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Interpretation of the adsorption 
of metals on quartz crystal 
based‑macromolecule via advanced 
modeling of equilibrium isotherms
Fatma Aouaini1, Mohamed Ben Yahia2*, Haifa I. Alrebdi1 & Miysoon A. Alothman1*

In this article, new insights about the metals‑porphyrin complexes are proved by analyzing the zinc, 
nickel and chromium adsorption process over the well‑known porphyrin macromolecule. The use of 
the quartz crystal microbalance (QCM) apparatus allows the control of the complexation systems’ 
experimental adsorption data operating at four temperatures. The experimental results and the 
physical models reveal that the zinc and nickel complexation processes are to be examined using 
the mono layer adsorption model. While, the double layer model describes the interaction between 
the chromium compound and the porphyrin. Actually, the three metals are shown to be adsorbed 
by a multi‑docking process in the physicochemical description. The endothermic character of the 
investigated processes is shown through the appropriate data of the principal parameter adsorbent 
sites’ density. Hence, several porphyrin sites are exclusively stimulated at high temperature. The 
parameters of van del Waals, depicting the influences of the lateral interactions, explain the nickel 
isotherms down trend. The chemical bonds are shown to be carried out between the zinc and the 
porphyrin through the calculated adsorption energies. Considering the thermodynamic study, and 
referring to the configurational entropy and the free enthalpy, it is to be noted that the disorder peak 
of the three mechanisms is reached when the equilibrium concentration is equal to the energetic 
parameters’ values for each system. The nickel enthalpy revealed for high concentration that the 
adsorbates’ lateral interactions disapproved the nickel chloride adsorption. The free enthalpy trends, 
that observed two stability states of the chromium compound, confirmed the chromium double layer 
mechanism.

The macrocyclic components known as porphyrins have been playing important role in biological processes in 
the field of the living organisms metabolism such as the photosynthesis mechanism and the oxygen transport 
process since life-system is  formed1–3. Thus, the hemoglobin and the chlorophyll structures showed the com-
pounds of porphyrins with magnesium and iron. Therefore, the macrocyclic complexes are called pigments of 
 life4. Moreover, the aggregation of porphyrins is studied intensively because the change in their microscopic 
characteristics led to their application in several research areas such as the artificial photosynthetic systems, the 
sensor devices and the nonlinear optical materials …5. Recently, a monumental importance has been given to 
the complexation of these chemical elements by various metals. This complexation allowed the birth of different 
metalloporphyrins  compounds6–8. The sensing properties as well as the photodynamic activity are favored by 
the complexed  metals9–13. For instance, metalloporphyrins are used as ionophores when it comes to ion selective 
 sensors9. The metallo-porphyrins of aluminum and manganese contributed as well to the fields of optical anion 
sensors and  potentiometric14–18. The cobalt-porphyrin photosensitizing properties are proved to be of much use in 
the photodynamic therapy as  well4. The rising importance given to the chemical complexes resulted in an evalua-
tion of porphyrin complexes along with indium and aluminium from different areas such as the stereochemistry, 
the polymerisation reactions, the molecular recognition field and the supramolecular building  blocks19–22. Late 
research papers have proved that even the enzymatic reactions study involved the applicability of the complexes 
of porphyrin-based metals like the complexes of porphyrin with nickel and  chromium23,24. Metalloporphyrins 
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were also investigated in the field of anticancer activities where the zinc-porphyrin complexes have demonstrated 
potential against fungal  growth25 and in other areas of bioelectronics and organic electronics based-devices26.

These important mechanisms of metalloporphyrins made researchers inspect the synthesis mechanism of 
these compounds by various experimental  approaches27,28. Notably, late works have inspected the phenomenon 
of electrodes’ coating with polymers. The electrode based polymers have been framed via spin-coating on the 
electrode surface or by a preformed polymer application. They have been proven to be applicable in multiple 
frameworks such as biosensors, molecular electronics and electrocatalysis etc.…29,30. Importantly, gold electrode 
based porphyrins film has gained potential  interest11. This way, our research team opted for the quartz-crystal-
microbalance (QCM) technique to make use of the complexion mechanism of porphyrins by various metals. The 
spin coating process is selected for the deposition of porphyrins on the quartz crystal electrode. After that, the 
metal’s mass on the functionalized crystal for every concentration was controlled through the QCM technique, 
which leads to scheme the curves of the isotherms at different  temperatures31.

In this paper, the QCM method is devoted for the complexation mechanism study of 5,10,15,20-tetrakis(4-
methylphenyl) porphyrin with three metals (zinc, nickel and chromium) (Fig. 1). The selection of these three 
complexes was due to two reasons: on the one hand, their fields of application were interesting ones. On the other 
hand, they were not well inquired beforehand. The adsorption’s analysis of some compounds of these metals on 
the porphyrinic surface is required in the study of the process of complexation by means of the QCM technique. 
In fact, the adsorption isotherms of zinc chloride, nickel chloride and chromium chloride on the quartz sensor 
coated with the macromolecule should be performed at different reaction temperatures.

The empirical equations as the well-known Langmuir equation or the Freundlich model could pave the way for 
an interpretation of adsorption  isotherms32,33. Although the previously mentioned models are selected in order to 
examine numerous adsorption problems, they did not lead to satisfactory energetic or steric  interpretations32–35. 
In recent years, the introduction of the ideas of the statistical physics treatment has improved the descriptive 
models progress, which led to advanced equation of  models36,37. The advanced models contribution in both 
energetic and steric adsorption phenomenon- analysis, by means of the models’ variables, came up with an 
interesting description of an activated surface at the ionic scale. This fact requires the choice of the most suitable 
model that is the appropriate one for experimental adsorption data fitting.

This paper is devoted to discuss the following objectives:

• The performance of the tetrakis(4-methylphenyl) porphyrin which acts as sensor of the three metals is 
checked by the application of the QCM technique for the measurement of isotherms plots.

• The experimental results’ description is presented via the statistical physics theory.
• The appropriate descriptive models are selected through numerical simulation.
• At the ionic level, the energetic and the steric interpretations of the complexation process behavior are devel-

oped considering the adopted model parameters.
• The adsorption energies’ calculation is carried out to estimate the metal porphyrin bond’s nature.
• The macroscopic discussion concerning the adsorption of the three ions is done based on a thermodynamic 

 study38.

Figure 1.  Chemical structure of the complexes of the 5,10,15,20-tetrakis(4-methylphenyl) porphyrin with the 
three metals (zin, nickel and chromium).



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20031  | https://doi.org/10.1038/s41598-021-99465-9

www.nature.com/scientificreports/

Experimental adsorption measurements’ method
Piezoelectric sensor setup. The QCMs are improved techniques of mass-measurement at the nanogram-
scale39–42, based on the quartz-inherent property of piezoelectricity. The quartz ‘AT-cut’, represents one of the 
most suitable cut giving satisfactory stability properties, the crystal quartz sensor is characterized by a frequency 
order of MHz. This work is carried out considering a frequency f0 of 5 MHz with a coinciding crystal’s thickness 
equal to 330 μm. The disc diameter which is about 2.54 cm is covered with a gold layer. The area of this latter is 
characterized by an upper electrode of 1.37  cm2 and a lower electrode of 0.4  cm240. The quartz discs are cleansed 
using hydrogen peroxide as well as with sulfuric acid at room temperature. Later, deionized water and ethanol 
are used to rinse them. In attempt to get rid of any remaining water, the crystals are dried using high purity 
nitrogen.

Before film deposition, the porphyrin compound was dissolved in chloroform resulting in a solution of 
concentration equal to 2.9  10–2 mol  L−1. Then, the gold-quartz electrode functions as a spin-coating 40 μL of 
porphyrin solution is performed onto the crystal surface at a speed of 3000 rpm during 30 s. A temperature of 
100 °C is used to dry up the adsorption cell or the porphyrin coated on quartz crystal during 2 h.

Sauerbrey model application. The QCMs technique has been introduced in 1959 by  Sauerbrey41. Basi-
cally, it relates the oscillating piezoelectric crystal frequency change to the crystal’s mass change. Recently, the 
QCMs have gained much interest when the quartz sensor started to be applied in liquid  environments43–45.

Furthermore, quantifying the frequency oscillation variation of quartz in regards to the different parameters, 
which influence the piezoelectric crystal in liquid phase, is required in Sauerbrey model application. Under 
this condition, the total resonant frequency of the sensor can be expressed via the following  parameters27,46–48:

where ∆fT stands for the temperature’s frequency variation, ∆fr stands for the frequency variation corresponding 
to the roughness effect, ∆fη,ρ is the viscosity and density variation of the solution, ∆fm is the mass impact and ∆fp 
is the pressure influence.

Taking into account the fact that:

• ∆fT is neglected whenever the experiments are performed at a constant-temperature.
• ∆fr is neglected whenever the used piezoelectric sensor is a polished crystal.
• ∆fη,ρ is also neglected whenever the solution properties have low impacts during the experimental 

 measurements27,46–48.

Therefore, whenever neglecting ∆fT, ∆fr and ∆fη,ρ, the oscillation frequency of quartz turns to be:

Here, it should be underlined that the present paper focuses on the-porphyrin adsorbent metals adsorbates-
interactions. So, the sensor frequency-variation should be mainly affected by the mass variation -impact ∆fm 
without the pressure influence- intervention of ∆fp. This fact is considered in the following section.

Adsorbed quantities of metals through the experimental measurements. The QCM strategy 
consists in presenting the sensor electrode based porphyrin. This latter is enclosed in a reactor replete with a 
pure water volume Vs of 150 mL. Through a coaxial cable, the adsorption cell is linked to the frequency-meter 
monitor.

It should be noted that the experimental measurements must be done after the sensor resonant frequency is 
stabilized. Doing so, this frequency change is discarded from the total frequency variation Δf. As a result, this 
latter is computed considering only the mass variation’s frequency change on the adsorbing surface ∆fm, which 
yields:

Moreover, in order to instill quantities of the metals’ adsorbates solutions in the bain-marie, a micropipette 
is utilized. Note here that the addition were made from stock solutions of the three adsorbates (zinc chloride, 
nickel chloride and chromium chloride) which were prepared by dissolving the metals compounds in pure water 
giving solutions of concentrations varying between  10–3 mol  L−1 and 0.1 mol  L−1. Then, the matter-conservation’s 
law allows expressing the injected adsorbates volumes as follows:

After each injection, the sensor resonant frequency Δfm is measured using the frequency meter monitor. Dur-
ing an isotherm measurement, one can notice that the added quantities (do not exceed 2 mL) are imperceptible 
compared to the pure water volume Vs enclosed in the reactor (equal to 150 mL). The influence of the added 
volumes on the quartz sensor is therefore barely significant.

Depending on the relation of Sauerbrey, the complexed quantities of each metal are determined in terms of 
the crystal sensitivity- factor C (Hz  cm2 μg−1) and the metal mass- variation Δm as  follows41,49:

(1)�f = �fT +�fr +�fη,ρ +�fm +�fp

(2)�f = �fm +�fp

�f = �fm

(3)Vad =
cf × Vs

c0
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Finally, the results depicting the metals’ adsorption on porphyrin are carried out at 285–300 K and the three 
adsorption systems are shown in Fig. 2.

Experimental data’s interpretation. Through the adsorption measurements’-analysis, one can clearly 
notice the following observations:

The tetrakis (4-methylphenyl) porphyrin is efficient when acting as three metals’ complexing sensor in pecu-
liar ways as regards quantity or isotherm form.

Quantitatively speaking, at T = 300 K, the maximum adsorbed quantity for each adsorbate is as follows: Qa 
 (ZnCl2) = 455.3 μg  cm−2 ˃Qa  (NiCl2) = 359.8 μg  m−2 ˃ Qa  (CrCl2) = 253.7 μg  cm−2. One can notice that the adsorb-
ate of zinc presents the highest adsorption values. Therefore, the zinc-porphyrin complex is the first-rate when 
it comes to retained quantity. Now, let us focus on the various behaviors of isotherms curves, it is noted that the 
metals’ nature represents the predominant complexation mechanism factor. One level of saturation is depicted 
for the isotherms plots of the zinc and nickel compounds. Whenever all the poprhyrinic sites are filled with the 
metals ions, an adsorbed metal layer is created without the participation of the anionic ions  (Cl-). The saturation 
state, in the adsorption process, is attained. At high adsorbate concentration, the two mono-layer adsorptions of 
zinc and nickel are distinct from each other. The saturation state’s stability-of zinc is fulfilled thanks to the strong 
zinc-porphyrin interaction and without any inverse phenomenon even if this connection is cut. However, at high 
concentration the insecurity of the constructed bond between nickel and porphyrin yields the downtrend of the 
isotherms of the nickel compound. In fact, the formed nickel-porphyrin complex instability’s role of is due to the 
lateral interactions between the ions as a desorption process happened at the saturation level. It should be noted 
that the adsorption curves of the chromium compound revealed two states of saturation are interrelated to two 
formed adsorbed layers. Therefore, the chromium adsorption is done conforming to the layer by layer  method50,51. 
Consequently, the development of the first layer is achieved by the adsorption of a number of cations  Cr2+ by the 
porphyrins. Repulsion between the adsorbed layers will take place, if the second adsorbed layer is formed by the 
same charged compounds. So, resolving this electrostatic problem represents the anionic ions role. Indeed, the 
formulation of the second layer with the anions is dedicated to avoid the repulsion between the two  layers50,51. 
For the sake of theoretical investigation of these experimental observations, let us consider now a deeper analysis.

Advanced modeling and physicochemical interpretation
In theory, the classical equations’ use of adsorption models for the description of isotherms allows neither a deep 
microscopic nor a deep macroscopic interpretation of the adsorption problem. For instance, they are confined 
to a mono-layer process adsorption–description like the Langmuir  model32. Erroneous depictions can be the 
result of such a classical model for a multi-layer process such as the chromium, which is discussed in this paper. 
Concerning the inspection of some parameters’ influences on adsorption like temperature, the use of classical 
models is not  recommended33–35. Nevertheless, the advanced equations provide interesting interpretations. The 
adsorption of zinc and nickel depend upon a mono-layer model as reported by the isotherms of these systems. 
An LBL process is necessary for the adsorption of the chromium compound. According to the statistical physics 
theory, the isotherms’ modeling depends on the advanced models by selecting the most appropriate one for the 
isotherm’s description through its physical  parameters38,51.

Adsorption models’ development. Assuming that the establishment of an equilibrium between the free 
adsorbates phase (A) and the formed complexes (An-S)-adsorbed phase is the first hypothesis of the statistical 
physics formalism. The equation of the equilibrium adsorption which represents the metals’ number captured 
by one receptor site is expressed in terms of the stochiometric variable n as  follows51–54:

The grand-canonical situation provides an investigation of the relation between the adsorbed phase and the 
adsorbates’ reservoir of the resulting  complexes52,53. Therefore, the common partition function (zgc) is given by 
the following equation:

where, − Ei is the parameter energy and μ is the chemical potential.
Thus, an accurate selection of these parameters must be accomplished and introduced in the partition func-

tion. For the energy introduction, one energy level is to be used for a mono-layer-process and two-energies for 
a double-layer-mechanism. The introduction of the chemical potential of ideal gas μp or the chemical potential 
of real gas μr leads to mono-layer processes as well as double-layer processes.

As far as the chemical potential of ideal gas μp is concerned, the mutual interactions between the adsorbates 
are negligible as in the following  equation54–56:

where N is the number of adsorbates.

(4)�fm = −C ×�m

(5)nA+ S ⇋ An − S

(6)zgc =
∑

Ni

e−β(−Ei−µ)Ni

(7)µp =
1

β
ln

(

N

zTr

)
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Figure 2.  Experimental adsorption isotherms zinc chloride, nickel chloride and chromium chloride on 
5,10,15,20-tetrakis(4-methylphenyl) porphyrin given at four temperatures (285–300 K).
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However, as regards the chemical potential of real gas μr, a description of the lateral interactions is expressed 
in terms of the cohesion pressure a and the covolume b parameters as  follows52,54:

where c is the adsorbate concentration.
Considering a PM identical porphyrins sites number, the average occupation number (N0) is determined for 

each model this  way54,56:

For each model, the expressions of the complexed quantity (Qa) corresponding to two mono layer models 
as well as to two double layer models, taking into account the coefficient n and the average occupation quantity 
N0, are given as  follows51–56:

The four advanced adsorption models’ development is illustrated in Table 1.

Appropriate models for the isotherms description. We have been selecting via a numerical program 
the appropriate model based on Levenberg–Marquardt  algorithm57. The lower the gap between the theoretical 
estimations and the experimental values is the better the descriptive model becomes. Therefore, in order to 
obtain the finest fitting result, this gap should be lower than 5%, which guarantees a confidence level of 95%54,58. 
To evaluate the four advanced models, the numerical simulation of experimental data is discussed considering 
three adjustment errors  coefficients51. It is to be noted that the first error coefficient known as determination 
coefficient  R2 offers the best result as its value almost equals the  unit58,59. The second one is the AIC coefficient 
and the model displaying the lowest AIC-value represents the finest fitting  model51. When its value is inferior to 
two, the third one, known as the non-standardized error coefficient RMSE is the best fitting  model59–62.

The coefficients values of errors fitting are given in Tables 2, 3 and 4.
According to Table 2, the description of the isotherms of zinc requires the ideal gas mono-layer model use 

as it displays the finest fitting criterion. As far as the isotherms of nickel are concerned, the mono layer model of 
real gas gives the best coefficients values of adjustment (Table 3). This way, the lateral interactions between the 
adsorbates represent the reason of the isotherms’ drop at saturation. The double layer model of ideal gas repre-
sents the best fitting model for the description of the isotherms of chromium according to the selection criteria 
(Table 4). So, a layer by layer process happens between the cations  (Cr2+) and the anions  (Cl−).

At T = 300 K, the experimental isotherms along with the theoretical simulations are compared to the appro-
priate model in Fig. 3: the ideal gas mono-layer model matches with the experimental data of zinc. The ideal gas 
mono-layer model promotes the matching of nickel-adsorption isotherms. Whereas, the ideal gas double layer 
model is matched to the chromium experimental data.

In the next section, the three complexation mechanisms’ microscopic investigation is expanded referring to 
the adopted models’ fitting parameters-values.

(8)µr = µp +
1

β
ln

1

1− bc
+

1

β

bc

1− bc
− 2ac

(9)N0 =
PM

β

∂ ln(zgc)

∂µ

(10)Qa = n× N0

Table 1.  Analytical expressions of the grand-canonical partition function (zgc) and the adsorbed quantity (Qa) 
corresponding to the two mono-layer models of ideal gas and real gas and the two double-layers models of 
ideal gas and real gas.

Adsorption model Ideal gas approach (µp (Eq. 7)) Real gas approach (µr (Eq. 8))

Mono-layer model

zgc = 1+ eβ(E+µp)

Qa =
nPM

1+

(

c1/2
c

)n

where c1/2 is:

c1/2 = Se
−

E1/2
kBT

S: adsorbate solubility

zgc = 1+ eβ(E+µr )

Qa =
nPM

1+

(

w1/2
1−bc
c e2βac e

− bc
1−bc

)n

where w1/2 is:

w1/2 = Se
−

E1/2
kBT

S: adsorbate solubility

Double-layer model

zgc = 1+ eβ(E1+µp) + eβ(E1+E2+2µp)

Qa = nPM

(

c
c1

)n
+2

(

c
c2

)2n

1+

(

c
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)n
+

(

c
c2

)2n

where c1 and c2 are:

c1,2 = Se
−

E1,2
kBT

S: adsorbate solubility
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Models’ parameters and physicochemical discussion. The chosen models for the isotherms-curves’ 
description, as seen in Table 1, include steric parameters and energetic variables. By steric parameters, we mean 
the metals-number per porphyrin site n and the occupied adsorbent sites number PM. By energetic variables, we 
mean c1/2 for zinc, w1/2 for nickel and c1 and c2 for chromium. The description of nickel adsorption is done by the 
cohesion pressure a and the covolume b which represent the lateral interactions variables.

The adsorption systems’ parameters values are given in Table 5.

Steric parameters n and  PM and lateral interactions’ parameters a and b. The steric parameters pave the way 
for a comparison between the performances of the three systems as far as quantity is  concerned63. According to 
Table 5 and at a temperature T equal to 300 K, it is noticeable that:

Table 2.  Values of the correlation coefficient  R2, the residual root mean square coefficient RMSE and the 
Akaike information criterion AIC deduced from fitting the experimental adsorption isotherms of  ZnCl2 on 
5,10,15,20-tetrakis(4-methylphenyl) porphyrin with the four advanced models.

Adsorption system Zinc chloride-porphyrin

Temperature (K) 285 290 295 300

Mono-layer model (ideal gas)

R2 0.99 (± 0.006) 0.99 (± 0.008) 0.98 (± 0.009) 0.97 (± 0.007)

RMSE 1.51 (± 0.4) 1.66 (± 0.2) 1.02 (± 0.4) 1.4 (± 0.1)

AICAIC 15.88 (± 1.8) 16.4 (± 0.8) 17.4 (± 1.1) 16.26 (± 2.4)

Mono-layer model (real gas)

R2 0.89 (± 0.03) 0.87 (± 0.02) 0.88 (± 0.01) 0.89 (± 0.01)

RMSE 3.01 (± 0.8) 3.99 (± 0.3) 3.5 (± 0.7) 3.64 (± 0.87)

AIC 20.7 (± 2. 3) 21.5 (± 2. 5) 21.5 (± 1. 69) 20.99 (± 2. 01)

Double-layer model (ideal gas)

R2 0.81 (± 0.02) 0.84 (± 0.05) 0.83 (± 0.03) 0.79 (± 0.04)

RMSE 5.2 (± 0.89) 5.33 (± 0.05) 6.7 (± 0.1) 6.2 (± 0.3)

AIC 24.6 (± 1.5) 23.98 (± 1.8) 24.79 (± 2.05) 25.4 (± 2.4)

Double-layer model (real gas)

R2 0.81 (± 0.05) 0.81 (± 0.03) 0.76 (± 0.09) 0.77 (± 0.03)

RMSE 7.1 (± 1.2) 7.9 (± 2.08) 6.98 (± 1.79) 7.21 (± 2.4)

AIC 26.7 (± 1.54) 27.46 (± 2.49) 28.9 (± 3.7) 27.84 (± 3.2)

Table 3.  Values of the correlation coefficient  R2, the residual root mean square coefficient RMSE and the 
Akaike information criterion AIC deduced from the numerical adjustment of experimental isotherms of  NiCl2 
on 5,10,15,20-tetrakis(4-methylphenyl) porphyrin with the four statistical physics models.

Adsorption system Nickel chloride-porphyrin

Temperature (K) 285 290 295 300

Mono-layer model (ideal gas)

R2 0.81 (± 0.03) 0.77 (± 0.09) 0.82 (± 0.02) 0.83 (± 0.01)

RMSE 6.66 (± 0.69) 7.3 (± 0.92) 6.91 (± 0.81) 7.45 (± 0.89)

AIC 29.1 (± 3.7) 31.6 (± 4.16) 30.67 (± 4.2) 29.42 (± 3.67)

Mono-layer model (real gas)

R2 0.99 (± 0.005) 0.97 (± 0.009) 0.98 (± 0.007) 0.98 (± 0.004)

RMSE 1.66 (± 0.1) 1.78 (± 0.09) 1.22 (± 0.5) 1.45 (± 0.2)

AIC 19.4 (± 1.52) 20.7 (± 1.51) 19.47 (± 1.34) 19.67 (± 1.74)

Double-layer model (ideal gas)

R2 0.81 (± 0.02) 0.82 (± 0.03) 0.78 (± 0.05) 0.82 (± 0.01)

RMSE 4.8 (± 0.55) 3.29 (± 0.12) 5.21 (± 0.43) 4.95 (± 0.5)

AIC 26.6 (± 1.99) 26.8 (± 1.39) 27.91 (± 2.7) 26.3 (± 1.64)

Double-layer model (real gas)

R2 0.84 (± 0.04) 0.85 (± 0.02) 0.79 (± 0.04) 0.8 (± 0.05)

RMSE 5.9 (± 1.64) 4.89 (± 0.36) 6.02 (± 1.9) 5.82 (± 1.88)

AIC 28.7 (± 2.7) 29.31 (± 3.26) 28.5 (± 3.5) 27.28 (± 3.07)
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A fitted values comparison between the metals-number per porphyrin site n and the occupied sites PM affirms 
that the porphyrinic surface, which is provided by the complexed quantity of zinc, is better than other metals 
as far as quantity is concerned.

One can say that all the adsorption systems have values of n inferior to the unit, which proves that the multi-
docking mechanism is the origin of the three ions complexation (the charged metal ions cannot be aggregated 
in one receptor site of porphyrin because of the repulsion interaction)53. When we follow the order in which the 
values of PM occur, we can notice that both the zinc and the nickel were added promptly because only one layer 
is constructed. In the meanwhile, the anionic ions did not contribute to this formation. In fact, in the case of 
the anionic ions’ participation (chromium chloride adsorption), the porphyrins’ complexation would have been 
disfavored by reason of the interaction between the two adsorbed layers.

A lateral interactions’ description, by means of a and b, is presented by the real gas model which aims at 
inspecting the adsorption of the nickel  compound64. If we compare the nickel-compound complexation to the 
zinc process, we notice that it is disfavored by the lateral adsorbate–adsorbate interaction depicted by the vari-
ables mentioned above.

Energetic parameters. Each system’s adsorption energies can be calculated by the energy-expression of each 
adopted model including the energetic parameters’ fitted values: c1/2 for zinc, w1/2 for nickel and c1 and c2 for 
chromium, (see Table 1)54,64.

Table 6 expresses the three systems’ calculated energies.
According to Table 6, it is noticeable that the energies’ order in modulus values is as follows:

The zinc-adsorption possesses the maximal energies-values, then, the zinc-porphrin complex is displayed as 
the best complex as far as stability is concerned when compared to the complexes of nickel and chromium. Also, 
the adsorption energy values, shown in the adsorption process of zinc, are beyond 40 kJ  mol−1, which implies that 
the chemisorption process happened throughout the zinc-complexation53,65,66. Zinc-porphyrin bond can be either 
covalent or  ionic66. In order to establish this kind of bonds, a change in terms of particles’ structures as well as an 
electron density- rearrangement between the adsorbent and the adsorbate should take place. So, a multi-layer 
process can neither result from the chemical adsorption nor be influenced by the lateral  interactions65,66. The 
nickel and chromium processes, on the other hand, display adsorption energies results below 40 kJ  mol−1, which 
implies that a physical adsorption process between the two metals and the adsorbent took  place5,65. The van der 
Waals forces along with hydrogen bonding, which are physical bonds, can be created between both metals and 
the porphyrin  cavities5,65,66. Because there is no rearranged electron density of the adsorbent and the adsorbate, 

n(ZnCl2) = 0.94 > n(NiCl2) = 0.84 > n(CrCl2) = 0.73

PM(ZnCl2) = 421.4µg/cm2 > PM(NiCl2) = 355.2µg/cm2 > PM(CrCl2) = 279.4µg/cm2

| − E1/2| (ZnCl2) = 69.5 kJ /mol > | − E1/2| (NiCl2) = 40.8 kJ /mol > |−E1| (CrCl2)

= 34.5 kJ /mol > |−E2| (CrCl2) = 20.9 kJ /mol

Table 4.  Values of the correlation coefficient  R2, the residual root mean square coefficient RMSE and the 
Akaike information criterion AIC deduced from the numerical adjustment of experimental isotherms of  CrCl2 
on 5,10,15,20-tetrakis(4-methylphenyl) porphyrin with the statistical physics models.

Adsorption system Chromium chloride-porphyrin

Temperature (K) 285 290 295 300

Mono-layer model (ideal gas)

R2 0.71 (± 0.039) 0.77 (± 0.09) 0.62 (± 0.05) 0.73 (± 0.041)

RMSE 8.67 (± 2.67) 8.12 (± 2.02) 7.98 (± 1.89) 7.56 (± 1.16)

AIC 32.7 (± 1.51) 34.8 (± 2.52) 34.78 (± 1.92) 35.76 (± 2.54)

Mono-layer model (real gas)

R2 0.79 (± 0.063) 0.79 (± 0.06) 0.78 (± 0.07) 0.78 (± 0.059)

RMSE 5.47 (± 1.19) 6.9 (± 2.05) 7.34 (± 2.29) 6.57 (± 1.51)

AIC 32.4 (± 2.55) 34.7 (± 3.07) 35.59 (± 1.85) 33.12 (± 2.41)

Double-layer model (ideal gas)

R2 0.98 (± 0.006) 0.99 (± 0.002) 0.98 (± 0.004) 0.97 (± 0.006)

RMSE 2.08 (± 0.014) 1.85 (± 0.065) 1.91 (± 0.048) 1.95 (± 0.049)

AIC 26.94 (± 1.78) 26.82 (± 1.39) 26.47 (± 3.04) 27.41 (± 2.45)

Double-layer model (real gas)

R2 0.89 (± 0.015) 0.91 (± 0.007) 0.90 (± 0.005) 0.89 (± 0.009)

RMSE 5.79 (± 0.25) 6.78 (± 1.34) 5.94 (± 1.19) 5.93 (± 0.94)

AIC 30.67 (± 0.08) 31.92 (± 0.19) 30.75 (± 0.06) 31.98 (± 1.14)
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a linkage like this is slightly energetic. Because of the feeble adsorbate adsorbent complex binding, a desorption 
mechanism could happen as the nickel-adsorption case and a multi-layer-mechanism could be produced as in 
the chromium case.

Theoretical results’ discussion. The diversity of all the physicochemical variables versus temperature is 
shown in Fig. 4. Figure 4a illustrates the evolution of the number of metals caught by one porphyrin. Figure 4b 
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Figure 3.  Experimental adsorption isotherms simulated with the adequate statistical physics model at 300 K.

Table 5.  Fitting values of the physicochemical parameters (n, PM, a, b, c1/2, w1/2, c1 and c2) deduced from the 
adjustment of experimental isotherms of  ZnCl2,  NiCl2 and  CrCl2 with the three adopted models.

Adsorption isotherm/fitting model Models’ parameters T = 285 K T = 290 K T = 295 K T = 300 K

ZnCl2/mono-layer model (Ideal gas)

n 0.75 0.84 0.91 0.94

PM 299.2 351.6 379.5 421.4

c1/2 0.007 0.008 0.009 0.008

NiCl2/mono-layer model (Real gas)

n 0.55 0.64 0.72 0.84

PM 239.6 259.2 317.5 355.2

w1/2 0.006 0.0067 0.0073 0.0069

a (×  10–9) 9.9 8.2 7.6 7.13

b (×  10–12) 1.4 2.1 3.8 4.4

CrCl2/double-layer model (Ideal gas)

n 0.41 0.52 0.64 0.73

PM 147.9 184.8 239.5 279.4

c1 0.0029 0.0032 0.0034 0.0031

c2 0.026 0.025 0.024 0.025

Table 6.  Values of the adsorption energies |− E1/2| for zinc and nickel adsorptions and |− E1| and |− E2| for 
chromium adsorption given in modulus values at 285, 290, 295 and 300 K.

Adsorption system Adsorption energy 285 K 290 K 295 K 300 K

ZnCl2-porphyrin |− E1/2| (kJ  mol−1) 53.1 62.4 65.1 69.5

NiCl2-porphyrin |− E1/2| (kJ  mol−1) 32.9 36.8 38.1 40.8

CrCl2-porphyrin
|− E1| (kJ  mol−1) 25.2 28.4 33.4 34.5

|− E2| (kJ  mol−1) 16.9 18.8 20.3 20.9
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indicates the variation of the receptor sites density PM. Figure 4c presents the evolution of the lateral interactions 
parameters a and b. Figure 4d reveals the variation of the adsorption energies.

Referring to these figures, it is to be noted that the steric parameters’ fitted values n and PM as well as the 
adsorption energies values’ increase is associated with a temperature’s increase. Thus, the adsorption is an endo-
thermic process for all the systems.

Broadly, adsorption is an exothermic process where the adsorption reaction is hindered by the increase of 
temperature. This implies that at one pressure or concentration, the adsorbed amount decreases as the tempera-
ture increases. Nevertheless, it can be seen from the adsorption isotherms, illustrated in Fig. 2, that the adsorbed 
amounts increase with an increase of the temperature from 285 to 300 K. Figure 4b explains that the density of 
receptor sites PM heightened hand in hand with temperature for the three systems. Along with the increase of tem-
perature, new receptor pophyrins sites hidden beforehand when the temperature was low, appear and take part 
in the adsorption process, increasing thus both the adsorbed quantity and the adsorption energies (Fig. 4d)36,37. 
For the nickel adsorption, it is noticeable that the increase of b is accompanied by an increase in temperature 
along with an increase in the adsorption energies and the steric variables. Whereas, when the temperature rises, 
the cohesion pressure decreases (Fig. 4c), which reveals that the lateral adsorbate adsorbate interactions are dis-
favored by the rise of temperature as it widens the distance between the  adsorbates38,64. Moreover, the cohesion 
pressure utility is only considered in order to interpret the decrease in adsorbed amount at saturation. While, the 
others variables have proved their decisive roles in the adsorption procedure by showing temperature behaviors 
close to the complexed quantity.

Thermodynamics
A thermodynamic study makes the macroscopic interpretation possible. Both entropy and free enthalpy expres-
sions can be calculated according to these  formulas52,55:
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Table 7.  Analytical expressions of the entropy (Sa/kB) and the free enthalpy (G/kBT) of the two mono-layer 
adsorptions of zinc and nickel and the L.B.L double-layer adsorption of chromium.
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Figure 5.  Evolutions of the entropy (a) and the free enthalpy (b) versus concentration for the three adsorption 
systems at 300 K.
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The thermodynamic functions are expressed in Table 7.
Figure 5 shows the two thermodynamic functions versus the equilibrium concentration for the three adsorp-

tion systems.
Figure 5a, illustrating the evolution of the entropy, reveals that this latter attains its maximal value as far as 

the adsorbate concentration is equal to the energetic parameter-value. Thus, the highest disorder is reached at 
these specific  points52. In addition, it is worth saying that the entropy of the zinc and nickel systems reveals one 
peak as one level of energy allows the adsorption of these compounds on the porphyrins. Whereas, two levels of 
energy  permit an interpretation of chromium adsorption, which explains the two maximums. It is noticeable that 
peak number 1, which coincides with the partial disorder of the first layer adsorption, is less than peak number 
2, which echoes the total disorder of the whole  system63.

Figure 5b displays the variation of the free enthalpy. It shows that the enthalpy values are negative, which 
proves that the three metals’ adsorptions have automatically progressed so as to reach the saturation state. In 
addition, the enthalpy of the zinc compound is in steady state at high concentration. However, the algebraic value 
of the nickel compound is amplified at saturation, which means that the adsorption process of  NiCl2 was hindered 
by the lateral interactions at high  concentration54. On the other hand,  CrCl2 presents two stability states. A first 
one consists of the first layer saturation and a second one coincides with the two formed layers’ total  saturation63.

Conclusion
In this paper, the spin coating technique has been demonstrated to be a utile procedure for the performance of 
quartz disc sensor with macrocyclic systems. This research has surveyed the piezoelectric sensor based porphyrin 
film as a complexing adsorbent of three metals paving the way for the experimental adsorption isotherms quanti-
fication. Through the isotherm plots analysis, it has been found that the zinc-porphyrin complex is the most fitted 
on the subject of quantity as well as stability. The lateral interactions of adsorbates have altered the firmness of 
the formed nickel-porphyrin complex, which results in a reversible mechanism at saturation. The layer by layer 
procedure of chromium adsorption has revealed the role of anionic ions (that is chloride). The complexation of 
chromium on the porphyrinic surface is disfavored by the contribution of this anion in the adsorption process 
so as the established complex stability is influenced. The isotherms’ modeling, via physical models, show that 
the porphyrins’ complexation stands for a multi docking mechanism and the zinc-porphyrin is the best created 
complex as far as amounts as well as steadiness are concerned. The adsorption of the zinc compound was proven 
to be a chemical process thanks to the calculation of the three systems energies. Similarly, it was demonstrated 
that the complexation of the nickel and chromium occurred thanks to a physical mechanism. The existence of a 
nickel desorption process and the creation of two layers for chromium are due to the some physical mechanisms. 
The analysis of the impact of temperature on the adsorption has indicated that the participation of new porphy-
rins sites in the adsorption is favored by the temperature rise, which reveals the endothermic nature of the three 
metals adsorption. Due to the exploration of the adsorption entropy, the thermodynamic evaluation has pointed 
out that for the three mechanisms the summit of the disorder is attained at the energetic parameters levels. It 
was proven that the behavior of the enthalpy determined the three complexation mechanisms’ spontaneity. One 
stability state, coinciding with the saturation of the adsorbed layer of the mono-layer process was provided by 
the nickel and zinc adsorption processes. On the other hand, two stability states were established by the double-
layer adsorption process of the chromium (by partial stability level, we mean the first layer saturation and the 
total stability state for the full system).

Analogy with the latest papers. The isotherms’ modeling via the advanced statistical physics yielded to 
impressive explanations of the adsorption mechanism regarding the established layers number (mono-layer/
double-layers), the steric aspect (multi-docking/multi-ionic), the adsorption nature (exothermic/endothermic) 
and the created complex type (chemical/physical). The earlier conventional models like  Langmuir32,  Freundlich33 
and  others34,35, could not deduct these microscopic conclusions. As far as the adsorption of metals on porphyrins 
is concerned, precedent works considering the adsorption of  FeCl2,  MnCl2 and  MgCl2 on  porphyrins51,54,64 have 
demonstrated that the presence of chloride ions in the adsorbate compounds did not have any influence over 
the complexation process, which leads to a mono-layer adsorption phenomenon for all the metals. Others works 
pointed out that the layer by layer process or multi-layer ionic adsorption can only occur in the case of the metals 
compounds comprising the nitrate ions in their structures such as Co(NO3)2 and Mn(NO3)2

38,54. In this work, it 
has been proven that the anionic ions did not participate in the zinc and nickel adsorption. Whereas, with the 
chromium, the chloride ions did contribute to the layer by layer adsorption process of porphyrin.

Outlooks
Some characteristics concerning the adsorption cell’s surface morphology such as SFM and SEM methods should 
provide us with ameliorated results in the future papers. The density functional theory also known as DFT 
method where the electron localization function (ELF) and electron densities plots are presented and inspected 
exhaustively, can be of much use for the investigation of the complexation process of porphyrin. In addition, 
an amelioration in the statistical physics modeling is possible if we consider the adsorbate dissolution at the 
adsorption time as the current investigation looks at the adsorbate as being entirely neutral. Up to now, the ionic 
nature of the adsorbate in the solution has not been taken into consideration. It is crucial to accomplish this 
investigation, as it will be conceived as an electrochemical task. The statistical physics treatment performed by 
our research team did not take into consideration this fact. Our research is decisive as it scrutinizes the ionic 
natures of the anions as well as of the cations in the adsorption procedure. It is worth mentioning that this 

(12)G = µ× Qa
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process is to be regarded as a binary adsorption performed by statistical physics  formalism53. The formed charge 
zone is to be seen as a main influence on the adsorption process, which represents one of the outlooks of our 
teamwork. Moreover, the study of the aggregation of porphyrins can be one of the most interesting perspectives 
which should be deeply investigated because the change in the microscopic characteristics of porphyrins led to 
their application in numerous fields of research. Thus, the effect of aggregation for different metal ions will be 
discussed in future papers.

Data availability
The data that supports the findings of this study are available within the article.
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