability to detect potential lncRNAs associated 
with diseases, several common diseases were analyzed, and we obtained the rank of related disease prediction 
through experiments and ranked it. We verified the top 15 lncRNAs by searching the literature, selected the veri-
fied lncRNAs and attached the PMID (PMID is the literature number in the fields of life science and medicine 

Figure 1.  The performance of LFMP in terms of ROC curves and AUC based on 190 known lncRNA-disease 
associations under the framework of LOOCV frameworks (Left) and fivefold frameworks (Right).

Figure 2.  ROC and AUPR comparison between LFMP model and other advanced models based on 407 known 
lncRNA disease associated LOOCV frameworks.
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included in the PubMed search engine) of relevant supporting literature, as shown in Table 1. Lung cancer (LC) 
ranks the top three in the world’s cancer incidence rate, ranking the first in cancer death cause in Germany, 
and the incidence rate of male and female morbidity is 25% and 15%  respectively25. The original treatment was 
surgical resection, but not all patients were treated with surgical resection, so the survival rate of patients with 
lung cancer is very low, about 19%26. With the development of bioinformatics, lncRNA, miRNA and other genes 
have been found to be closely linked with various diseases, and various new lung cancer diagnosis methods 
and non-surgical treatment methods have emerged, bringing the hope of cure for the majority of lung cancer 
patients to  cure27,28. Among the top 15 candidate lncRNAs in our prediction results, 7 lncRNAs have been shown 
to be associated with lung Neoplasms, in which the lncRNA XIST promote the proliferation and migration 
of non-small cell lung cancer cells via sponging miR-16 and regulating CDK8  expression29; Long Noncoding 
RNA KCNQ1OT1 Promotes the Progression of Non-Small Cell Lung Cancer via Regulating miR-204-5p/ATG3 
 Axis30; lncRNA NEAT1 Interacted With DNMT1 to Regulate Malignant Phenotype of Cancer Cell and Cyto-
toxic T Cell Infiltration via Epigenetic Inhibition of p53, cGAS, and STING in Lung  Cancer31. lncRNA OIP5-
AS1 was strongly expressed in lung cancer tissues, which was correlated with tumor size and tumor growth rate. 
Overexpression of OIP5-AS1 increased the proliferation of lung cancer cells in vitro32.

Colorectal cancer (CRC) is also among the top three cancers in the world, the third most common cancer in 
men (746,000 cases, 10.0% of the total) and the second most common cancer in women (614,000 cases, 9.2 of 
the total)33. Among the top 15 candidate lncRNAs in our prediction results, 9 have been shown to be associated 
with colorectal Neoplasms in which MALAT1 polymorphism inhibits the binding of mir-194-5p, leading to 
the risk, growth and metastasis of colorectal  cancer34; the long non-coding RNA HCG18 promotes the growth 

Figure 3.  ROC was calculated by lncRNA projection, disease projection and proportional fusion and 
transformation curve of parameter in the range of [0,1].

Table 1.  Candidate lncRNAs and its top 15 cases and related literature.

Disease lncRNA Evidence (PMID) Rank

Lung neoplasms XIST 31553952 1

Lung neoplasms KCNQ1OT1 31849486 3

Lung neoplasms NEAT1 28105699 5

Lung neoplasms OIP5-AS1 30541307 6

Lung neoplasms HCG18 32559619 7

Lung neoplasms SNHG16 31071307 8

Lung neoplasms FGD5-AS1 33416094 15

Colorectal neoplasms XIST 33298041 1

Colorectal neoplasms MALAT1 31311811 3

Colorectal neoplasms KCNQ1OT1 32564010 4

Colorectal neoplasms OIP5-AS1 29773344 6

Colorectal neoplasms NEAT1 30185232 7

Colorectal neoplasms HCG18 31854468 8

Colorectal neoplasms DCP1A 29964337 9

Colorectal neoplasms SNHG16 30962265 10

Colorectal neoplasms RP4-773N10.5 31966592 14
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and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin35; 
lncRNA MALAT1 promotes the colorectal cancer malignancy by increasing lncRNA DCP1A expression and 
miR203  downregulation36. Long Non-Coding RNA SNHG16 Activates USP22 Expression to Promote Colorectal 
Cancer Progression by Sponging miR-132-3p37.

Discussion
The research of lncRNA and disease association prediction calculation model has been a hot spot. Using com-
putational models to predict the association between lncRNA and diseases can accelerate the discovery of the 
potential association between lncRNA and diseases, improve the accuracy of biological experiments, reduce 
the energy of bioinformatics researchers and the cost of biological experiments, and help doctors improve the 
early detection and targeted treatment of some diseases. At present, there are a large number of lncRNA-disease 
prediction models. Most of these models use the association information between lncRNA and disease to predict 
the unknown lncRNA-disease association, and the most important step to predict the unknown association is the 
lncRNA-lncRNA similarity calculation and disease-disease similarity calculation. It is commonly used to calculate 
lncRNA-lncRNA similarity and disease-disease similarity through lncRNA-disease association information. This 
method has both advantages and disadvantages. The advantage is that the lncRNA-lncRNA calculated directly 
from the lncRNA-disease association information has more credibility in the prediction of lncRNA-disease 
association information. However, the disadvantage is that the known lncRNA-disease association information 
is too sparse, resulting in the lack of known information, which makes the credibility decline. Therefore, we use 
lncRNA-miRNA association information to calculate lncRNA-lncRNA similarity and miRNA-disease associa-
tion information to calculate disease-disease similarity. The introduction of miRNA as an intermediate variable 
makes the credibility of the calculated lncRNA-lncRNA similarity and disease-disease similarity in the prediction 
of lncRNA-disease association decrease. However, due to the known lncRNA-miRNA association information 
and miRNA-disease association information are more perfect, the credibility of the calculated lncRNA-lncRNA 
similarity is improved, Moreover, the introduction of miRNA can solve the problem of lack of lncRNA-disease 
association information, and provide great help for the prediction of unknown lncRNA-disease association.

Conclusion
In this study, we propose a lncRNA-disease association prediction model LFMP based on implicit semantic 
model and projection. The model integrates multiple data, namely lncRNA-miRNA association data and miRNA-
disease association data, and realizes indirect prediction of lncRNA-disease association, that is, the model does 
not need to be based on the known lncRNA-disease association data to predict the association between lncRNA 
and disease. By comparing with other models and consulting literature to verify the prediction results, it is 
proved that LFMP has certain reliability and good prediction ability. It is undeniable that our calculation model 
also has some limitations. Using multivariate data to calculate is a double-edged sword. It helps to improve the 
reliability of prediction, but also increases the difficulty of obtaining data. Compared with single data association 
prediction, this model needs more stringent data preprocessing methods, and the model relies too much on the 
known lncRNA-miRNA association data and miRNA-disease association data. If these two data are too sparse, 
the prediction performance of the model will be affected.

Methods
Dataset and preprocessing. Download the known lncRNA-disease association datasets from MNDRv2.0 
database (2017 Edition)(Supplementary File 3)38, Download known miRNA-disease association datasets from 
HMDD database (2018 Edition)(Supplementary File 1)39. Download the known lncRNA-miRNA association 
datasets from Starbase v2.0 database (2015 Edition)(Supplementary File 2)40. The data obtained is cleaned up 
and the data is finally obtained as shown in Table  1. lncRNA-miRNA adjacency matrix ALM = {alm}m× n , 
miRNA-disease adjacency matrix AMD = {amd}n× e are constructed from lncRNA-miRNA association data 
set, miRNA-disease association data set. The construction of adjacency matrix is shown in Fig. 4, the experimen-
tal data are shown in Table 2.

Cosine similarity for diseases. The cosine similarity for disease between miRNA disease adjacency 
matrix was calculated:

where AMD(:, i) is the i-th column vector in the adjacency matrix of miRNA and disease, which represents the 
association feature of disease i.

Jaccard similarity for diseases. The calculation of similarity is an important part of gene association pre-
diction. At present, the methods of similarity calculation in most articles include Gauss interactive calculation 
of similarity. Compared with the past, we use Jaccard similarity to calculate. The Jaccard similarity for disease 
between miRNA disease adjacency matrix was calculated:

(3)CD(i, j) =
AMD(:, i)× AMD(:, j)

||AMD(:, i)||||AMD(:, j)||
,

(4)JD(i, j) =
AMD(:, i) ∩ AMD(:, j)

AMD(:, i) ∪ AMD(:, j)
.
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AMD(:, i) ∩ AMD(:, j) is the number of miRNAs associated with disease i and disease j,AMD(:, i) ∪ AMD(:, j) 
is the sum of miRNAs related to disease i and disease j.

Integrated disease semantic similarity matrix. Integrated disease semantic similarity DS and cosine 
similarity CD for diseases:

Cosine similarity for lncRNA. The cosine similarity for lncRNA between lncRNA-miRNA adjacency 
matrix was calculated:

(5)IDS(i, j) =

{

CD(i,j)+JD(i,j)
2

if CD(i, j) �= 0;

JD(i, j) if CD(i, j) = 0;
.

Figure 4.  Flow chart of LFMP Applied to lncRNA-disease association prediction.

Table 2.  List of experimental data.

DATA lncRNAs miRNAs Diseases Interactions

lncRNA-miRNA 1089 246 – 9086

miRNA-disease – 246 373 4704

lncRNA-disease 1089 – 373 407

lncRNA-disease 1089 – 373 190
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Jaccard similarity for lncRNA. The Jaccard similarity for lncRNA between lncRNA-miRNA adjacency 
matrix was calculated:

Integrated lncRNA similarity matrix. Integrated miRNA similarity MS and cosine similarity CL for 
lncRNA:

Calculation of latent factor model. Compared with previous  studies41,42, the matrix of lncRNA-disease 
association was calculated by using the adjacency matrix ALM = {alm}m× n composed of lncRNA-miRNA 
association information and the adjacency matrix AMD = {amd}n× e composed of miRNA-disease association 
information, which was defined as follows:

The matrix ALD = {ald}m× e represents the preliminary correlation score between lncRNA and disease. 
However, the matrix is still too sparse. In order to solve this problem, we use the latent factor model to calculate 
the potential score. For matrix ALD = {ald}m× e , it can be expressed approximately by the product ψ of two 
matrices X and Y:

X is the lncRNA feature matrix, Y is the disease feature matrix, and k is an implicit class. X and Y are obtained 
by ALD decomposition, Conversely, the lncRNA feature matrix X is multiplied by the disease feature matrix Y 
to obtain the lncRNA-disease score matrix ψ (compared with the ALD matrix, the ψ matrix has a score for the 
zero part of the ALD matrix, while the corresponding part of the ψ matrix is about equal to ALD for the non-zero 
part of the ALD matrix), where in the element in the lncRNA-disease score matrix ψ is the dot product of the 
corresponding characteristic vector in the matrix X and the matrix Y, It reflects the fit between lncRNA feature 
and disease feature. Therefore, the larger the number in ψ, the greater the association between lncRNA and 
disease. In order to obtain the target value, we use the gradient descent method to solve the problem, the loss 
function is defined as:

Here, ||Xi|| and ||Yj|| are regularization terms used to prevent over fitting, and λ can be obtained experimentally. 
For each Xi , the partial derivative is obtained:

Then, according to the random gradient descent method, the parameters need to be pushed forward along 
the fastest descent direction. Therefore, the following recurrence formula can be obtained:

where α is the learning rate, Combine formula (12) with formula (13):

Similarly, we can get:

In our experiment, α is set to 0.0002 and λ is set to 0.004.

(6)CL(i, j) =
ALM(i, :)× ALM(j, :)

||ALM(i, :)||||ALM(j, :)||
.

(7)JL(i, j) =
ALM(i, :) ∩ ALM(j, :)

ALM(i, :) ∪ ALM(j, :)
.

(8)ILS(i, j) =

{

CL(i,j)+JL(i,j)
2

if CL(i, j) �= 0;

JL(i, j) if CL(i, j) = 0;
.

(9)ALD = ALM × AMD .

(10)ψ ij = XT
i Yj =

K
∑

k=1

xikykj .

(11)
L(X,Y) =

∑

(i,j)∈K

(ψ ij − XT
i Yj)

2 + �

∑

i

||Xi||
2 + �

∑

j

||Yj||
2
.

(12)∂L

∂Xi
=

∂

[

∑

i,j

(

ψij − XT
i Yj

)2
+ �

∑

i
||Xi||

2

]

∂Xi
=

∑

j

2

(

XT
i Yj − ψij

)

Yj + 2�Xi .

(13)Xi = Xi − α
∂L

∂Xi
,

(14)Xi = Xi − α
∑

j
2(XT

i Yj − ψ ij)Yj + 2�Xi .

(15)Yj = Yj − α
∑

i
2(XT

i Yj − ψ ij)Xi + 2�Yj .
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Establishment of LFMP prediction model. This paper proposes a new LFMP prediction model by com-
bining the latent factor model and projection. The flow chart of LFMP model is shown in Fig. 4. Compared with 
previous  studies43, we further extended the network consistency projection from single lncRNA-disease associa-
tion data to multivariate data, such as lncRNA-miRNA association data, miRNA-disease association data, and so 
on. The lncRNA-disease potential score matrix was calculated by the latent factor model. On the lncRNA-disease 
potential correlation matrix, the functional similarity of the fused lncRNA and the comprehensive disease risk 
factors were combined the semantic similarity of disease was used to project lncRNA and disease respectively. 
The projection of lncRNA is defined as:

In the above formula, ILS(i, :) represents the vector composed of the similarity between lncRNA i and other 
kinds of lncRNA. ψ(j, :) is potential score matrix between lncRNA j and various diseases. ||ILS(i, :)|| is the second 
normal form of vector formed by column i of integrated similarity matrix of lncRNA. LP(i, j) is the projection 
score. m is the number of lncRNA species. The projection of disease is defined as:

IDS(:, j) represents the vector composed of the similarity between disease j and other diseases. ψ(:, i) repre-
sents the second normal form of the vector formed by row i of lncRNA-disease potential score matrix. DP(i, j) 
is the projection score. e is the number of diseases.

The final lncRNA-disease potential association prediction score matrix was formed by fusing lncRNA projec-
tion score with disease projection:

LFMP(i, j) is the final association score between lncRNA i and disease j. ω means to regulate lncRNA projec-
tion and disease projection in the final result.
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