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Drug repositioning by merging 
active subnetworks validated 
in cancer and COVID‑19
Marta Lucchetta1,2 & Marco Pellegrini1*

Computational drug repositioning aims at ranking and selecting existing drugs for novel diseases 
or novel use in old diseases. In silico drug screening has the potential for speeding up considerably 
the shortlisting of promising candidates in response to outbreaks of diseases such as COVID‑19 
for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for 
preclinical computational drug repositioning based on merging multiple drug rankings obtained with 
an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs 
and diseases in the context of a large gene co‑expression network. Experiments with four benchmark 
diseases demonstrate that our method detects in first position drugs in clinical use for the specified 
disease, in all four cases. Application of DrugMerge to COVID‑19 found rankings with many drugs 
currently in clinical trials for COVID‑19 in top positions, thus showing that DrugMerge can mimic 
human expert judgment.

Among the strategies pharmacological science adopts for tackling diseases (either new or old), there are: the 
development of new drugs, the development of vaccines, and the repurposing of existing drugs. While the 
development of vaccines and novel drugs are often effective, they are also expensive and time-consuming. Thus 
repurposing of existing drugs is a cheaper and faster route to explore when one wishes to hedge one’s  bets1.

As data about drugs and diseases accumulate in databases comprising many aspects: genomic, transcriptomic, 
phenotypic, clinical, and epidemiological, it becomes feasible and desirable to employ this body of accumu-
lated knowledge within a computerized system so as to have a pre-screen in silico of the candidate drugs to be 
repurposed for a specific  disease2. These shortlisted drugs are in reduced number with respect to the initial pool 
of drugs and thus are more amenable to the subsequent steps of the full pipeline (including in vitro ed in vivo 
experiments, clinical trials, and eventual deployment in clinical practice). For existing drugs often their safety 
profile for humans is already known, therefore once the initial in vitro and in vivo assays are positive, they can 
be moved directly to clinical trials of phase II or phase III (thus skipping phases 0 and I), and accelerating the 
drug approval lifecycle.

The recent pandemic sparked by the SARS-CoV-2 virus has placed drug repurposing in the spotlight because 
of the pressure on the public health systems to find cures for acute cases of patients infected by SARS-CoV-2. At 
the moment of writing, remdesivir has been approved by regulatory bodies to treat acute COVID-19 cases need-
ing hospitalization. No other drug or treatment has passed all phases of clinical trials leading to full approval by 
the Federal Drug Administration (FDA) or the European Medicines Agency (EMA). Initial drug investigations 
on COVID-19 were based on the accumulated experience of the efficacy of drugs in vitro and in vivo experi-
ments for SARS-CoV, MERS-CoV, and other coronaviruses. Computerized drug repurposing however aims at 
a more systematic approach to candidate drug ranking and selection. Moreover, while having accrued data from 
other viruses belonging to the same family is a bonus, we should not always rely on having such data handy. In a 
longer perspective, both the possible variations in the behavior of SARS-CoV-2, due to genetic mutations, or the 
emergence of new human viral diseases due to cross-species transmission, imply that an easy to use, accurate, 
and fast pre-screening and ranking of repurposable drugs aimed at countering any new viral threats is needed. 
Our study is a contribution in this direction. Network-based drug repurposing is a recent new approach to drug 
repurposing that may increase the effectiveness of drug repurposing pipelines. In particular network-based drug 
repurposing can merge many ‘omics’ data sets in a unified framework, thus such approach may be more robust 
and capable of including systemic biological  effects3.

In Lucchetta et al.4 we established Core&Peel as a competitive method for building Disease Active subnet-
works (DAS) compared to several state-of-the-art algorithms in several known benchmark diseases. Moreover, 
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we applied Core&Peel and the other algorithms to build a collection of active subnetworks from gene expres-
sion data of human tissues infected by COVID-19. Subsequent pathway enrichment analysis revealed that in a 
COVID-19 infection are activated pathways similar to those activated in other diseases (mostly viral infections). 
These observations had implications for the choice of existing drugs likely to have an impact on COVID-19 to 
be short-listed for in vitro experiments and eventually go on to clinical trials. Although often the connection 
between a disease-related pathway and a repurposable drug was obvious in the specific context, sometimes the 
connection was hard to establish since, for example, for a relevant disease-related pathway too many drugs are 
known to be effective. Moreover, there was no quantitative way to prioritize the potentially repurposable drugs 
obtained from this type of qualitative analysis.

In this paper, building upon Lucchetta et al.4, we describe a systematic way to rank repurposable drugs for a 
specific disease, taking advantage of multiple active subnetwork algorithms and multiple gene expression data 
sets. We exploit several drug databases to identify drugs that can affect the expression of the genes included in 
each disease active subnetwork and thus can contrast the disease. Firstly, the drug ranking is based on drug 
significance (i.e. p-value). After that, we explore the ranking based on ’positivity score’, which measures the 
antagonist activity of the drug onto the disease. We also measure the improvements attainable by merging more 
drug lists that come from different DAS algorithms.

In our strategy we espouse the point of view that it is convenient to use generalist, off-the-shelf, Disease Active 
subnetworks (DAS) algorithms rather than developing ad-hoc algorithms for specific networks or specific data. 
Generalist methods have the advantage of extensive prior use and validation in a variety of tasks, not necessarily 
related to drug discovery. We do not believe that a single approach or algorithm to building DAS can be a ‘silver 
bullet’ for all possible drug repositioning tasks, thus our aim is not that of indicating a priori a winner among 
a pool of competing algorithms and their combinations. Our methodology is based on using golden standard 
data (e.g. drugs already validated in clinical use) as a benchmark to determine the best performing algorithm 
or combination of algorithms to produce a list with validated drugs in high ranking position. The hunch is that 
the other not-yet-validated drugs high in such a ranking are good drug candidates to shortlist for further down-
stream analysis. Among the chosen methods, Core&Peel and ModuleDiscoverer are special since they produce 
a covering of the Disease Active subnetworks by a collection of dense ego-networks which are, in turns, used 
to determine the positivity score. The remaining three methods do not have this topological property. We have 
chosen a pool of well known and usable algorithms as a proof of concept. It is likely that DrugMerge will be 
improved in future releases by adding carefully chosen additional methods for DAS, preferably based on novel 
principles and insights.

We use known clinically approved drugs for benchmark diseases, and trial drugs for COVID-19 as golden 
standard. We apply two measures (called precision@20 and reciprocal hit-rank) to assess how well DrugMerge 
performs with respect to the golden standard. We show that our method has better measurable performance 
than C-map5, a widely used drug ranking portal, as well as COVID-19 specific drug rankings in Taguchi et al.6 
and Mousavi et al.7. The quality of our ranking results on COVID-19 is arguably comparable to those in Gysi 
et al.8 and Zhou et al.9, which use however quite different strategies. The whole workflow of our method is shown 
in Fig. 1.

Ruiz et al.10 observe that “...a drug’s effectiveness can often be attributed to targeting genes that are distinct 
from disease-associated genes but that affect the same functional pathways”, in contrast to “... existing approaches 
assume that, for a drug to treat a disease, the proteins targeted by the drug need to be close to or even need to 
coincide with the disease-perturbed proteins”. Ruiz et al. thus build a multi-layered interaction graph comprising 
proteins, drugs, diseases, and functional pathways (extracted from the GO repository), and devise a random-walk 
diffusion algorithm to connect the drug nodes and the disease nodes of the model through paths that include 
the functional nodes of the graph.

Our approach is intermediate between the functional-based method advocated by Ruiz et al.10 and protein 
proximity based  methods8. We do not represent GO pathways as functional nodes in the model, instead, we rely 
on a large and comprehensive gene co-expression network to provide the functional association in an implicit 
way. Dense subgraphs of the co-expression network will be formed by genes that have a coherent pattern of being 
up/down expressed, and thus are likely to be involved in specific cellular processes, either directly, by expressing 
binding proteins, or indirectly through cascading regulatory action chains, possibly involving also ncRNA and 
other regulatory elements not explicitly modelled. All algorithms used in this paper to build Active Network 
will take advantage of the dense neighborhood of the co-expression network, either directly (e.g. Core&Peel, 
ModuleDiscoverer) or indirectly via the augmented local graph connectivity (KeyPathwayMiner, Degas, ClustEx). 
In contrast with the proximity-based methods, we do not define any ad hoc explicit distance function over a 
network, since the Active Network algorithms already provide a clear-cut demarcation for the part of the global 
gene network onto which a perturbation should act, thus we can use directly indices for measuring module 
enrichment or incidence of the drug’s differentially expressed genes (DEG) onto the disease’s Active Network. 
We follow a network-based approach to drug repositioning and we focus mainly on the human transcriptional 
response to the disease, rather than the interaction between the disease agent (e.g. a virus) and the transcrip-
tional response to it. In the case of COVID-19, also it is known that an over-response by the immune system 
is often the main cause of death in acute  cases11, 12. Our strategy for COVID-19 is thus to prioritize drugs that 
act on a disease active subnetwork embedded into a global human gene co-expression network, to counter the 
virus’ global effects. This approach is complementary to a different one that aims at drugs interfering with the 
interactions of the host-proteins with the viral-protein. While the former approach aims at controlling the global 
transcriptional response of human tissues to the virus, the latter favors drugs blocking key aspects of the virus 
actions in entering the host cells, and activating the cells’ biochemical machinery for reproduction.
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Results
We compute as main quality measures the reciprocal hit ranking (RHR) and the precision at 20 (precision@20) 
of a ranking with respect to a golden standard : the Therapeutic Target Database (TTD)13 records for four 
benchmark diseases (asthma, rheumatoid arthritis, colorectal cancer, and prostate cancer), and the trials.gov 
records for COVID-19. Each measure is then normalized via a z-score, and corresponding p-value, referred to 
the distribution of quality measures given by taking repeatedly random permutations of the input drug data set. 
The results are shown in Figs. 2, 3, 4, 5, 6 and 7, Supplementary Figs. S1 and S2 (in Sects. 4 and 5 of Supplemen-
tary Material), and Supplementary Tables  S1–S8. For DrugMerge we report only significant results at p-value ≤ 
0.05 for at least one of the two quality measures. The DrugMerge method could attain significant results for all 
four benchmark diseases on at least one Drug Database (GEO, DrugMatrix, CMAP, L1000), and often on more 
than one. Moreover, as reported in the actual rankings in Supplementary Table S7, for the four benchmark data 
sets the reported drug ranking always has a drug in clinical use at the top of the list for the chosen Drug data 
set (attaining the best p-value). In Fig. 4 we compare, using the p-value, the performance of DrugMerge versus 
the CMAP  algorithm5 on the four benchmark diseases (see “Description of CMAP algorithm” section in Sup-
plementary Material). DrugMerge has always a better performance in terms of p-value, even when the same 
CMAP drug database is used also by DrugMerge. Next, we discuss in detail the results for colorectal cancer, 

Figure 1.  Overview of the workflow. The first part of the figure shows how we generated the data inputs 
of DrugMerge. These data have been created in Lucchetta et al.4, and we reported them here for sake of 
completeness. We used several transcriptomic data to identify differentially expressed genes and the gene 
co-expression network to find one active subnetwork for each method used (Core&Peel, ModuleDiscoverer, 
Degas, ClustEx, and KeyPathwayMiner). For each of them, we performed the drug enrichment analysis on 
four drug perturbation databases: DrugMatrix, GEO, L1000, and CMAP. After that, we ranked the drugs 
according to the p-value or the positivity score. We also merged more drug lists, which come from different 
algorithms for the same disease and we applied the same ranking strategy. Finally, we evaluated the DrugMerge 
performance through the Precison@20 and the Reciprocal Hit-Rank using the golden-standard drugs, collected 
in the Therapeutic Target Database, and ClinicalTrials for COVID-19. The image has been created using Adobe 
Illustrator.
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prostate cancer, and COVID-19. The results of asthma and rheumatoid arthritis are reported in Supplementary 
Material (Sects. 4, 5).

DrugMerge results on colorectal cancer. Figure 2 and Supplementary Table S3 show that DrugMerge 
finds significant rankings in several drug databases (L1000, CMAP, GEO), using several algorithms, both when 
all drugs are considered or when only FDA-approved drugs are considered. For the L1000 dataset Supplemen-
tary Table  S7, we find in the first position the clinically relevant drug erlotinib. Other drugs in clinical use 
according to the TTD records that appear in the top 20 positions are lapatinib and sunitinib. Among the top 
positions in the ranking, we find drugs with known effects in colorectal cancer patients, related animal models, 
or cell lines, and one of these went into clinical trial stage:  mitoxantrone14,  sorafenib15, sutent/sunitinib (in clini-
cal trial https:// clini caltr ials. gov/ ct2/ show/ NCT00 961571),  dasatinib16, sirolimus (rapamycin)17,  azacitidine18, 
 imatinib19,  tamoxifen20,  doxorubicin21,  naltrexone22, and  digoxin23 . Mitoxantrone has been tested in 13 patients 
with advanced or metastatic colon carcinoma and the authors observed that mitoxantrone was moderately 
 effective14. Sorafenib is a kinase inhibitor drug approved for the treatment of some cancers. It is known that 
sorafenib has a strong antitumor and antiangiogenic effect on the colorectal cancer cell  line15. Scott et al.16 dem-
onstrated that dasatinib had significant anti-proliferative activity in a subset of a colorectal cancer cell line, even 
if dasatinib is currently being studied in combination with chemotherapy, as its use as a single agent appears 
limited. Wagner et al.17 studied the effects of rapamycin in mice and showed that it was able to suppress advanced 
stage colorectal cancer. Azacitidine has been tested in combination with entinostat in metastatic colorectal can-
cer patients, resulting in a tolerable  therapy18. Imatinib is an oral chemotherapy medication used to treat cancer 
and it has been proved that it inhibits proliferation of colon cancer  cells19. Kuruppo et al.20 demonstrated that 
tamoxifen has a potent inhibitory action on colorectal cancer metastases in a murine model. Doxorubicin is a 
chemotherapy medication used to treat cancer. In Lee et al.21 the authors propose doxorubicin-loaded oligo-
nucleotides attached to gold nanoparticles as a drug delivery system for cancer chemotherapy. They tested this 
approach in colon cancer cell lines, demonstrating the drug’s efficacies such as in vitro cytotoxicity. Naltrexone 
is primarily used to manage alcohol or opioid dependence. Ma et al.22 explored the inhibitory effect of low-dose 
naltrexone on colorectal cancer progression in vivo and in vitro. Digoxin is used to treat various heart conditions 
such as atrial fibrillation, and heart failure. A recent study has examined the effects of digoxin on two kinds of 
colorectal cancer cells. This study suggests that digoxin has the potential to be applied as an antitumor drug via 
inhibiting proliferation and  metastasis23.

Figure 2.  DrugMerge performance on colorectal cancer data. The bars represent the −log10(p value) with 
respect to the precision@20 (red), and the RHR (light blu). On the x-axis, different algorithms or combinations 
of them are shown. The numbers on the top of the bars show the absolute values of precision@20 or RHR. The 
dotted red line represents the limit of significance ( −log10(0.05) ). All the bars above the line show a significant 
p-value. The (a) panel represents the DrugMerge performance when only FDA-approved drugs are considered; 
(b) when all drugs (without any FDA filtering) are considered. The plot has been generated by the ggplot281 R 
package.

https://clinicaltrials.gov/ct2/show/NCT00961571
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For the remaining drugs in the top twenty positions, we focus on their action mechanism (i.e. we determine 
the main pathways affected by the drug having the desired pharmacological effect), and we find some links with 
colorectal cancer:  epirubicin24,  everolimus25,  itavastatin26, and  dactinomycin27. Epirubicin is a chemotherapy 
agent, intercalating into DNA and inhibiting topoisomerase II, thereby inhibiting DNA replication. In Ref.24 the 
authors demonstrate topoisomerase IIa gene and protein alterations in colorectal cancer and show that increased 
expression is associated with pathologically advanced disease. Everolimus is a medication used as an immuno-
suppressant and in the treatment of several tumors. Its main mechanism of action is mTOR inhibition. Thiem 
et al.25 demonstrated that the mTORC1 inhibition reduces the inflammation associated with the gastrointestinal 
tumor. Itavastatin (or pitavastatin) belongs to the class of statins, which are inhibitors of HMG-CoA reductase, 
the enzyme that catalyzes the first step of cholesterol synthesis. A meta-analysis  work26 showed that statin use 
is a protective factor for colorectal cancer prognosis, and it might be significantly associated with lower overall 
mortality. Finally, dactinomycin is a chemotherapy medication and can inhibit transcription. Recent studies have 
revealed crucial roles of transcription regulation in colorectal cancer development. In particular, deregulation of 
transcription factors is pretty frequent, and drastic changes in gene expression profiles play fundamental roles 
in the multistep process of  tumorigenesis27.

DrugMerge results on prostate cancer. Figure 3 and Supplementary Table S4 show that DrugMerge 
finds significant rankings in several drug databases (L1000, GEO) for prostate cancer, using several algorithms, 
both when all drugs are considered or when only FDA approved drugs are considered. For the L1000 data set 
Supplementary Table S7, we find in the first position the clinically relevant drug mitoxantrone. Other drugs 
in clinical use according to the TTD records that appear in the top twenty positions are dasatinib, decitabine, 
menadione, and doxorubicin hydrochloride. Among the top twenty positions in the ranking we find drugs with 
known effects in prostate cancer patients, related animal models, or cell lines, and one of these went into clini-
cal trial stage:  erlotinib28,  sorafenib29,  lapatinib30,  sirolimus31, sutent (sunitinib)32,  azacitidine33,  everolimus34, 
gemcitabine (in clinical trial https:// clini caltr ials. gov/ ct2/ show/ NCT00 276549),  ciclosporine35, and  auranofin36.

A study of 30 patients with advanced or metastatic prostate cancer has been conducted to test the effect of 
 erlotinib28, and it demonstrated an improvement in clinical benefit. Sorafenib has been tested in patients with 
hormone-refractory prostate  cancer29, indicating that the treatment may be associated with good outcomes in 

Figure 3.  DrugMerge performance on Prostate Cancer data. The bars represent the −log10(p value) with respect 
to the precision@20 (red), and the RHR (light blu). On the x-axis, different algorithms or combinations of them 
are shown. The numbers on the top of the bars show the absolute values of precision@20 or RHR. The dotted 
red line represents the limit of significance ( −log10(0.05) ). All the bars above the dotted line show a significant 
p-value. The (a) panel represents the DrugMerge performance when only FDA-approved drugs are considered; 
(b) when all drugs (without any FDA filtering) are considered. The plot has been generated by the ggplot281 R 
package.

https://clinicaltrials.gov/ct2/show/NCT00276549
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terms of overall survival. Lapatinib is a dual tyrosine kinase inhibitor of the epidermal growth factor 1 (EGFR) 
and 2 (HER2). In a study of twenty-nine castration-resistant prostate cancer patients, lapatinib showed single-
agent activity in a small subset of unselected  patients30. Nandi et al.31 investigated the effect of sirolimus encap-
sulated liposomes in two different prostate cancer cell lines, and noticed an antiproliferative effect. Sunitinib, 
an inhibitor of tyrosine kinase receptors, has been studied in men with castration-resistant prostate  cancer32, 
indicating that it is well tolerated and may have modest benefit in this patient population. Azacitidine, a dem-
ethylating agent, has been tested in combination with docetaxel, and prednisone in patients with metastatic 
castration-resistant prostate cancer and showed to be active in this subset of  population33. Everolimus, an mTOR 
inhibitor, has been assessed in mice, resulting in an inhibition of prostate cancer  growth34.

For the remaining drugs, we focus on their action mechanism, and we find some links with prostate cancer 
for  imatinib37,  epirubicin38, and mitomycin  C39. Imatinib is an oral chemotherapy medication and functions as a 
tyrosine kinase inhibitor. Vicentini et al.37 investigated the effects of the epidermal growth factor receptor tyros-
ine kinase inhibitor on human prostatic cancer cell lines, suggesting that it may have the potential in blocking 
tumor growth and progression. Epirubicin has been already found in colorectal cancer and as mentioned before, 
it is a topoisomerase II inhibitor. An in vitro cell-based  assay38 demonstrated that MHY336, a topoisomerase 
II inhibitor, significantly inhibited the proliferation of three prostate cancer cell lines. Finally, mitomycin C is 
used as a chemotherapeutic agent and it is a potent DNA crosslinker. DNA crosslinking has useful merit in 
chemotherapy and targeting cancerous cells for  apoptosis40. It is known that evading cell death is one hallmark 
of cancer, in particular, prostate cancer cells develop multiple apoptosis blocking strategies during the various 
stages of tumor  progression39.

DrugMerge results on COVID‑19. Figures 5 and 6 and Supplementary Table S5 show that DrugMerge 
finds significant rankings in all drug databases (L1000, CMAP, GEO, DrugMatrix), using a variety of algorithms 
and their combinations, both when all drugs are considered and when only FDA approved drugs are considered. 
For COVID-19 we have a choice of three disease data sets : (i) human adenocarcinomic alveolar basal epithe-

Figure 4.  Comparison of performance of DrugMerge and the CMAP algorithm across the four benchmark 
diseases. For Colorectal Cancer and Prostate Cancer both methods use CMAP data. For Asthma and 
Rheumatoid Artrithis DrugMerge uses GEO data. The bars represent the −log10(p value) with respect to the 
precision@20 (red), and the RHR (light blu). The numbers on the top of the bars show the absolute values of 
precision@20 or RHR. The dotted red line represents the limit of significance ( −log10(0.05) ). All the bars above 
the dotted line show a significant p-value. The plot has been generated by the ggplot281 R package.
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Figure 5.  DrugMerge performance on COVID-19 data restricted to drugs with FDA approval. The bars 
represent the −log10(p value) with respect to the precision 20 (red), and the RHR (light blu). On the x-axis, 
different algorithms or combinations of them are indexed with aliases, since the complete algorithm names 
are too long. The mapping between them is on Table S9. The numbers on the top of the bars show the absolute 
values of precision@20 or RHR. The dotted red line represents the limit of significance ( −log10(0.05) ). All the 
bars above the dotted line show a significant p-value. The plot has been generated by the ggplot281 R package.

Figure 6.  DrugMerge performance on COVID-19 data without FDA approval restriction. The bars represent 
the −log10(p value) with respect to the precision@20 (red), and the RHR (light blu). On the x-axis, different 
algorithms or combinations of them are indexed with aliases, since the complete algorithm names are too long. 
The mapping between them is on Table S9. The numbers on the top of the bars show the absolute values of 
precision@20 or RHR. The dotted red line represents the limit of significance ( −log10(0.05) ). All the bars above 
the dotted line show a significant p-value. The plot has been generated by the ggplot281 R package.
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lial A549 cells (cells); (ii) bronchoalveolar lavage fluid RNA-Seq (BALF); (iii) infected patient peripheral blood 
mononuclear cells (PBMC), four Drug datasets (L1000, CMAP, GEO, and DrugMatrix), and several algorithms 
and weighting functions. We proceed by first running a single algorithm on a single drug data set, collecting the 
configurations that give the best significant performance measures. Next, we seek improvements by merging 
the rankings for several algorithms with significant performance on a single disease data set. And finally, we 
combine the improved significant results by merging the rankings obtained by several significant algorithms on 
several COVID-19 disease data sets. Figures 5 and 6 and Supplementary Table S5 report the best results in each 
phase, while Table S9 report the full algorithmic settings.

We focus now on two such rankings in Supplementary File S7 attaining the best p-values on RHR for all 
drugs or FDA-approved drugs only. The highest p-value on RHR when only FDA-approved drugs are consid-
ered is attained on the CMAP Drug dataset using all three disease data sets for COVID-19 and three algorithms 
(ClustEx, Core&Peel, Degas), (Alg 01 in Fig. 5, see Supplementary Table S9). The top two positions of the rank-
ing report two drugs listed in clinical trial on www. trials. gov for COVID-19: etoposide and mefloquine. Within 
the first 20 positions, further 5 drugs are in clinical trials for COVID-19: colchicine, chlorpromazine, propofol, 
tretinoin, and ivermectin. Among the top ten positions in the ranking we find drugs with known effects animal 
models or cell lines or proposed for further scrutiny in silico screenings:  thioridazine41,  prochlorperazine42, 
 primaquine43,  fluphenazine44. The highest p-value on RHR when all drugs are considered is attained by KeyPath-
wayMiner (KPM) on the L1000 drug data set with the BALF COVID-19 disease data set (Alg 17 in Fig. 6, see 
Supplementary Table S9). The top position of the ranking reports a drug listed in clinical trial on www. trials. gov 
for COVID-19: sirolimus. Within the first twenty positions further 4 drugs are in clinical trials for COVID-19: 
decitabine, tamoxifen, simvastatin, and imatinib. Among the top ten positions in the ranking we find drugs with 

Figure 7.  Performance of drug rankings reported in literature for COVID-19 drug repurposing. The (a,b) 
panels show the absolute values of RHR and precision 20, respectively. The (c,d) show the −log10(p value) of the 
RHR and precision 20, respectively. The dotted red line indicates the 0.05 significance threshold. The analyses 
have been performed using only FDA-approved drugs (green bars) and without any FDA filtering (red bars). 
The plot has been generated by the ggplot281 R package.

http://www.trials.gov
http://www.trials.gov
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known effects in animal models or cell lines or proposed for further scrutiny in in silico screenings:  lapatinib45, 
 dasatinib46,  mitoxantrone47,  everolimus48,  sunitinib49.

For the remaining drugs in the top 10 positions in both lists, we determine the main mechanism of action (i.e. 
we determine the main pathways affected by the drug having the desired pharmacological effect) and we then 
look for hints in the literature of relevance of these pathways for COVID-19. In the first list, we find methyler-
gometrine, which is a partial agonist and antagonist of serotonin, dopamine, and α-adrenergic receptors. Costa 
et al.50 conjectured that serotonin inhibitors could have a neuroprotective effect in patients affected by COVID-19. 
In the second list, we find erlotinib, stuent/sunitinib, azacitidine, and sorafenib. Erlotinib is an epidermal growth 
factor receptor (EGFR) inhibitor in use for the treatment of non-small cell lung cancer (NSCLC) and pancreatic 
cancer. Epidermal growth factor receptor (EGFR) signaling is known to be involved in the progress of viral 
 infections51, including those caused by SARS-CoV52 and SARS-CoV-253, thus it is a plausible target pathway to 
consider. Sunitinib (Sutent) multi-targeted receptor tyrosine kinase (RTK) inhibitor used in the treatment of renal 
cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST). Weidberg et al.46 recently 
advocated the repurposing of kinase inhibitors for the treatment of COVID-19. Azacitidine has been shown 
effective against human immunodeficiency virus (HIV) in vitro54 and human T-lymphotropic virus (HTLV)55. 
Its action is mainly at an epigenetic level, inhibiting DNA methyltransferase, causing hypomethylation of DNA. 
The role of epigenetics in COVID-19 is a growing area of research with large potential for advances in drug target 
 identification56. Sorafenib is a kinase inhibitor drug approved for the treatment of advanced primary renal cell 
carcinoma, advanced primary liver cancer, and forms of resistant advanced thyroid carcinoma. Sorafenib is a 
protein kinase inhibitor with activity against the Raf/Mek/Erk  pathway57. Several authors have explored the role 
of MAP Kinase signaling pathway in the coronavirus family at large and for SARS-CoV-2 in  particular58. In Sup-
plementary File S8 and Fig. 7 we report performance measures for the proposed COVID-19 drug repurposing 
rankings from Taguchi et al.6, Mousavi et al.7, Gysi et al.8, and Zhou et al.9.

For Taguchi et al. and Mousavi et al. the drug data sets used are overlapping with ours thus it is possible 
to compute the significance of the performance measures on a common basis. Interestingly as shown in Sup-
plementary File S8 no such rankings attain the significance threshold p-value ≤ 0.05 in any configuration. For 
Gysi et al. and Zhou et al., the drug data sets used are different from the ones we use, and the two methods are 
not based on gene expression data, and it is not possible to determine with confidence the initial pool of drug 
candidates. For this reason, we do not compute the normalized significance, and we report directly the absolute 
performance measures. The results of Gysi et al. are in absolute value superior to those of Zhou et al. and qualita-
tively comparable to those obtained by DrugMerge on GEO data for precision@20, and on all four Drug datasets 
for RHR. In particular, Gysi et al.8 use data on interactions between viral and human proteins in Gordon et al.59 
to seed their active subnetwork and finish their listing with the help of expert advice, which we do not use. Gysi 
et al. also have a notion of ‘positive’ drug action akin to the one used in our paper.

Discussion
As drug repositioning is a vast subject, with implications from several areas of biology and medicine, we com-
ment on the relationship of DrugMerge with several issues arising in the Drug Repositioning literature. Each 
issue is introduced by a heading.

Three strategies. We can identify three main strategies in drug repositioning (DR): the first is disease-ori-
ented DR (i.e. find repurposable drugs for a specified disease), the second is drug-oriented DR (finding a disease 
for a specified drug), the third is generic DR (find any novel drug-disease pair). The approaches may vary signifi-
cantly across the three types, and also the validation methodology is strongly influenced by the objective of the 
strategy. In this study we tackle disease-oriented DR, however, we should point out that the base methodology 
can in principle be adapted easily to the other two strategies, provided sufficient high-quality data is available.

DrugMerge in a nutshell. DrugMerge is a proof-of-concept exploring a novel use of disease active subnet-
works in the context of drug repositioning aimed at a specific disease. In particular, DrugMerge uses multiple 
Disease Active subnetworks (DAS) algorithms and a state-of-the-art rank merging procedure in conjunction 
with two scoring functions. The first scoring function is directly the p-value of the enrichment of a drug DE 
genes within the DAS. The second scoring function, called ‘positivity score’, measures the antagonistic activity of 
the drug onto the disease, as mediated by a covering of the DAS as a collection of dense ego-networks computed 
by two methods: Core&Peel and ModuleDiscoverer. Matching the resulting rankings with the golden standard 
of a disease indicates the configuration attaining the best results, and thus those likely to include good candidates 
for drug repositioning in top positions (see “Methods” section for more details).

Performance on real data. The tests involving four benchmark diseases with drugs in clinical use did 
confirm the superior performance of the proposed method over the current state of the art (e.g. CMAP) in 
placing such clinically approved drugs in top-ranking positions. In this case, the evaluation criterion is very 
strict, however we were able to guess correctly the efficacy and safety of drugs administered to patients basing 
our analysis only on transcriptomic data from in vitro cell lines and tissues. Interestingly, while efficacy is in 
principle detectable by examining specific types of cells or tissues primarily affected by a disease, safety is a much 
broader concept involving all human organs and tissues, thus harder to pinpoint with localized experiments 
either in vitro or in silico.

Tests on the data from the COVID-19 disease also show, according to our validation criterion, a performance 
superior to some of the approaches proposed in the literature, while for some others we notice a broadly equiva-
lent outcome, even when using different approaches and different input data. Results on COVID-19 should be 
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taken with caution, however, as our validation methodology implies that the proposed ranking is able to mimic 
the best judgment of human experts, which may be based on their prior knowledge and expertise, data avail-
able to them, and their assessment of the odds, leading to a shortlisting of such drugs in clinical trials. Thus our 
validation methodology might indeed be failing us in cases where the disease to be tackled has key features that 
escape our present general understanding. What can be gained in our exercise is a way to make drug shortlist-
ing for in vitro further assessment (and eventual accession to clinical trial) more systematic, while also using 
relatively cost effective data sources.

Use of trascriptomic data. Besides the global gene co-expression network, which we can assume as back-
ground knowledge, our method relies on rather standard and relatively inexpensive RNA-Seq and microar-
ray transcriptomic measurements of differentially expressed genes in infected cells/tissues. Systematization and 
finding alternatives to pure serendipity (discovery by chance) are key aspects of all in silico based drug reposi-
tioning efforts. In the “Related work” section on Supplementary Material, we discuss other related works on drug 
repositioning. One bonus of this parsimonious data requirement is that it becomes easier to track the evolution 
of viral Mechanism of Action and disease etiology as the viral agent mutates, thus in principle the drug ranking, 
and thus follow up decisions, may change rapidly when transcriptomic data on new viral strains of COVID-19 
become available.

Other coronaviruses. SARS-CoV-2 is a member of the coronavirus family, responsible also for the SARS 
and MERS epidemics. Many studies, in particular at the end of 2019 and beginning of 2020, make up for the pau-
city of data on SARS-CoV-2 by making use of genomic, transcriptomic, proteomic, and pharmacological data 
relative to SARS-CoV and MERS-CoV and other members of the coronavirus family, including those known to 
be hosted by other animal species.

In our study, we chose not to use data from viruses different from SARS-CoV-2 as primary data. This choice 
comes from two orders of considerations. The first is that data from close relatives of the pathogen may not 
always be available, and there is thus a general long term advantage attained by methods that rely just on rela-
tively small and focused data. The second issue is that we focus not on the pathogen in itself but on the human 
transcriptional response to it, which is known to be rather different across SARS-CoV-2, SARS-CoV, and MERS 
epidemics. In this line of reasoning, it makes more sense to highlight what makes human transcriptional response 
to SARS-CoV-2 different from that induced by other coronaviruses, even when the causing pathogens are phy-
logenetically very close.

Current limitations of DrugMerge. We use the list merging procedure to merge lists obtained by several 
algorithms and several DE gene data sets from different cell lines/tissues but always referred to a single drug 
data sets, and a single disease. Different drug data sets are often obtained using different initial candidate drugs 
and use different technologies. Moreover sometimes, due to the different technologies and other experimental 
settings, even when we restrict the analysis to common drugs, replicability across drug data sets may be low (see 
e.g.60, 61 reporting low replicability across CMAP and L1000 data using the CMAP algorithm). Moreover the 
performance measures we use measure the quality of the whole ranking, and the ranking itself gives a way to 
compare drugs listed by position. However, based on these measures we refrain from comparing (and thus give 
a relative order) to two drugs in different rankings obtained with different perturbation drug data sets. Such a 
global ranking would need further insight and technological bias correction, which we leave for future research.

Dose dependency. Drug datasets report often measurements for a range of different dosages taken at a 
range of different time points. For the p-valued ranking, we use the dosage/time point giving the lowest p-value. 
For rankings based on positivity score, we take the average positivity score. These choices are justified for an 
initial assessment of drug potential to be effective against a disease. Dosage and time points could be taken into 
account together with available dose-dependent toxicity data in a second level of analysis when additional data 
is collected in in vitro experiments.

Tissue specificity. For this study, we use all available transcriptomic drug and disease data regardless of the 
cell lines/tissues/species for which the transcriptomic measurements are taken. This choice increases the robust-
ness of the results in general, however, it might miss some more subtle tissue-specific phenomena.

On the one hand, it is known that the SARS-CoV-2 virus infects several human organs including lungs, liver, 
kidneys, and  gut62, and the cells transcriptional response may in principle be diverse in each tissue. However, 
Dudley et al.63 analyzing a large repository of disease-related gene differential expression data conclude that 
“molecular signature of disease across tissues is overall more prominent than the signature of tissue expression 
across diseases”. Our analysis of active subnetworks extracted from three COVID-19 data sets (BALF, PBMC, 
cells) also supports for COVID-19 a general high similarity of gene expression across the sample types. Differ-
ences in the extracted active networks are mainly due to the algorithms used.

Also, drugs may act differently in different cell types. For example, chloroquine has been found to be inef-
fective in infected human lung  cells64, while it was found effective in infected Vero cells (a cell line isolated from 
kidney epithelial cells extracted from an African green monkey)65. Similar tissue-specific differences in drug sen-
sitivity are noticed by Dittmar et al.66. In principle, if a variety of options are available, one may opt for including 
only the data drawn from biological samples more similar to the actual tissues affected by the disease in patients.

In our study, we use a large variety of cellular types for drug perturbation analysis. Drug matrix has drug 
perturbation signatures available on liver, heart, kidney, thigh muscle, and primary hepatocytes (from Rattus 
norvegicus). GEO has drug perturbation signatures for several tissues and species including homo sapiens, mus 
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musculus and Rattus norvegicus. CMAP measures drug perturbations in breast cancer epithelial cell line MCF7 
(MCF7/ssMCF7), in prostate cancer epithelial cell line PC3, and the nonepithelial lines HL60 (leukemia) and 
SKMEL5 (melanoma). L1000 collects drug perturbation data from 98 different cellular contexts including human 
primary cell lines and human cancer cell lines.

For COVID-19 we report two drug rankings attaining top performance, one is obtained by merging data 
from all three tissues used to measure DEG, therefore it indicates evidence for drugs that may act on a general 
systemic level across different human organs. This is complemented by the second ranking which is attained 
specifically for BALF measurements (bronchoalveolar lavage fluid) and thus it may indicate drugs with a specific 
action in pulmonary tissues.

Drug mechanisms of action. One advantage of our approach, in contrast with many others, is that we do 
not have an initial explicit guess for a putative target protein for the drug or a putative target pathway (or mecha-
nism of action). However, once relevant drugs are shortlisted we can analyze their likely mechanism of action, 
either through the literature or through the use of specialized databases.

On specific drugs in clinical trials. In this study, we have used four public Drug-related data sets (GEO, 
DrugMatrix, CMAP, and L1000) representing a sufficient drug basis for our investigation and the validation of 
the proposed methodology. However, a much larger amount of useful data on drugs is proprietary therefore it is 
important to devise incentives for sharing these repositories of useful data in a global drug repositioning strat-
egy. As a consequence of the non-complete drug coverage of our data sets we could not assess some drugs whose 
use in COVID-19 cases has been advocated, such as remdesivir (approved by FDA in October  202067) or lopina-
vir (not approved by FDA). Cao et al.68 recently reported the results of a randomized clinical trial involving 199 
hospitalized adult patients with severe COVID-19: no benefit was observed with lopinavir-ritonavir treatment 
over the standard care cohort. Interestingly, we have data from DrugMatrix on ritonavir (not approved by FDA), 
which fails the positivity score filter, thus our results on ritonavir are consistent with the findings in Cao et al. 
which are at a clinical level.

Role of comorbidities. Comorbidities in patients affected by COVID-19 are important clinical aspects, as 
it is known that comorbidities are one of the strongest risk factors for such patients, strongly affecting mortal-
ity  rates69. Comorbidities may alter drastically the effect of drugs. The disease gene expression data (for all five 
diseases) we use in this study do not come from patients with known comorbidities, therefore the results of our 
study should be interpreted in such a setting. Fiscon et al.70 try to exploit known comorbidities as a positive 
tool in modeling the relevant features of COVID-19, while other authors, based on protein target analysis, have 
a more skeptical  view8: “In summary, we find that the SARS-CoV-2 targets do not overlap with disease genes 
associated with any major diseases, indicating that a potential COVID-19 treatment can not be derived from 
the arsenal of therapies approved for specific diseases”. The effect of concomitant comorbidities on repurposed 
drugs might be better approached when transcriptomic data from these sub-populations of COVID-19 patients 
become available.

Drug combinations. In this study, we do not treat the issue of combinations of drugs. This is a novel area of 
research in which network-based approaches have been shown to give novel insight and may help in coping with 
the combinatorial explosion of drug combinations. However, validated data on drug combinations is limited 
thus making the task of performance evaluation and method validation more complex w.r.t the analysis for sin-
gle drugs. We plan to incorporate models of multi-drug/disease interactions in our setting as future  research71.

Toxicity and adverse events. Drugs can be toxic or cause adverse events. Toxicity can be detected via ad-
hoc in vitro ed in vivo experiments or it can be predicted via in silico  models72. Any of these techniques should 
be applied downstream to the use of DrugMerge for extra safety. DrugMerge uses two forms of filtering to handle 
adverse effects and toxicity. The first mechanism is the inclusion of drugs having a contrary effect to the disease 
as measured by the positivity score (which in turn is similar to a mechanism also used by Gysi et al.). The second 
filtering is via the possibility to limit the analysis to FDA-approved drugs, for which toxicity and adverse effects 
are known and have been considered to be outweighed by the benefits in certain conditions. This mild form of 
filtering is sufficient to increase the performance in our tests and thus mimic human expert judgment, which 
includes consideration of toxicity and adverse effects. However, toxicity should be always be reconsidered ex-
post to finalize any shortlisting decision.

Role of the disease causes. Since we base our approach on the transcriptomic responses of human cells/
tissues to drugs and diseases, the cause of the disease (viral, bacterial, genetic, metabolic, etc.) is not critical 
for the application of the methodology. Indeed in our study, we applied it to a variety of cases. Asthma is an 
inflammatory disease of the airways of the lungs having several triggering causes, including exposure to air pol-
lution and allergens. Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. 
Cancer is generally associated with alterations of the genetic code in somatic human cells. Finally, COVID-19 
is of viral origin. The advantage of generality is balanced by the possibility that a high-ranking drug is effective 
against symptoms or side-effects of the diseases, rather than acting on its main mechanism of action. In one of 
the drug rankings for COVID-19, we find within the top 20 positions prochlorperazine which has both antiviral 
 activity41 and is also a broad-spectrum antiemetic contrasting COVID-19 symptoms like nausea and  vomiting42. 
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At this level of analysis, DrugMerge does not yet distinguish the different actions a drug might have thus further 
investigations are needed to untangle complex drug actions.

Conclusions
In this conclusive section we summarize the features of DrugMerge and we comment on possible extensions and 
applications, as well as additional benefits of drug prioritization in general.

In this study, we describe DrugMerge, a methodology for ranking repurposable drugs where we rank drugs 
by their ability to affect collections of disease active subnetworks (computed by an ensemble of state-of-the-art 
algorithms) and contrast the perturbation induced by the disease in such sub-networks. DrugMerge should be 
considered as a proof-of-concept and its predictions should be considered as indications for shortlisting drugs for 
further in vitro analysis rather than absolute predictions. In particular, aspects like dosage, tissue specificity, and 
a more refined analysis of possible adverse side effects will need to be tackled further in developing DrugMerge 
towards a full-fledged product.

Network drug‑disease model. The rationale behind our approach is a model in which drugs and diseases 
interact indirectly by their mutual action on the sub-networks rather than directly by affecting the same target 
proteins. Moreover, we are able to leverage an ensemble of different algorithms for computing active subnet-
works, and then merge the resulting rankings, thus increasing the robustness of the methodology. Results of four 
benchmark diseases are encouraging since we could find in all four cases drugs in clinical use (thus both safe and 
effective) in first ranking positions, and several other drugs in clinical use in high ranking positions.

Benchmarking with prior knowledge. These results imply that DrugMerge when provided with input 
data from transcriptional assays, has the potential for coming close to expert human judgment, and guess drugs 
in actual clinical usage. For COVID-19 we measure how close we come to guessing drugs that have been short-
listed for clinical trials according to the FDA records. For most drugs in high ranking positions but not on 
clinical trials we have found several supporting evidence in the literature or by direct assessment of their likely 
Mechanism of Action, that makes their indication by DrugMerge biologically plausible.

Other benefits of drug prioritization. Prioritizing drugs for in vitro testing and eventual accession to 
clinical trials is valuable for decision makers in a pandemic situation. Lack of prioritization in drug repurposing 
efforts has led to some drugs being over-researched, early in the pandemic, even based on dubious evidence (e.g. 
hydroxycholoroquine in COVID-19). Moreover having many small clinical trials has the effect of reducing the 
pool of eligible patients available for larger and more promising trials ( Generic Drug Repurposing for COVID-
19 and Beyond. Susan Athey, Rena Conti, Richard Frank, and Jonathan Gruber Institute for Health System 
Innovation & Policy. July2020. https:// www. gsb. stanf ord. edu/ facul ty- resea rch/ publi catio ns/ gener ic- drug- repur 
posing- covid- 19- beyond).

Sub‑populations of patients. A tool such as DrugMerge aiming at drug ranking might be used in con-
junction with an activity of data collection that targets specific sub-populations of patients. For example, most 
trials to date for repurposed drugs in COVID-19 have focused on hospitalized patients, even though prevention 
might be more valuable and effective if initiated earlier in disease progression. Also transcriptomic data from 
patients affected by frequent comorbidities might help towards the study of drugs specifically selected for sub-
populations at higher risk of mortality.

Preclinical nature of this research. This paper focuses on the preclinical considerations that may indi-
cate a drug to be shortlisted for further preclinical in vitro and in vivo testing, leading to eventual clinical trial. 
Naturally, all evidence, which may conceivably be noisy and often contradictory, should be gathered and consid-
ered before pushing a drug further down the pipeline.

Methods
Drug ranking based on p‑value. We use the Core&Peel technique described in Lucchetta et al.4 and 4 
other methods  (ClustEx73,  ModuleDiscoverer74,  Degas75, and  KeyPathwayMiner76) to produce active subnet-
works for a given disease D, starting from a list of differentially expressed genes in samples affected by the disease 
w.r.t. healthy controls DEG(D) and a gene co-expression network. In Lucchetta et al., we employed the gene 
co-expression network made available by the DREAM  challenge77, and DEG for seven different datasets: two 
inflammatory disease microarray experiments (asthma and rheumatoid arthritis), two cancer RNA-Seq stud-
ies (prostate and colorectal cancer), and three COVID-19 datasets called BALF (bronchoalveolar lavage fluid 
RNA-Seq), PBMC (infected patient peripheral blood mononuclear cells) and COVID19 cells (human adeno-
carcinomic alveolar basal epithelial A549 cells). In Lucchetta et al., we compared the performance of Core&Peel 
and the other four algorithms in detecting active subnetworks, resulting in that Core&Peel is a competitive 
method in that purpose. In this work, we use the five active subnetworks detected by all five methods as inputs 
of DrugMerge. Let AN be any such active network. For a given Drug perturbation datasets (for us: GEO, Drug-
Matrix, CMAP, and L1000; see description in “Drug perturbation databases” section of Supplementary Material) 
using the enrichR R/Bioconductor package, we obtain a listing of drugs enriched in AN ranked by their adjusted 
p-value in reverse order (from the smallest to the largest). We cut this list at the adjusted p-value of 0.05, retain-
ing only the significantly enriched drugs.

https://www.gsb.stanford.edu/faculty-research/publications/generic-drug-repurposing-covid-19-beyond
https://www.gsb.stanford.edu/faculty-research/publications/generic-drug-repurposing-covid-19-beyond
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Filtering of drug ranking. We have noticed that a straightforward application of the p-value based drug 
ranking includes in top ranking positions some molecules and drugs that are known to be either generally 
toxic or to induce diseases in animal models. For this reason, we introduce the option of applying two filters to 
a ranked list of drugs. The first filter is used to retain only drugs that are approved by the FDA (we use a list of 
drugs downloaded from https:// www. acces sdata. fda. gov on September 9th 2020, with 6315 entries). For FDA-
approved drugs usually adverse effects and toxicity levels are known and probably acceptable in most cases. The 
second filter retains drugs that by the directionality analysis appear to have a ’positive’ action on the disease, i.e. 
genes are up/down regulated antagonistically to the disease effect. This list of positive drugs can be obtained with 
the method described in the next section.

Drug ranking based on drug positivity scores. For this analysis, we exploit the fact that two of the 
methods (Core&Peel and ModuleDiscoverer) we employ to build active subnetworks produce the active sub-
network as a union of dense sub-graphs (ego-networks) of a large co-expression network (in detail this co-
expression network has been produced for the DREAM challenge on disease module  detection77). Since such 
network is built on the correlation of the expression-vectors over thousands of conditions, a high correlation 
vector implies that a pair of genes are generally both up or both down regulated at any given time. In a dense ego-
network, such tendency is coherently common to all genes in the ego-network. We exploit this phenomenon as 
follows. For an ego-network that is significantly enriched in genes down-regulated by the disease, we subtract the 
number of up-regulated genes by the drug from the number of down-regulated genes by the drug. If this number 
is positive we say that the drug has a positive effect of the disease (for this ego-network). We do a symmetric 
calculation of the case of ego-networks that are significantly enriched in genes up-regulated by the disease. Sum-
ming these effects (with their sign) over all the ego-networks comprising the active subnetwork, we can compute 
the directionality of action of the drug and a magnitude (directionality score). We retain the drugs that have a 
positive directionality score and we rank them by the magnitude of the score. Note that this scheme relies just 
on counting the number of up/down regulated genes, not on the magnitude of the expression, as long as it is 
significant. In a variant of this scheme, we can use the size of the ego-networks as a weighting factor. This method 
is justified by an extension to the ego-networks of the phenomenon Chen et al.78 have noticed that in preclinical 
models of breast, liver, and colon cancers, reversal of gene expression between drug and disease correlates well 
with drug efficacy. Furthermore, Chen et al. validated the efficacy of drugs in xenograft models of the diseases.

Merging of drug lists. Given two or more ranked lists of drugs, we wish to aggregate them into a single list 
that takes into account the ranking of any drug in each of the lists where it occurs. Following Gysi et al.8 we use 
the C-rank routine in Zitnik et al.79 to perform rank aggregation. C-rank is defined in Zitnik et al. to work with 
any custom-defined ranking of items (thus we do not make use of the graph-based community ranking scores 
for which c-rank was originally designed, instead we use it here as a generic rank aggregation method). Interest-
ingly this rank aggregation method is oblivious of the origin of the ranking and we can thus easily aggregate lists 
obtained with different active subnetwork algorithms on different disease-DEG sets. The only caveat is that the 
lists supplied to c-rank must be of equal length, thus the case of missing drugs must be handled, by fitting the 
drugs missing from a list at its bottom with a scaled mean score value obtained from the other lists.

Performance evaluation. The performance evaluation aims at assessing how well a predicted ranked list 
gives priorities in accordance to human expert judgment as codified by disease-treatment pairs extracted from 
the Therapeutic Target Database13 for the four benchmark diseases. Since for COVID-19 currently only one 
drug has gained acceptance as an approved clinical treatment, we resort to the list of drugs for the treatment of 
COVID-19 undergoing clinical trial as listed in the portal https:// www. clini caltr ials. gov/ (at Sept 5th, 2020). We 
use two main measures. The first is precision at 20 (precision@20), that is the number of drugs in the first 20 
positions of the proposed list of repurposable drugs that are hits in the TTD-derived listing, or, for COVID-19, 
in the clinicaltrials.gov listing. The second is the Reciprocal Hit-Rank (RHR)80. For a list L of predictions length 
N, let the hits be in positions p1 , p2 , ... , ph . We define :

Note that this formula does not imply a fixed length for the lists being compared, and it is fair in comparing 
both long and short lists. A longer list may have more hits by chance, however it will have positive but diminish-
ing returns for hits in its tail.

Statistical significance. Let D be a set of drugs and H ⊂ D a golden standard for a disease (e.g. the drugs 
in D that are in clinical use for the disease). We generate n random permutations uniformly at random ri(D) , for 
i = 1, . . . , n and we take, for a performance measure µH () depending on H, the mean m and standard deviation 
sd of the sequence M = [µH (ri(D)) for i = 1, . . . , n] . For a given drug ranking R(D), its zscore for µH () is its 
deviation from the mean of the above described random distribution normalized by the standard deviation of 
the random distribution:

RHR(L) =

h∑

i=1

1

pi
.

zscore(R(D)) =
µH (R(D))−m(M)

sd(M)

.

https://www.accessdata.fda.gov
https://www.clinicaltrials.gov/
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Assuming that the random distribution of the values of µH (ri(D)) is normal, we obtain the (two sided) p-value 
by plugging the z-score value into the complementary cumulative distribution function (ccdf) of the normal 
distribution from the package scipy.stats of SciPy.org.

The number n of random permutations is determined as follows. Starting with n = 100, 000 , we increment n 
in steps of 10, 000, stopping when the value of both m and sd are stable, with a displacement from the previous 
iteration less than 0.01.

Data availability
Primary data used in this study is available in public repositories. Intermediate results, processing software and 
scripts are available on GitHub: https:// github. com/ marta luc/ DrugM erge.
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