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Effects of government policies 
on the spread of COVID‑19 
worldwide
Hye Won Chung1,8, Catherine Apio2,8, Taewan Goo2, Gyujin Heo2, Kyulhee Han2, 
Taehyun Kim3, Hakyong Kim4, Yeonghyeon Ko4,5, Doeun Lee2, Jisun Lim6, 
Seungyeoun Lee7 & Taesung Park3*

The outbreak of novel COVID‑19 disease elicited a wide range of anti‑contagion and economic policies 
like school closure, income support, contact tracing, and so forth, in the mitigation and suppression 
of the spread of the SARS‑CoV‑2 virus. However, a systematic evaluation of these policies has not 
been made. Here, 17 implemented policies from the Oxford COVID‑19 Government Response Tracker 
dataset employed in 90 countries from December 31, 2019, to August 31, 2020, were analyzed. 
A Poisson regression model was applied to analyze the relationship between policies and daily 
confirmed cases using a generalized estimating equations approach. A lag is a fixed time displacement 
in time series data. With that, lagging (0, 3, 7, 10, and 14 days) was also considered during the 
analysis since the effects of policies implemented on a given day may affect the number of confirmed 
cases several days after implementation. The countries were divided into three groups depending 
on the number of waves of the pandemic observed in each country. Through subgroup analysis, we 
showed that with and without lagging, contact tracing and containment policies were significant for 
countries with two waves, while closing, economic, and health policies were significant for countries 
with three waves. Wave‑specific analysis for each wave showed that significant health, economic, 
and containment policies varied across waves of the pandemic. Emergency investment in healthcare 
was consistently significant among the three groups of countries, while the Stringency index was 
significant among all waves of the pandemic. These findings may help in making informed decisions 
regarding whether, which, or when these policies should be intensified or lifted.

The spread of coronavirus  disease1 in 2019 (COVID-19) became a global threat and the World Health Organi-
zation (WHO) declared it a global pandemic on March 11,  20202. As of January 28, 2021, there were a total of 
101,520,671 confirmed cases and 2,186,433 deaths from COVID-19  worldwide3.

The COVID-19 pandemic has greatly affected people’s lives, world economies and the public health threat it 
represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza  pandemic4. In the absence 
of a vaccine or an effective treatment, the rapid spread of this disease elicited a wide range of responses from 
different governments across the globe to contain the spread of the pandemic. These policies were aimed at: (a) 
mitigation, which focuses on slowing but not necessarily stopping epidemic spread—reducing peak healthcare 
demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims 
to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation  indefinitely5. 
Common policies included school closures, travel restrictions, bans on public gatherings, stay-at-home orders, 
closure of public transportation, emergency investments in the healthcare system, new forms of social welfare 
provision, contact tracing, and investment in COVID-19  vaccines6. Transmission events occur through contacts 
made between susceptible and infectious individuals in either the household, workplace, school, or randomly in 
the community, with the latter depending on the spatial distance between contacts. Therefore, the suppression 
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of social contact in workplaces, schools, and other public spheres is the target of such measures, which aim to 
reduce the transmission of the  virus7, 8.

The effectiveness of implemented government policies in the alleviation of the COVID-19 pandemic has been 
demonstrated. For example, a deterministic stage-structured susceptible-exposed-infected-recovered (SEIR) 
model showed the positive effects of extended workplace distancing, reduction in mixing in the community, 
and school closure in the control of the pandemic situation in  Wuhan9. A segmented Poisson model was used to 
predict the turning point, duration, and attack rate of COVID-19 in six of the G7 countries while modeling the 
effects of implemented policies in those countries on the spread of the  pandemic6. The mathematical susceptible-
infected-recovered (SIR) model showed the importance of “Janata curfew”, lockdowns with periodic relaxation, 
and workplace non-attendance used in India in curbing the spread of the  virus7. A novel machine learning 
model was employed to examine the role of selected socioeconomic factors in mediating local and cross-city 
transmission of coronavirus in  China10. All these studies tried to show that implemented government policies 
have a positive effect on reducing the spread of COVID-19.

However, a lot of the research projected the effects of these fast-changing policies by the comparison of the 
number of daily confirmed cases under when these policies were implemented and when not, to show the impact 
of these policies in the suppression and mitigation of COVID-19. The direct benefits of these policies cannot 
be observed but are currently only inferred from, for example, simulations or other mathematical  models11. 
Therefore, a direct measure to observe if these policies had a positive impact on reducing the number of daily 
confirmed cases has not been done. Also, these studies have mainly focused on the effects of these actions in only 
a few countries like China, the USA and  India11 but no systematic evaluation (or global effect) of these policies 
in mitigation of the pandemic has been made.

Our objective was to determine whether the implemented government policies had influenced the slow-
ing down of the spread of the SARS-CoV-2 virus and observe which policies were most effective. To do this, 
trajectory-based analysis was carried out on 90 countries to study the relationship of the commonly used social 
distancing, health system, and economic policies implemented by different governments across the globe in the 
alleviation of the negative health, political and economic impact of the pandemic. We used the Oxford COVID-19 
Government Response Tracker (OxCGRT) dataset from Blavatnik School of Government and the University of 
 Oxford12. These are records of different levels of the policies in an ordinal or a numeric scale, Stringency index 
and indices which are arithmetic means of the different groups of policies employed by governments around the 
world to reduce the spread of the infection. We employed the Poison regression models using the generalized 
estimation equations  approach13, 14 in the analysis of COVID-19 daily confirmed cases against policies. From 
this, we determined which policies had a significant influence on the number of cases deduced from the p val-
ues of their coefficients (significant when coefficient p value < 0.05). Lagging (0, 3, 7, 10, and 14 days) was also 
considered as intuitively the effects of policies implemented on a given day will affect the number of confirmed 
cases several days after its implementation.

The countries showed quite different wave patterns in their daily confirmed cases. Therefore, we grouped the 
countries into three groups according to the number of  waves15 (a wave implies a rising number of sick individu-
als, a defined peak, and then a decline) of the pandemic observed in each country’s plot of daily confirmed cases 
against time in days. i.e. countries with only one wave, two waves, and three waves respectively (Supplementary 
Fig. 1–3). The Poisson regression model with and without lagging (a lag is a fixed time displacement in time series 
data), was then employed to analyze the overall relationship between cases and policies. In our first analysis, we 
performed the subgroup analysis for the groups of countries. This subgroup analysis assumed there is a ‘com-
mon policy effect’ across the waves observed. Through the subgroup analysis, we could identify policies that had 
consistently significant effects over waves. In the second analysis, we performed a ‘wave-specific’ analysis (see 
Methods) in which significant and effective policies may vary between the different waves of the pandemic expe-
rienced in a country. In this paper, we developed a segmentation algorithm for the identification and comparison 
of turning points of time series to study the spread of COVID-19 in different countries. Such turning points 
classify the behavior of a country’s trajectory throughout the pandemic as being in (or over) their subsequent 
 waves16, 17. The goal of this wave-specific analysis was to investigate which policies had significant effects at the 
start of the pandemic but did not later, and vice versa. We used a 5% significance level in this analysis.

Results
Subgroup analysis of countries. Analysis of all countries. Figure 1 shows the variation of coefficient 
values and -log(p value) of policies. Policies with p value < 0.05 (− log(p value) > 1.30) were significant, and for 
a one-unit change in the predictor variable (policies and indices), the difference in the logs of expected counts 
(COVID-19 daily confirmed cases) is expected to change by the respective regression coefficient. A model as-
suming the effects of policies is the same regardless of the wave patterns was fitted without and with lagging for 
all 90 countries (Fig. 1a). Regardless of lagging, C1 (School closing), C2 (Workplace closing), C4 (Restriction 
on gatherings), C5 (Closing public transport), C6 (Stay at home requirements), C7 (Restrictions on internal 
movement), H3 (Contact tracing), H4 (Emergency investment in healthcare), H5 (Investment in vaccines), SI 
(Stringency index) and CoI (Containment index) showed significant results in their coefficients with p val-
ues < 0.05. However, all economic policies, C3 (Cancel public events), C8 (International travel controls), and 
H2 (Testing policy) were not significant irrespective of lagging. H1 (Public information campaign) was the only 
policy whose significance changed at the 14-days’ lag. Among the significant policies, H5 had nearly the same 
coefficient values while the others showed the general trend of decrease in coefficients and increase of p values 
with lagging, but only H3 had negative coefficient values (− 0.0180, − 0.0181, − 0.0181, − 0.0179, − 0.0176). How-
ever, since countries had different situations and patterns in their daily confirmed cases, countries were divided 
into three groups for better interpretation.
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Analysis of Group 1 for the countries with one wave. Grouping the countries according to the number of waves 
in their daily confirmed cases showed that significant policies and indices varied with lagging and in the three 
groups. Figure 1 shows the coefficients and p values of policies and indices for the three groups. For the 31 coun-
tries in Group 1 (Fig. 1b), H4 (Emergency investment in healthcare), H5 (Investment in vaccines), SI (Stringency 
index) were significant at all-time lags and had positive coefficients. However, SI showed a trend of increasing p 
values and decreasing coefficients with lagging, whereas coefficients of H4 and H5 remained unchanged regard-
less of lagging. C2 (Workplace closing), C4 (Restrictions on gatherings), C5 (Closing public transport), H1 
(Public information campaigns), and RI (Restriction index) all had positive coefficients and were significant only 
for short time-lags. H1 had a large coefficient value of 0.1 compared to those of other policies. Other policies 
including all economic policies were non-significant.

Analysis of Group 2 for the countries with two waves. In the 54 countries (Fig. 1c), C1 (School closing), C2 
(Workplace closing), C4 (Restriction on gatherings), C5 (Closing public transport), C6 (Stay at home require-
ments), C7 (Restrictions on internal movement), E4 (International support), H3 (Contact tracing), H4 (Emer-
gency investment in healthcare), H5 (Investment in vaccines), SI (Stringency index), RI (Restriction index), CI 
(Closing index), and CoI (Containment index) were significant at all-time lags. Among those, only H3 had a 
negative coefficient value. H3, H4, and H5 showed similar coefficients and p values with lagging whereas others 
showed a similar trend of increasing p values and decreasing coefficient values with lagging. E3 (Fiscal measures) 
became significant while H1 (Public information campaigns) became non-significant at 14-days’ lag with both 
having positive coefficients values.

Analysis of Group 3 for the countries with three waves. In the 5 countries (Fig. 1d), C2 (Workplace closing), C5 
(Closing public transport), C8 (International travel controls), E1 (Income support), E2 (Debt/ contract relief), 
E3 (Fiscal measures), E4 (International support), H1 (Public information campaigns), H3 (Contact tracing), H4 
(Emergency investment in healthcare), HI (Health index), and EI (Economic index) were significant regard-
less of lagging. Of these, E4, H3, and HI had negative coefficients. The patterns of coefficients and p values 
varied across policies. An interesting trajectory was observed with H1: at the 14-days’ lag, its p value suddenly 
increased, and the coefficient decreased greatly compared to the other policies. H2 (Testing policy) and H5 
(Investment in vaccines) became significant at 14-days’ lag but their coefficients were near 0 while CoI (Contain-
ment index) became significant at larger lagging days (see Fig. 4a for variation of only indices across groups).

Wave‑specific analysis. Wave analysis (see Methods) simultaneously fits all 90 countries and considers 
wave information for all the countries without the need for grouping as performed under subgroup analysis. 

Figure 1.  Lagging effect in the subgroup analysis. Variation of coefficients and p values of policies and indices 
according to groups is shown. The size and transparency of the circular dots increase with the time lag (0, 3, 7, 
10, 14). (a) Analysis of all 90 countries shows C1, C2, C4, C5, C6, C7, H3, H4, H5, SI, and CoI are significant 
at all time lags. (b) Group 1 analysis shows H4, H5, and SI are significant at all-time lags. (c) Group 2 analysis 
shows C1, C2, C4, C5, C6, C7, E4, H3, H4, H5, SI, RI, CI, and CoI are significant at all-time lags. (d) Group 3 
analysis shows C2, C5, C8, E1, E2, E3, E4, H1, H3, H4, HI, and EI are significant at all-time lags.
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Coefficients and p values for the first wave were obtained from all countries since all countries experienced 
the first wave of the pandemic. Coefficients and p values of second and third waves were calculated from only 
countries that experienced those waves. This analysis was performed to determine whether significant policies 
differed according to waves of the pandemic experienced among the countries. Comparison of coefficients and 
p values for the policies and indices for the first wave, second wave, and third wave at all-time lags showed that 
different indices and policies were significant depending on the wave as described below.

Analysis of the first wave. For the first wave analysis (Fig. 2a), C2 (Workplace closing), C4 (Restrictions on 
gatherings), C7 (Restrictions on internal movement), H4 (Emergency investment in healthcare), SI (Stringency 
index), RI (Restriction index) were significant regardless of lagging. C8 (International travel controls), E3 (Fis-
cal measures) became significant with lagging. All significant coefficients were positive. H1 (Public information 
campaigns), HI (Health index), CoI (Containment index) became non-significant after 14-days’ lag. The trend of 
increasing p values and decreasing coefficients was also observed with significant indices, closure, and contain-
ment policies (C policies). H4 (Emergency investment in healthcare) showed a decrease in p values while the 
coefficients stayed similar.

Analysis of the second wave. For the second wave (Fig. 2b), C1 (School closing), C5 (Closing public transport), 
C6 (Stay at home requirements), E3 (Fiscal measures), H1 (Public information campaigns), H3 (Contact trac-
ing), HI (Health index), CI (Closing index), CoI (Containment index) were significant at all-time lags while H3 
and HI had negative coefficients. H4 (Emergency investment in healthcare), C8 (International travel controls) 
became non-significant after 14-days’ lag and H1 (Public information campaigns) was significant in smaller lag-
ging days but became insignificant in larger lagging days. Moreover, H1 showed a large difference in coefficients 
with lagging, and it showed a larger positive coefficient in smaller days lagging.

Analysis of the third wave. For the third wave, C1 (School closing), C3 (Cancel public events), C5 (Closing 
public transport), C6 (Stay at home requirements), C8 (International travel controls), E1 (Income support), 
E3 (Fiscal measures), H3 (Contact tracing), HI (Health index), CI (Closing index), EI (Economic index) were 
significant with all coefficients near 0 while HI had a negative coefficient (see Fig. 3b for variation of coefficient 
values and -log(p values) for the four indices across wave-specific analysis).

For comparison purposes, significant policies regardless of lagging for subgroup analysis and wave-specific 
analysis are shown in the Venn diagrams below (Fig. 4). In subgroup analysis (Fig. 3a), Group 2 had more sig-
nificant policies followed by Group 3, then Group 1, while in wave-specific analysis, third wave analysis had 
more significant policies followed by second wave and then first wave analysis (Fig. 3b). Group 1 had countries 
that experienced or were experiencing the first wave of the pandemic as of 31st August 2020, while the first wave 
analysis showed that all closing and restriction policies (the C policies) were significant, which can be interpreted 
that at the start of the pandemic, many countries may have enforced these policies as the first response to the new 
disease. For Group 2 countries and second wave analysis, we observed the impact of contact tracing and closing 
policies on the number of confirmed cases that could not be observed during the first wave and with Group 1. 
Group 3 and third wave analysis brings economic policies in addition to the other policies being significant. 
In addition, H4 (Emergency investment in healthcare) was significant in all groups while the Stringency index 
which is the overall strictness of all policies was significant in all waves.

Discussion
A look at history tells that pandemics have consistently been part of human history, and governments have con-
tinually implemented a variety of policies in their response, such as quarantines during the Ebola  oubreak18, 19. 
While most of these actions have proven effective in past infections, they have always had high social and 

Figure 2.  Lagging effect in the wave-specific analysis. Variation of coefficients and p values of policies and 
indices in the first wave analysis is shown. The size and transparency of the points increase with a time lag (0, 
3, 7, 10, 14). (a) first wave analysis shows C2, C4, C7, H4, SI, and RI were significant at all-time lags while C8 
and E3 were with lagging only. (b) second wave analysis shows C1, C5, C6, E3, H1, H3, HI, CI and CoI are 
significant at all-time lags while C8 at 14 days’ lag.
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economic costs on the people. Our results provided evidence that the implemented government policies had an 
impact on reducing the number of COVID-19 daily confirmed cases. Also, for the Poisson regression models, 
result interpretation was centered around the coefficients of the predictor variable.

H3 (Contact tracing) and the Health index (HI) had consistent negative coefficients across all analyses. There-
fore, this can be interpreted that intense testing and accurate tracing of infected persons and contact tracing were 
paramount in the reduction of the number of COVID-19 daily confirmed cases. Intuitively, if the strictness of 
policies and daily confirmed cases had a negative correlation, it provides theoretical support for the reason why 
governments implemented stricter policies despite the  inconveniences19–22. However, most of the significant 
policies had positive coefficients. This may be because the daily confirmed cases and policies may be correlated 
in more complex ways or it shows the impact of other factors not considered here on the spread of COVID-
19, which needs to be addressed. For example, daily confirmed cases dramatically increase due to unexpected 

Figure 3.  Subgroup and wave-specific analysis results for the 4 indices. This figure shows the variation of 
coefficients values and p values of only indices. Each group (or wave) is represented by different shapes. Circle, 
triangle, and square represent Group 1, 2, and 3 countries (or first, second, and third wave), respectively. The 
colors represent the time lags. (a) Show the variation of coefficient values and p values of indices from the 
subgroup analysis. (b) Shows the variation of coefficient values and p values of indices from the wave-specific 
analysis.
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aspects regardless of the policies. When this happens, governments usually apply stricter policies to decrease 
the number of confirmed cases. However, the daily confirmed cases usually do not decrease immediately after 
the implementation of these policies. Instead, the increased rate of daily confirmed cases may decrease. This was 
shown by the general trend of decreasing coefficients with increased lagging observed with many of the policies. 
This shows that policies require some time before their influence on the spread of COVID-19 can be observed. 
Therefore, in the perspective of treating policy as the cause and confirmed cases as the effect, our result can be 
confusing, however, in the perspective of interpretation of the phenomenon itself, the results are meaningful.

A more general analysis is possible in Groups 1 and 2 than in Group 3 since there were only 5 countries in 
Group 3 and the results can explain trends of those countries but not for others. A general trend of decrease in 
coefficients with larger lagging was observed for many policies except with H1 (Public information campaign). 
H1 consistently showed better significance (smaller p values) in smaller lagging days. This indicates that H1 is 
the type of a policy whose effects are immediately observed after implementation and after 14 days, the effect 
turns out to be statistically insignificant. Considering the large positive coefficient compared to other policies, 
we can think that public campaigns began immediately as a response to the new pandemic or increase in daily 
confirmed cases. Thus, it shows a large positive correlation, however, after almost 2 weeks it is hard to find a 
direct effect of this policy alone. In addition, H4 (Emergency investment in healthcare)—buying of ventilators 
and other quarantine equipment, drugs, mask donation, setting up of local testing stations—was significant in 
all groups. This suggests that emergency investment in healthcare helped in the prevention of overwhelming of 
the healthcare system hence mitigation of the pandemic.

Lastly, wave-specific analysis was performed to observe if the effects of policies differed depending on which 
wave the policies are enforced in. In the first wave of the pandemic, most of the policies directly related to clo-
sure and containment (C policies) were significant with a trend of decreasing coefficient values with lagging. 
During the first wave of the pandemic, since much was not yet known about the epidemiological characteristics 
of COVID-19. Thus, most countries may have focused on closure and containment policies, therefore their 
effects are well observed. For the second wave, various closing and containment policies became significant, in 
addition to Health index and one economic policy E3 (Fiscal measures). Even though it is hard to interpret how 
the economic policies affect the daily confirmed cases, we observed that many countries became aware of the 
importance of economic policies during the second wave. Especially, E3 (which is announced economic stimu-
lus spending and included any spending or tax cuts not included in E4, H4, or H5) had negative coefficients. 
This can be interpreted that monetary help from the government for businesses or living expenses may have 
motivated people to comply with stay-at-home orders, lockdowns, or working from home which led to fewer 
confirmed cases. H3 and this time Health index (which shows overall strictness of health-related policies) had 
negative coefficients. This shows the effectiveness of contact tracing and other health policies in decreasing the 
daily number of confirmed cases. Moreover, the Stringency index (which is a measure of the overall strictness of 
the policies) was significant in all waves. Even though significant policies differed across waves, the Stringency 
index always showed their consistent effect across all waves.

As of when this paper was written, more countries were experiencing the third wave of the pandemic, and 
some were starting their fourth wave. Also, newer policies have been included in the OxCGRT Policy Dataset 
like H7 (Vaccination Policy), H6 (Facial Coverings) and people’s attitudes towards these policies in some of 
the countries have changed drastically. In the future, we hope to continue this analysis with consideration to 
newer waves of the pandemic and policies. Moreover, some data with negative cases have been treated as zeros 
(see Methods) for the analysis. Alternatively, we can treat the negative counts (or values cases) by the following 
three methods; (1) replace the negative values with the mean the day before and the day after, (2) distribute the 
negative value equally to the number of cases during 1–2 weeks before, or (3) apply the Savitzky—Golay filter 
to transform the negative values to the positive  values16. However, they all have shortcomings and require more 
investigation for future studies.

In conclusion, with the current results, we observe a few direct negative relationships between the daily 
confirmed cases and some policies (or indices), making it difficult to present a straightforward overall inter-
pretation of the results of this analysis. However, the results still have great meaning; the relationships between 

Figure 4.  Venn diagram of significant policies at all time lags. (a) Significant policies and indices from 
subgroup analysis and (b) show significant policies and indices from the wave-specific analysis at all-time lags.
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implemented policies and confirmed cases with lagging and groups or waves of this new pandemic were explored. 
In addition, the analysis was done till August 31st, which is the end of the summer and by this time enough 
second-wave countries existed. In further research, the analysis date can be extended and compared to how the 
confirmed cases’ pattern has changed and fit the respective GEE approach for analysis. This may give more insight 
into the significance of policies at different waves of the pandemic. Furthermore, the pandemic is still ongoing, 
and many experts are expecting the pandemic will continue even after the  vaccine23, 24. Thus, this research includ-
ing defining breakpoints and fitting GEE models needs update until the declaration of the end of the pandemic. 
Nevertheless, it still can serve as the first trial to investigate the effect of policies in the global perspective rather 
than only encountering a small group of or selected countries.

Methods
COVID‑19 data. The COVID-19 data of daily confirmed cases and deaths can be downloaded from the 
European Centre for Disease Prevention and Control (ECDC)  website3, 25, 26. Negative confirmed cases were cor-
rected to 0 regarding it as an abnormal count. The data of 90 countries from December 31, 2019, to August 31, 
2020, with a total of 26,240,426 confirmed cases and 866,354 deaths worldwide, was used in the analysis.

Data smoothing is used to remove noise from a data set, allowing important patterns to stand out. Thereafter, 
daily confirmed case data was smoothed by simple moving average; 1) to reduce the effect of outliers and 2) 
remove the weekly periodicity observed in the data. Several outliers showed greater or smaller abnormalities, 
which made it difficult to fit the statistical model. In addition, weekly periodicity was observed in the daily con-
firmed case data for many countries. Although we tried to present numerically through autocorrelation function, 
the trend also had randomness, so there was a limit to the analysis. Therefore, considering 7 days, the window 
size was set to 7 and simple moving average (SMA) was used.

OxCGRT policy data. The ordinal and numeric dataset of policies is from the Blavatnik School of Govern-
ment and the University of Oxford called the Oxford COVID-19 Government Response Tracker (OxCGRT) 
 dataset12. OxCGRT systematically collects information on several different common policy responses that 
governments have taken to respond to the pandemic on 17 indicators (Text type policy excluded from this 
analysis), from more than 160 countries. Eight of the policy indicators (C1-C8) record information on contain-
ment and closure policies, such as school closures and restrictions in movement. Four of the indicators (E1-E4) 
record economic policies, such as income support to citizens or provision of foreign aid. Five of the indicators 
(H1-H5) record health systems policies such as the COVID-19 testing regime or emergency investments into 
healthcare. The data from the 17 policies are aggregated into a set of four common indices, reporting a number 
between 1 and 100 to reflect the level of government action on the topics in question; (1) a Containment index 
(which combines ‘lockdown’ restrictions and closures), (2) Health index (with measures such as testing policy 
and contact tracing, short term investment in healthcare, as well investments in vaccines), (3) an Economic 
support index (which records measures such as income support and debt relief), (4) as well as the original 
Stringency index provided in OxCGRT (which records the strictness of ‘lockdown style’ policies that primarily 
restrict people’s behavior)27, 28. The Containment index includes the eight C policies (C1–C8) associated with 
the closure and containment, while the Stringency index includes the eight policies plus H1(public information 
campaign). Although it is quite redundant, the Stringency index was included in the analysis since it was a rep-
resentative index already defined by the OxCGRT.

For numerical types of data, log transformation with base 10 was done. To adjust the differences between 
policies, ordinal data was divided by a possible maximum value of each data. Then it was multiplied by 100 thus 
having data range from 0 to 100. Policies that apply only to a subunit of the given jurisdiction (for example, a 
single state of a country being coded) are flagged as “targeted”, while policies that apply to the whole jurisdic-
tion are flagged as “general”29. For example, the ordinal scale of C1 (School closing) presents information about 
the strictness of the policy: 0 for no measures, 1 for recommend closing, and 2 for require closing. Additional 
information, the flag, indicates whether the policy is implemented either “targeted” or “general”. If school closure 
is recommended for some regions of the country, the ordinal scale and the flag will be 1 and 0 respectively. If 
school closure is required for all schools in the country, the ordinal scale and the flag will be 2 and 1 respectively. 
Similar descriptions can be found for other policies except for E1. In the case of E1, the flag is determined by 
whether income support is only done for formal sector workers or both formal and informal sector workers.

Therefore, if the policy had a flag, it was treated with an additional level of 1 for the policy while the maximum 
value was also increased by 1. To rescale all policies into values ranging from 0 to 100, the possible maximum 
value of each policy should be calculated beforehand. Thus, we set the maximum value as (maximum ordinal 
scale) + 1 to consider the flag for policies with flag information. If a policy has a flag, it was treated with an addi-
tional level of 1 for the strictness of the policy. For example, E1 has the ordinal scale of 0, 1, 2 but since it has a 
flag, its maximum value was calculated as 3.

where the max level is the maximum ordinal value or numerical value for a given policy, policy level is the ordinal 
value or numerical value being implemented plus flag (0 or 1).Since ordinal scales or numeric values differ among 

(1)Index =
policy level

max level
(without flag)

(2)Index =
policy level + flag

max level + 1
(with flag)



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20495  | https://doi.org/10.1038/s41598-021-99368-9

www.nature.com/scientificreports/

policies, the index value is calculated before rescaling. ‘Max level’ in the equation corresponds to the maximum 
ordinal value or numerical value that a policy can have. 1 is added for policies with flags and 0 vice versa.

In addition to the policies, indices which are the arithmetic mean of the relevant policies are calculated; these 
are defined as the composite measure of the policies. Four indices are Health index (HI; H1, H2, H3, H4, H5), 
Economic index (EI; E1, E2, E3, E4), Containment Index (CoI; C1-C8), and Stringency index (SI; C1-C8, H1) 
provided by OxCGRT which shows an overall measure of the strictness of government response. HI, EI and CoI 
were defined as the arithmetic mean of policies with the same alphabet code provided by OxCGRT.

Poisson regression model for the subgroup analysis of countries. To determine whether the 
adopted government policies have been effective in mitigating and suppressing COVID-19 in different countries 
across the globe, we implemented a Poisson regression  model27, 28 using the generalized estimation equation 
(GEE)  approach13, 14. The Poisson model successfully predicted the COVID-19 daily confirmed cases which 
motivated us to employ it in our  analysis6. The GEE approach has been widely used to analyze longitudinal data 
and repeated measurements. The GEE approach allows parameters’ estimation from a generalized linear model 
(GLM) with possible unknown correlations between the outcomes. Parameter estimates from the GEE approach 
are consistent even though the covariance structure is not specified, under mild regularity conditions. The GEE 
approach focuses on estimating the average response over the population ("population-averaged" effects) rather 
than the regression parameters that would enable the prediction of the effect of changing one or more covariates 
on a given  individual30. Individual COVID-19 daily confirmed cases for each country showed diverse  wave15 
patterns in their daily confirmed cases. Therefore, only 90 countries were divided into three groups (Supplemen-
tary Table 2) by the number of waves of the pandemic experienced in those countries, and the Poisson model is 
fitted for each group, respectively. Group 1 (31 countries): countries with only one wave (Supplementary Fig. 1), 
Group 2 (54 countries): countries with first and second waves of the pandemic (Supplementary Fig. 2), and 
Group 3 (5 countries): countries with 3 waves (Supplementary Fig. 3) and analyzed using Eq. (3). Lagging ( �t) 
was also introduced (0, 3, 7, 10, and 14 days) since intuitively, the policies will bring significant changes a few 
days after its implementation. In other words, daily confirmed cases of the day (t) are determined by policies of 
the day (t-�t ). For the ith country, the Poisson regression model is defined as follows:

where µi = E[Yi] , Yi(t) are the daily COVID-19 confirmed cases, t is the number of days since the first case, 
βo,β1,β2andβ3 are regression coefficients,Zi(t) s are the different government implemented policies from the 
OxCGRT (Supplementary Table 1) and (t = ∆t, ∆t + 1, …) for each policy or index variable.

Segmentation process. Segmentation is a method of finding local maxima (peaks) and local minima 
(breakpoints)16, where a peak is the timestamp at which daily new confirmed case is highest in a segment and 
breakpoint is the timestamp that splits the consecutive two segments in a smoothed time series dataset using the 
Nadaraya-Watson kernel regression Estimator (NWE) with Gaussian  kernel31–33.

Let Yt be the t-th daily new confirmed cases from data, f̂ (t) be the estimated t-th daily new confirmed cases 
using the above NWE since December 31, 2019. Peak detection utilizes the first and second derivative test to 
find local maxima on a convex function. f̂ (t) is concave down when t  is around the peak due to the nature of 
epidemic dynamics. Considering daily new confirmed cases being discrete time series data, we find the location 
where the first difference is zero and the second difference is negative (Since f (t) is not differentiable, we used 
difference operator instead of derivative):

where �f̂ (t) = f̂ (t + 1)− f̂ (t) and �2 f̂ (t) = �f̂ (t + 1)−�f̂ (t).
And for discontinuity and small variances of f̂ (t) , we used the following conditions:

where c ∈ (0, 1) is sensitivity level and T is the set of time indices from December 31, 2019, to August 31, 2020. 
Three additional conditions ((a) Exclusion of small peaks, (b) Resolution criteria, and (c) Exclusion of peaks 
which are vibrations on increasing trend) are used in peak detection to enhance robustness. After all the peaks 
are found, breakpoints can be defined. Supplementary Fig. 4 visualizes the segmentation process applied to USA’s 
COVID-19 daily new confirmed cases, where detailed descriptions on f̂ (t) , �f̂ (t), and�2f̂ (t) are given. Detailed 
description on the segmentation algorithm can be found  here34.

Poisson regression model for the wave‑specific analysis. As related in other  works16, 17, breakpoints 
or segments were defined if one of the following conditions was satisfied. 1) the day with the minimum con-
firmed case between two peaks and 2) the with the minimum confirmed case between the last peak and last 
day when the number of COVID-19 confirmed cases increases continuously. The initial point of analysis was 
set to the first day with more than or equal to 50 daily confirmed cases since days with a small daily number of 
confirmed cases make the process of smoothing and model fitting difficult. The first wave is considered from 
the initial point of analysis to the first breakpoint, the day with the minimum confirmed case between first and 
the second wave (for countries with one wave only, the first wave is defined until August 31, 2020), while the 
second wave is considered from first breakpoint to the second breakpoint (the day with the minimum confirmed 
case between the second wave and the start of the third wave) and the third wave is from second breakpoint to 

(3)log(µi(t)) = β0 + β1t + β2logt + β3Zi(t −�t),

(4)�f̂ (t) = 0,�2 f̂ (t) < 0

(5)�f̂ (t)�f̂ (t + 1) ≤ 0,�2 f̂ (t) < −c · argmaxt∈T |�
2 f̂ (t)|
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the with the minimum confirmed case between last peak and last day. This wave information was analyzed via 
dummy variables using the principles presented in segmented or piecewise regression  models35, 36 using the GEE 
approach, as shown below.

The Poisson model (4) contains interaction terms in days, log days, and the policies and thus has an underly-
ing assumption that each wave has different coefficients for days, log days, and policies. Indicators  I1,  I2,  I3 cor-
respond to the first, second, and third waves respectively. This model allows waves to have different patterns and 
effects of policies. Variables t and log t were considered in the above models due to the successful implementation 
of the segmented Poisson model in estimating the daily confirmed cases in COVID-19 including the turning 
 points6. The policies are considered significant if the p values are smaller than 0.05. i.e. having an impact on the 
daily confirmed cases of the countries used in this analysis. From the 182 countries in the OxCGRT data, 90 
countries were left after excluding countries with missing values in the OxCGRT dataset, non-clear breakpoint 
information, and those whose periodicity patterns could not be smoothed by the above mentioned SMA method.

Since the analysis was aiming for general trends and the impact of these policies on daily confirmed cases, 
the GEE approach was fitted using only the ‘independence’ correlation structure. It is well known that other 
correlation structures such as ‘exchangeable’ and ‘AR-1’ provide approximately similar coefficients due to the 
robustness of the GEE  approach37. However, coefficients were not fitted for these structures due to the large 
dimension of the dataset brought about by the number of many countries considered in this analysis. All analyses 
were implemented in R (version 3.6.3).

 Data availability
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en/ publi catio ns- data/ downl oad- todays- data- geogr aphic- distr ibuti on- covid- 19- cases- world wide and https:// 
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