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Humans use minimum cost 
movements in a whole‑body task
Lijia Liu* & Dana Ballard

Humans have elegant bodies that allow gymnastics, piano playing, and tool use, but understanding 
how they do this in detail is difficult because their musculoskeletal systems are extraordinarily 
complicated. Nonetheless, common movements like walking and reaching can be stereotypical, and 
a very large number of studies have shown their energetic cost to be a major factor. In contrast, one 
might think that general movements are very individuated and intractable, but our previous study has 
shown that in an arbitrary set of whole‑body movements used to trace large‑scale closed curves, near‑
identical posture sequences were chosen across different subjects, both in the average trajectories 
of the body’s limbs and in the variance within trajectories. The commonalities in that result motivate 
explanations for its generality. One explanation could be that humans also choose trajectories that 
are economical in cost. To test this hypothesis, we situate the tracing data within a forty eight degree 
of freedom human dynamic model that allows the computation of movement cost. Using the model 
to compare movement cost data from nominal tracings against various perturbed tracings shows that 
the latter are more energetically expensive, inferring that the original traces were chosen on the basis 
of minimum cost.

Movements are arguably the most important reason for the evolution of the brain; living things that do not move 
do not have  brains1. The human brain and its movement system, in particular, have a huge co-dependency in 
development that starts in the womb and continues throughout  childhood2. Thus elucidating the structure of 
movements cannot but held give us information of the brain’s structure and vice versa.

The properties of the human vision system can give us a hint of what could be at stake in this partnership. 
The premier finding in the brain’s cortical visual memory is that not all possible images are coded, only the most 
common and useful. This observation raises the possibility for the movement system. Are only the most com-
mon and useful movements coded in the motor cortex? If this possibility turned to be true, it could lead to a 
revolution in how we think about the cortex’s coding of movement. Ergo this question provides a sine qua non 
for understanding movement costs.

However, in getting started, it is important to acknowledge there is one way movements are not like vision as 
several different optimization principles must be considered. One is that the musculoskeletal system must deal 
with newton’s equations in describing the movement’s dynamics. These bring their features as candidates for 
principles, e.g., Jerk as a model for  torques3. Another issue is that human cognition can influence how important 
are a human’s momentary goals in selecting their movements. For example, rewarding reaches can modulate the 
 trajectories4. However, despite these alternatives, the omnipresence of the earth’s gravitational field motivates 
our nervous system to choose trajectories that are economical in energetic  cost5,6.

Another point to make is that although our focus is on the cost of movements, we did not analyze the move-
ments enough to see just how the model came up with mix of joint torques. This focus, particularly how the body 
can change its mix during complex movements, is studied in modular approaches e.g.7 We eschewed modular 
analysis on our study, but believe that our model is not only compatible with modular models but that they have 
precepts that could lead to helpful movement codings.

Studying the human movement system is daunting owing to its complexity. Its skeletomuscular system has 
about 350 joints and over 650 muscles.This reason accounts for the observation that most previous studies of 
movement have focused on common movements. Humans’ self-selected trajectories or posture sequences are 
economical in energetic cost has been shown in simple single-behavior motions such as  walking8–10, running, and 
 reaching11,12, with attention especially given to walking because it is rhythmic and easy to study. Furthermore, 
for example,the system can adapt preferred gaits to minimize energetic cost in response to varying  loads13–15.

Experiments shave also shown that humans’ walking  speed16, step frequency/length17–23, step  width24,25 all 
correlate with the minimum metabolic cost. Most importantly, energetic cost exhibits a classic U-shaped depend-
ence on cost wherein the minimums define a preferred parameter, here the step frequency while walking at a 
constant  speed10,21.
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However, whether the principle is true for large-scale whole-body movements, that call for unfamiliar posture 
sequences, was still an open question. An answer was suggested by, our complex whole-body virtual tracing 
 experiment26 that aimed to learn principles behind large-scale arbitrary movements, particularly regarding vari-
ations between different subjects.

In that study, a full-body virtual-reality curve tracing task elicited a series of human movement  sequences26. 
Participants traced three dimensional space curves and their posture sequences were continuously recorded 
using a motion-capture system. Special aggregation methods made possible by the joint limits of the biological 
system were developed. Theses methods allowed data analysis that extracted similarities of posture sequences in 
the face of kinematic variations. Given Bernstein’.s classic comments on the impossibility of reproducing move-
ments  exactly27, our result was exciting and unsuspected. Both the movement’s posture sequences and kinematic 
variances showed striking commonalities across different subjects.

The obvious inference from the observed similarities of movements across different subjects is that there 
must be some general principle for humans’ motion commonalities. This regularity of movements across dif-
ferent subjects implies energetic cost should be similar and provides motivation for tour experiments that test 
this hypothesis.

For the energetic cost computation test, we took advantage of a special forty-eight degrees of freedom dynamic 
computational model capable of simulating, analyzing, and synthesizing humanoid  movements28. The model 
consists of twenty-one body components connected by twenty joints and incorporates several novel features. One 
innovation is that the joint connections are not treated as perfectly rigid constraints but rather as very stiff springs 
that hold body parts together like tendons and muscles. The model allows computing instantaneous power from 
the product of net joint torque and joint angular velocity. The work performed at each joint was determined by 
numerically integrating the instantaneous powers over the entire tracing task. In this way, the energetic cost of 
human motions can be computed given motion capture data.

Test overview. Given the observation that multiple subjects generating large-scale  movements26 used iden-
tical postures, we could use our dynamics model to compute the cost of each of the posture sequences. The goal 
was to test if the subjects’ posture sequences were somehow minimal in cost. The test we chose to illustrate this 
concept was perturbation analysis. This method changes the original tracing protocol into a similar protocol by 
adding small changes. Next, each subject’s model was used to trace the curve using the perturbed protocol. The 
costs of different subjects’ curve traces were computed and compared to the costs of tracing the original curve. 
Two different kinds of perturbations were used. In one, the tracing trajectories were slightly perturbed by shift-
ing positions of a particular body part of the dynamic model a small amount for the duration of the trace. In the 
other, the original tracing path was displaced in certain small increments prior to the trace. The result of both 
of these kinds of perturbations was that their energetic costs means were higher than those of the original curve 
tracings. The rationale is that in the original trace the subject had the freedom to choose a posture sequence with 
minimum cost, while in the perturbed tracing protocol, they were forced to use a different posture sequence as 
the perturbations added external constraints so that the experimental data was revealed to be more expensive. 
Therefore, the energetic costs exhibited a classical U-shape with respect to the different posture sequences, with 
the minimum of the U-shape curve consistent with the cost of the original posture traces. These results strongly 
suggest that movement is selected on the basis of minimum cost.

Background
In the past two decades the study of motion cost has seen a revolution with the development of direct integration 
techniques that are sufficiently accurate to be used for individual subjects. To motivate their value, we briefly 
review some of their antecedent techniques.

In the past, a common way to address the minimum energetic cost principle was to conduct experiments 
comparing walking and running with many other strange and unpractised gaits 29,30. Three commonly used 
methods are still used to study energy optimization.

The most straightforward and frequently used method is to measure the metabolic cost, e.g., subjects breath 
through a mouthpiece to measure oxygen consumption rates (VO2). For example, subjects were required to 
walk under different circumstances, and the results showed that the metabolic cost was minimum while subjects 
walked at the condition which was “comfortable” for  them13–19. The advantage of this method is that movements 
can be related directly to energetic cost, but the measuring apparatus is typically very constraining.

A common way to measure muscle activation and stiffness (co-activation) is to use Electromyography (EMG). 
Huang et al.31 showed that that subjects’ metabolic cost is reduced during the learning process of arm reaching 
tasks, and their muscle activities and co-activation would parallel changes in metabolic power. However, EMG 
measures just correlates that need additional modeling to turn them into an energetic cost.

A third method, dynamic modeling, is to build a closed-form analytical mechanics-based model and deter-
mine if the predicted minimum mechanical cost correlates with people’s kinematic preferences. For  example20–22,24 
use an inverted pendulum model to predict the optimal step length and compare it with the subjects’ natural 
step length while walking.

All these methods face obstacles for calculating the energetic cost of whole-body tracing movements col-
lected from the VR  experiment26. These methods are time-consuming, and the required configuration restricts 
the variety of experiments. For example, the VO2 process does not work for our virtual-reality tracing tasks 
as subjects need to wear the VR helmet on their head, leaving little space for a mouthpiece. Besides, the EMG 
method measures muscle co-contraction, which is correlated with energetic cost, rather than calculating the cost. 
Another way is to build a humanoid dynamic model. The method is a good way to imitate human movements, 
and it is widely used in biomedical engineering due to its compliance with real-world physical rules. However, 
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it has several critical limitations: (1) it is too difficult to model and control a complex system, such as a whole 
human body. (2) it is challenging to represent “kinematic loops,” such as postures that need both feet are on the 
ground. (3) for large systems, the equations of motion in nested, rotating reference frames become very complex, 
making them more challenging to approximate well. Due to the complexity and disadvantages of the dynamic 
modeling method for large complex systems, most of the studies took advantage of two-dimensional models to 
study human part-body motions in the sagittal plane.

Still other methods build a two dimensional dynamic bipedal robot by modeling the whole body with a 
skeleton of rigid segments connected with joints. However, those methods over-simplify human bodies so that 
they can only study simple single-behavior human movements. The simplest bipedal robot uses three links to 
represent the torso and two legs in the sagittal plane 32,33. Five-link biped robots extend the model using two 
links to represent each  leg34–37, while seven-link biped robots further extend it by adding feet to  it38,39. Further-
more, those methods have many assumptions while studying human locomotion. For example, most research-
ers assume that instantaneous exchange of the biped support legs occurs when the swing leg contacts with the 
ground. In this way, the biped locomotion with single foot support can be considered as a successive open loop 
of kinematic chain from the support point to the free ends, as robot manipulators. Recently, three dimensional 
modeling of biped  robots40,41 has been developed. However, they are still not sophisticated enough compared 
with a real human body.

In the face of these complex challenges, a major alternate modeling route is to incorporate a complete mus-
coskeletal models. One of the most complete is that of  OpenSim42–44, which allows modeling detail to the level 
of attached muscles. However this level can be difficult to handle in building a generate model so we chose to 
focus on a simpler dynamic model at the level of joint torques and inertias and model more abstract versions of 
the human system that still use multiple degrees of freedom but summarize muscle effects through joint torques.

The computation of the dynamics of such multi-jointed systems recently has also experienced significant 
advances. The foremost of these, use a kinematic plan to integrate the dynamic equations directly. Several dif-
ferent dynamic libraries exist, such as  MuJoCo45,  Bullet46,  Havok47, Open Dynamic Engine(ODE)48, and  PhysX49 
(A simplified version of OpenSim can also be used). An evaluation of several systems  by50 found them roughly 
comparable in capability.

An individual subject model. Our Human Dynamic Model (HDM)  system28 is built on top of the physics 
engine ODE, the most commonly used dynamic library in the robotic area. The 48 degree of freedom model is 
also based on a direct integration method. It has a singular focus on individual human movement modeling and 
uses a unique approach to integrating the dynamic equations. A direct dynamics integration method to extracts 
torques from human subjects in real-time51–53 using a unifying spring constraint formalism.

These toques have two components. The major component is the one determined by the open-loop integra-
tion of Newton’s equations. These must be supplemented by a closed-loop set of “residual torques” to achieve 
accurate balance. This organization models the similar dichotomy in the human system.

At each frame, instantaneous power was computed from the product of the net joint torque and joint angular 
velocity. The work performed at each joint was determined by numerically integrating the instantaneous powers 
over the entire tracing task. In this way, given motion capture data, we can compute the mechanical cost without 
building a humanoid biped robot with motion equations. Note that it is common to use mechanical measures of 
work to indicate the metabolic energy  consumption54. The “energetic cost” mentioned in the following sections 
means the mechanical cost. The HDM dramatically simplifies the process of calculating movement cost and 
extends the potential kinds of movements that can be studied, but it has two limitations: (1) the motion capture 
data must be given; (2) the model size needs to be tuned each time fitting a subject. An extensive validation of 
this dynamic model appears  in28.

Experiment data preview. While doing the virtual tracing experiment, subjects freely chose their start-
ing posture and were given no instructions on how to perform themselves. Therefore, participants were tracing 
curves at their preferred posture sequences. In other words, they traced curves under the conditions which were 
“comfortable” for them. According to the previous  experiments13–19, we can expect that the energetic costs of 
movements with those trajectories should be a minimum or at least locally minimum. To establish our con-
clusion, the cost of original virtual tracing movements and perturbed movements were computed and com-
pared using the human dynamic model. As expected, the energetic cost always exhibits a U-shape while tracing 
using different postures sequences, with the minimum of the U-shape curve consistent with the original posture 
traces. In this way, we are able to demonstrate the energetic cost of original trajectories is a local minimum. The 
method section describes the experimental protocol in more detail.

Results
Using the kinematic curve tracing data  from26, we fitted the dynamic model to each of the eighteen subjects 
and then had the models trace the nine curves that are shown in Fig. 1. The energy cost of tracing paths showed 
several marked regularities:

1. The joints’ power allocation while tracing path1 across different subjects showed that although the total costs 
of the movements varied between subjects, the temporal power use was qualitatively very similar.(See Fig. 2);

2. The computation of average energy cost when nine subjects traced path1 five times showed that the magni-
tude of the required residual forces for each subject was relatively small. (See Fig. 3);

3. The costs of tracing each path by each subject were very similar and approximately monotonic with the length 
of paths. (See Fig. 4);
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Figure 1.  The nine 3-dimensional paths in the virtual environment that were used in the experiment. They are 
ordered by their complexity. For reference, colors denote common segments and points. For the subjects, the 
paths were all rendered in black, The scale is in meters.

Figure 2.  The power of tracing path1 at each frame. Nine subjects traced path1 five times. The plot shows the 
average joints’ power at each frame for each of the subjects in a color. The black line indicates the mean. The 
common curve similarities indicate that different subjects had similar power patterns while tracing the same 
curve, which shows that each subject has difficulty in tracing at the same point in the trace. Path 1 is the most 
straightforward, but the observation of correlated effort represents patterns in tracing other curves.
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4. Although there are variations in the cost across the repeated traces, tracing with the perturbed model param-
eters was significantly higher than the original. (See Figs. 5 and  6);

5. The increased energy cost while using perturbed model parameters depended much more on the joints’ cost 
than on the residual component. (See Fig. 7);

The mean of power across different participants. As an initial analysis, we established the varia-
tions in the energetic costs for tracing path1 exhibited by different subjects. Fig. 2 illustrates the mean and the 
standard deviation of powers across subjects at each frame. The result reveals that subjects put similar effort at 
the same points along the path. Thus although the total cost of the movements may vary between subjects, the 
power patterns are qualitatively very similar. The VR  experiment26 showed that participants used similar pos-
tures sequences while tracing the same curves from a kinematic perspective. It is expected that the instantaneous 
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Figure 3.  Energetic costs of tracing path 1. (a) Each subject traced path 1. with five repeats. The horizontal 
labels indicate the related subjects, e.g., “S1” represents the subject1. The total cost is shown in blue, and the 
portion of that cost due to residual forces are shown in orange. A low cost in residual torque usually signifies 
that the dynamic model is a good match for that subject’s kinematic data. (b) The residual is highly correlated 
with the overall cost (R=0.922), suggesting that the differences in both values reflect differences in the body 
models.

Figure 4.  The energy cost of tracing nine paths. These results portray the possibility that the costs vary across 
the best-fit five subjects. The statistics show that each path traced has a unique cost based on its length that 
distinguishes it from the rest. The correlation between the length and cost of tracing shows a R value of 0.85.
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power of joints at each frame should be similar as well due to the skeleton constraints of the human body. The 
similarity of power patterns across different subjects reinforces this conclusion from a dynamics perspective.

Although there are qualitative similarities in the difficult points on the curve, the total costs of the traces differ 
across different subjects. This result is expected due to the variety of subjects’ skeletons and weights.

Residual forces. In the human system, the computed torques cannot be depended on to be exact but have to 
be supplemented by residual torques. This residual is most prominently due to the vestibular and proprioception 
systems. The human dynamic model has to deal with the same issue. The recovered torques are close to exact but 
leave a small residual. To deal with it, we implemented a improvised system of torques (See “Methods” section). 
As shown in Fig. 3, the highest cost of the tracing movement is the component owing to the joint torques. The 

Figure 5.  The difference in the energetic cost for the model perturbation. The figure shows the difference in 
the energetic cost of tracing each of the nine paths with perturbations in the right-elbow marker. The elbow 
was moved up 5cm. The results show that the original path is always the least expensive for all the paths and the 
averages across subject tracers. Moreover, the differences between the energetic costs of original trajectories and 
perturbed trajectories are highly significant, with a p-value less than 0.001.

Figure 6.  The difference in the energetic cost for the path perturbation. Each of the nine paths has two 
perturbations of 5 cm: left in blue, right in green. This main result shows that the original path is always the least 
expensive for both averages across subject traces. The difference in the energetic cost for the path perturbation is 
not very clear but still reliable, with a p-value less than 0.01.
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participants.
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total energy of tracing a path1, including the residual components, is shown in blue, and the residual component 
is shown separately in orange. When reporting the energetic costs of the traces, we always use the total cost in 
blue.

Furthermore, the ratio of the residual and total cost can be used as a criterion to decide whether the HDM 
body segment dimensions are a good fit for the raw motion capture data. As shown in Fig. 3, some subjects are fit-
ting better than others, e.g. the residual of subject 3 and subject 9 are relatively high. Therefore, the five best-fitting 
subjects (s2, s4, s5, s6, s7) were chosen for all the following experiments. Subsequently, we noticed a correlation 
(r = 0.922) in the data. All subjects have a very similar ratio between the residual and total cost implying that we 
were looking at effects of a body parameter such as weight. Based on this observation, we felt comfortable using 
only the subjects with the smallest residuals, as the rest are extremely unlikely to make a difference.

Energy cost of tracing nine paths. Although there are similar energetic costs per subject in tracing an 
identical path, this arrangement does not carry over to the comparison between paths, which has larger per sub-
ject differences. Instead, we hypothesized that the average costs should scale as the length of the path, as shown 
in Fig. 4, which shows the energetic cost of tracing the nine different paths. The paths differ in tracing cost, but 
the costs of tracing each path by each subject are very similar and approximately monotonic with the lengths of 
the paths.

Given these regularities, the next step was to evaluate the significance of perturbations in the tracing protocol. 
The hypothesis is that if the tracing postures are chosen to be of minimum energy, changing the configuration 
away from the actual tracing situation should incur a cost, which was what happened.

Model perturbation. The first perturbation test changed model marker trajectories. Specifically, the right-
elbow marker was shifted up or down by a small delta on every traced curve,which produced a new constraint 
that the model needed to satisfy while tracing paths. Once the delta was chosen, it was used for each frame in the 
trace. To implement it, the dynamic model had to trace paths using identical posture sequences except for lift-
ing its right elbow. Although kinematics of the body parts except the right elbow remained for the unperturbed 
trace – only the kinematics of the right elbow changed, the joints’ constraints bias the dynamic model adapt to 
follow the new perturbed trace.

For each trace, the right-elbow marker was raised by 5 cm. The rest of the system adapted the way dictated 
by the dynamic constraints. Fig. 5 shows the difference in cost of constrained motions and original motions. It 
is seen that although there are variations in the cost across the repeated traces, the cost of using the perturbed 
model is higher than the original. Note that outside of the changes, the rest of the model solves the inverse 
dynamic model with the unperturbed parameters, and thus the model has substantial degrees of freedom at 
its proposal. The t-test showed the difference of the probability distributions between the original cost and the 
perturbed cost is reliable, with a p-value less than 0.001. Furthermore, the increase of tracing complex paths is 
larger than that of tracing simple paths.

Path perturbation. The second perturbation test made adjustments in the traced path, called path pertur-
bation. Some effects of displacement can be intuited. For example, if a subject has to reach over their head during 
the trace, it can be expected that lowering the traced path would result in cost savings. For this reason, we chose 
path perturbations in the horizontal plane. Two such perturbations were used: a 5-centimeter leftward displace-
ment and a 5-centimeter rightward displacement. Left and right are referenced to the coordinate system used for 
the four points used for all nine curves (See Fig. 1).

In this way, new constraints were produced as the dynamic model was required to trace the perturbed paths 
while the starting tracing positions were not changed. In contrast to the model perturbation, the model’s trace 
paths were shifted while the posture sequences remain the same. Again, the dynamic model took advantage of 
internal joint constraints to adjust original posture sequences to trace the perturbed paths.

Figure 6 shows the difference in average energetic costs for tracing displaced paths and original paths across 
subjects. The blue dots indicate the difference between tracing left-shifted paths and tracing the original path, 
while the green dots represent the other case. For most cases, the original paths are seen to be consistent with 
the lowest cost. Path 2 with 5cm leftward displacement costs less than the original path 2. The reason is that 
subjects preferred to stand near the left corner, where is the starting tracing position. However, the left part of 
path 2 is much easier than its right part (See Fig. 1). Therefore, when shifting path 2 to the left, subjects became 
closer to the right part, which led to easier tracing. In contrast, subjects had to move their bodies more to trace 
well when shifting path 2 to the right.

Here again, The overall result is an endorsement of our hypothesis that the unconstrained traces are mini-
mal. If that is true, we should see that all the perturbed traces are more costly, which happened. Although some 
overlap, the original paths are more economical for almost all curves than the displacements. The significant test 
showed the effects of shitting paths is not very clear but still reliable, with a p-value less than 0.01. The observation 
that the averages of all the perturbed costs are larger than the average cost of their original progenitors strongly 
suggests that energy cost is the factor in the choice of tracing postures.

Residual forces. Given the dynamics dichotomy, a natural question that arises concerns the magnitude of 
the extra torques in the perturbation cases. Are the extra costs carried by the dynamic model or the residual? 
It can be answered by interrogating the simulation, and it turns out that the dynamics model’s contribution is 
dominating. This is shown in Fig 7.

Note that if the constraints on the dynamics were highly stiff, then the model would have no course other 
than tracing an exact copy of the unperturbed trajectory and let the residual torques contribute the needed 
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difference. However, the markers on the body for these experiments were limited to 15–18 of key body segments, 
leaving the extra degrees of freedom to be determined by the dynamics. Moreover, the torque computation, to 
model the reality of  muscles55, used spring constraints at each joint degree of freedom. Finally, the right finger 
was required to contact the displaced paths, and the remaining features of the movement are the same, leaving 
the dynamics to fill in the rest.

Discussion
Given that the cost of the movements is a significant fraction of a human’s caloric  budget56, one might expect that 
humans would exhibit common low-cost postures but arbitrary whole-body movements have been less studied, 
so the expectations are open. Thus it was a surprise to measure arbitrary movements in a large-scale tracing 
task and find markedly common posture sequences used by all tested  subjects26. Several alternatives have been 
offered to explain movements e.g.57–59 but compared to these and other alternatives, which tend to be special-
ized, our minimal energetic cost hypothesis enjoys its simplicity and the adjunct rationale of the ubiquity of the 
gravitational field, especially when there were no complex constraints in the movements and no constraints on 
the time to perform the traces.

Our simulation extends the kinematic finding to show that tests of human dynamics provide evidence that 
movements are chosen on the basis of energetic economic costs. As the cost of tracing scales monotonically with 
the length of a traced path as expected, the possibility is raised that segments of the trajectories are also minimal. 
We did not test this possibility but it is important as if was true, it would open the possibility of creating arbitrary 
curves by composing appropriate segments.

As already mentioned the complex human movement system relies on residual forces, as would be expected 
from the human’s vestibular system and others so they are a potential confound of the result. However as shown 
in Fig. 7, these were relatively small, with similar magnitudes in the different perturbations.

The main quantitative results are that subjects’ traces of each of nine space paths all have minimal costs with 
respect to local perturbations. The manipulation introducing perturbations in the kinematic variables were the 
subjects traced the path but their model with small displacements in a kinematic marker was straightforward. 
However, in the other experiment, the local displacements of the paths were constrained to be horizontal. Ver-
ticals were not used as they can be equivocal. The displacements can interact with the different body heights, 
e.g., a short subject has to reach an uncomfortable height. However, outside of this caveat, all the data can be 
interpreted as the tracing posture sequences selected based on energetic cost.

The hypothesis that humans use minimum cost movement trajectories is shown by the use of a human 
dynamic model that leverages a significant innovation in dynamics computation that allows the recovery of 
torques from kinematic data. A limit of the current method is that we perturbed motions manually, so it is 
possible that we found only a local minimum in the space of possible movements. However, as tracing a path 
usually takes more than 1000 frames, and 50 markers represent a posture at each frame, the perturbation space 
searched was large.

One very significant possibility raised by the local minimum result is that the trajectories are pre-computed 
and  stored60–62. This possibility is reinforced with by progress in the sparse coding of temporal  sequences63,64 
that strongly suggest that trajectories are remembered to obviate the difficulties of computing them online. And 
if movements are to be stored, the less expensive ones are likely to be  preferred65.

How this could be done and even if it could be done are open questions. A future possibility is to study an 
algorithm with the capability of sequential potential long movements automatically, such as reinforcement learn-
ing, incorporating the constraints between possible posture segments.

Methods
Virtual tracing experiment. The original kinematic data capture were collected from a virtual whole-body 
tracing experiment that was to elicit natural movements under common  goals26. Subjects wore a virtual-reality 
helmet, Oculus  Rift66, to see a virtual three dimensional interior room with a dojo backdrop via stereo video. 
They were required to trace a series of paths positioned at fixed locations in the virtual environment. The experi-
ment protocol forces subjects to trace each curve from a fixed starting position and use a fixed velocity, thus trials 
for all subjects tracing one curve have the same time frames. Except for these constraints, subjects freely chose 
their initial postures and were given no instructions on how to comport themselves during the tracing process. 
The extent of curves is large enough so that subjects need to move their legs to complete a trace. The movements 
of their bodies and variables relevant to the tasks were simultaneously recorded using the PhaseSpace motion 
capture  system67. The WorldViz Vizard software  package68 both controlled the virtual tracing protocol and the 
recording of the motion capture data. Fig. 8 shows the virtual environment setup.

Data post-processing. For some frames the motion capture system is unable to determine the 3-dimensional 
location of some markers, thus raw motion capture data usually contains some segments of signal loss (drop-
outs). Dropouts are relatively infrequent in practice but can occur over significant temporal intervals, which 
makes linear interpolation a poor choice for reconstructing the raw motion capture data. In this experiment, 
trajectory-based singular value threshold was implemented to reconstruct missing marker data with a minimal 
impact on its statistical structure. The data for each subject was interpolated using a separate matrix completion 
model.

In addition to the data interpolation process, if a participant did not trace the path successfully we would 
consider this tracing invalid and the data unusable. Because if a recording of a tracing trial failed, e.g., too many 
markers were off during a tracing, it will lead to extremely large joint torques, which is unrealistic.
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Statement. The Institutional Review Board (IRB) at the University of Texas at Austin approved the experi-
ments; This experiment were performed in accordance with relevant named guidelines and regulations; And 
informed consent was obtained from all participants and/or their legal guardians.

Computational modeling. Human dynamic model details. In developing a human model there are many 
choices. Even in modeling at this level there are several choices given alternative models for integrating the dy-
namics  equations50. Our choice is a  model52,53 built on top of  ODE48 that incorporates additional features added 
for human systems:

• Anthropomorphic joint models use soft constraints for their joints that allow some local movement.Such 
constraints would allow us to simulate co-contraction at the joint level, but in our calculations this con-
straint is not modelled for two reasons. One is that we assume that if our subjects are choosing inexpensive 
movements, they will try and minimize the co-contraction. The other more important reason is that in our 
perturbation analyses co-contraction measures should cancel.

• Significant innovations have been added in order to handle the closed-loop kinematic chains of bipedal 
movements and the contact constraints they introduce, which have proven difficult to model.

Figure 8.  The virtual environment  setup26. (a) Shows a full view of a path, denoted by a black path, and the 
starting position, denoted by a large white sphere. The small white sphere on the path at the end of a red 
segment is the tracing target sphere. (b) Depicts the scene when a trial is finished. The green path is the actual 
tracing trajectory generated by a subject. (c) Illustrates a subject in the act of tracing a path in the laboratory’s 
motion capture 2 × 2 × 2 meter volume and (d) shows the lab coordinate system. The scale on the graph is in 
meters. The the subject’s skeleton and the traced path in the 3D space are plotted. The color dots correspond to a 
subset of the fifty active-pulse LED markers on the suit and the virtual-reality helmet.
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• Toques calculationshave two components. The major component is the one determined by the open-loop 
integration of Newton’s equations. These must be supplemented by a closed-loop set of “residual torques” to 
achieve accurate balance. This organization models the similar dichotomy in the human system.

These features give the human dynamic model (HDM)28 a singular focus on human movement modeling and 
comprise a unique approach to integrating the dynamic equations. The direct dynamics integration method to 
extracts torques from human subjects in real-time51–53 using a unifying spring constraint formalism.

Model topology. To compute the energy cost of subjects tracing paths, we used our human dynamic  model28. By 
replaying the virtual tracing experiment’s kinematic data, we can compute can the joints’ properties, e.g. torques 
and angles, at frame rates. The human dynamic model is built on top of the ODE physics  engine69. It consists of a 
collection of rigid bodies connected by joint. Each joint connects two rigid bodies with anchor points (center of 
rotation) defined in the reference frame of both bodies. Fig. 9 shows the number of body segments and topology 
of the human dynamic model.

Figure 10 shows a user interface that allows the simulation of human movements via a multi-purpose graphi-
cal interface for analyzing movement data captured through interaction with the virtual environment. With this 
tool, it is possible to interactively fit a model to motion capture data, dynamically adjust parameters to test dif-
ferent effects, and visualize the results of kinematic and dynamic analysis, such as the example in Fig 11, which 
shows four stages in a tracing sequence made originally by a participant of the virtual tracing experiment and 
recreated by applying the inverse dynamics method using this tool.

Residual forces/torques. The energetic costs are derived from the inverse dynamics technique described  in28, 
which combines measured kinematics and external forces to calculate net joint torques in a rigid body linked 
segment model. A feature of the dynamic method is that it can reduce potential errors, both in the matches of 
the motion capture suit and the model. Analogous to the human body’s ligament structure to join joints, some 
leeway is allowed in the model joints in the integration process.

A low cost in residual forces usually implies that the dynamic model is a good match for that subject’s kin-
ematic data. Nonetheless, even after these adjustments, some errors remain. In the model, the main source of 
the residual forces is usually attributable inaccuracies in the matches between the motion capture suit makers 
and their match with their corresponding points on the model. We resolve this discrepancy by introducing a 
coordinate system positioned and the center of mass that cancels the error to maintain  balance28 and compensates 
for this  problem70. As mentioned this resolution with a dichotomy of forces is analogous to the human system, 
which combines feedforward lateral pathway forces with medial pathway feedback forces.

For example, the comparisons shown in Fig. 12 imply the model does a good job of reproducing the kin-
ematics. Moreover, the solid lines sometimes exhibit some coarse or sharp changes, such as the “l(left)_knee” 
line around frame 170, caused by some unexpected errors in the motion capture recording system. Surprisingly, 
the dash lines are pretty smooth even if the solid lines are not perfect. This fact is one of the advantages of the 
assumption in HDM that the joint constraints behave like springs. However, the disadvantage is that it causes 
apparent lag and damping of reconstructed trajectories. As a result, the dash lines lag behind the solid lines by 
a small amount. But the disadvantage will not influence the competition of energy cost.

Joint Part 1 Part 2 DOF/joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso Lower Torso 3 3
Sacral Lower Torso Pelvis 3 3
c.Clavicle Upper Torso c.Collar 3 6
c.Shoulder c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm c.Lower Arm 2 4
c.Wrist c.Lower Arm c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg c.Lower Leg 2 4
c.Ankle c.Lower Leg c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

BA

Figure 9.  The 48 internal DOF  Model28. (A) Four ball-and-socket joints connect five body-segments along 
the spine from the head to the waist. Ball-and-socket joints are also used at the collar-bone, shoulder, and hip. 
(B) A summary of the joints used in the model. c. = chiral: there are two of each of these joints (left and right). 
Universal joints are used at the elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels. All 
joints limit the range of motion to angles plausible for human movement. Our model assumes that joint DOFs 
summarize the effects of component muscles.
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Figure 10.  The analysis tool of using the physics engine to compute inverse kinematics and inverse  dynamics28. 
The user interface also supports various visualizations of relevant data and control for analyzing and producing 
physically-based movements. The programmed parameters of the model consist of its joints and its 3D marker 
positions. For example, the right column represents the positions of the markers relative to their corresponding 
body segments, e.g. the first row shows the information of marker1: (1) “1” represents the marker index, (2) 
“head” means marker 1 is attaching to the “head” body segment, (3) the remaining three float numbers are 
marker1’s relative position.

Figure 11.  Model capability illustration. Four points in a tracing sequence reproduced with physics-engine-
based inverse dynamics using recorded motion capture data from a human subject.
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Energy cost computation. The centerpiece of the analysis depends critically on the definition of a pos-
ture. At each frame, posture is defined as a vector of the joint torques and angles of each of N joints ( N = 22 in 
our dynamic human model). The posture p at a frame is a 6n-dimensional column vector presenting the joints 
properties of the i th participant, thus

where τi = (τix , τiy , τiz ) and ai = (aix , aiy , aiz ) represents the torques and angles of the i th joint at a frame respec-
tively and i = 1, 2, ...,N . For the joints which have less than three dimensions, e.g. hinge joints, universal Joints, 
the values at unused dimension were assigned zero.

The power W of ith joint at a frame t is a scale and equals to the inner product of its torque τi and its angular 
velocity ωi , thus

Therefore the power of a posture at frame t is presented as:

Assuming it takes a participant T frames to trace a path, then the total energy cost E of the participant trac-
ing a path is:

(1)p =[j1, j2, ..., jN]

(2)ji =(τ i , ai)

(3)ωi(t) =ai(t)− ai(t − 1)

(4)Pi(t) =τi(t) · ωi(t)

W(t) =

N∑

i=1

Wi(t)

Figure 12.  Trajectories reconstruction. The figure shows comparisons between the raw motion capture data 
shown in the solid lines and the recovered motions in dashed lines along selected dimensions. (a) Shows the 
comparison of body positions along the y-axis. (b) Shows the comparison of joint angles along the x-axis.
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The energy cost analysis is naturally organized into three separate stages. Initially, we analyze the subjects 
energy cost and residual torques of tracing path1 which is the simplest path. Next, we computed the tracing cost 
of all nine paths. To compare the energy cost of tracing a path across subjects, we computed the average energy 
cost for all five repeated traces of each subject. Finally, we measured the tracing cost of perturbed participant’s 
trajectories and perturbed paths.
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