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Soluble PD‑L1 is a predictive 
and prognostic biomarker 
in advanced cancer patients 
who receive immune checkpoint 
blockade treatment
So Yeon Oh1, Soyeon Kim2, Bhumsuk Keam3,4, Tae Min Kim3,4, Dong‑Wan Kim2,4 & 
Dae Seog Heo3,4*

Circulating soluble programmed death‑1 ligand (sPD‑L1) is measurable in the serum of cancer 
patients. This study aimed to investigate the significance of sPD‑L1 in cancer patients receiving 
immune checkpoint inhibitor therapy. Blood samples were obtained before and after immune 
checkpoint inhibitor therapy (January 2015 to January 2019). The study cohort consisted of 128 
patients who were diagnosed with non‑small cell lung cancer (n = 50), melanoma (n = 31), small cell 
lung cancer (n = 14), urothelial carcinoma (n = 13), and other cancers (n = 20). Patients with a high level 
(> 11.0 pg/μL) of sPD‑L1 were more likely to exhibit progressive disease compared with those with a 
low level (41.8% versus 20.7%, p = 0.013). High sPD‑L1 was also associated with worse prognosis; the 
median PFS was 2.9 (95% confidence interval [CI] 2.1–3.7) months versus 6.3 (95% CI 3.0–9.6) months 
(p = 0.023), and the median OS was 7.4 (95% CI 6.3–8.5) months versus 13.3 (95% CI 9.2–17.4) months 
(p = 0.005). In the multivariate analyses, high sPD‑L1 was an independent prognostic factor for both 
decreased PFS (HR 1.928, p = 0.038) and OS (HR 1.788, p = 0.004). sPD‑L1 levels did not correlate 
with tissue PD‑L1 expression. However, sPD‑L1 levels were positively correlated with neutrophil 
to lymphocyte ratios and negatively correlated with both the proportion and the total number of 
lymphocytes. We found that high pretreatment sPD‑L1 levels were associated with progressive 
disease and were an independent prognostic factor predicting lower PFS and OS in these patients.

Since the first immune checkpoint inhibitor (ICI), ipilimumab, was approved in 2011, the treatment paradigm 
for solid tumors has changed greatly. ICIs play important roles in the treatment of various types of solid tumors. 
However, in clinical practice, 16–55% of patients receiving ICI treatment suffer from severe  toxicities1. Therefore, 
it is important to identify predictors of this negative response. Some biomarkers that predict treatment response 
have already been identified. For example, programmed death ligand 1 (PD-L1)2 expression in tumor tissue 
is predictive of a higher response rate to programmed death 1 (PD-1) or PD-L1 inhibitor therapy in patients 
with non-small cell lung cancer (NSCLC)3–5. It is also a marker of poor prognosis in some solid  tumors6–8. 
However, inter-assay discordance and tumor heterogeneity hinder the standardization of PD-L1 testing and 
 interpretation9,10. Researchers have tried to standardize the methods used to measure PD-L1 expression, but no 
clinically validated assays are currently  available11. Microsatellite instability or deficient mismatch repair (dMMR) 
is one of the biomarkers studied as a predictor of ICI  response2. dMMR is associated with favorable clinical 
outcomes in patients with colorectal  cancer12,13. PD-1 blockade results in a robust response in some subjects 
with dMMR-positive solid  tumors14. Tumor mutational burden, tumor infiltrating lymphocytes, and genetic 
signatures are also predictive factors. However, these markers lack standardization and exhibit high variability 
across tumor types and study  settings2.
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Lack of sufficient tissue for examination is another common and important factor limiting biomarker utility. 
A shortage of tumor tissue is especially problematic in patients with NSCLC because diagnostic biopsies often 
yield only tiny pieces of tissue. However, approximately five molecular genetic tests are required to select the 
appropriate therapeutic agents for an individual NSCLC  patient15,16. The use of small biopsies can also result in 
misclassification of up to 35% of PD-L1 assessments in patients with advanced  NSCLCs17. Therefore, circulat-
ing blood biomarkers are being investigated to predict the response to PD-1/PD-L1 blockade. These potential 
markers include, among others, circulating immune cells and circulating PD-L118–23. In previous studies,  CD8+ 
T cells showed a proliferative burst or functional reinvigoration after PD-1  blockade24,25. Another study showed 
that functionally active  CD8+ T cells or NK cells are associated with good prognosis after PD-1  blockade26.

PD-L1 is present in a membrane-bound form in tumor cells and immune cells. However, it may also be 
secreted as a truncated form called soluble PD-L1 (sPD-L1) which may mediate immunosuppression or resistance 
to PD-L1 blockade  therapy27–29. Compared with healthy subjects, circulating sPD-L1 concentrations are elevated 
in the plasma of patients with cancer. In patients with lymphoma, these concentrations return to normal levels 
after a complete  response30. High concentrations of sPD-L1 are associated with poor prognosis in patients with 
hepatocellular carcinoma, gastric cancer, and  NSCLC31–34. Here, we examined circulating sPD-L1 and its role as 
a prognostic and predictive marker in patients with cancer who received ICI treatment. We analyzed pretreat-
ment and posttreatment levels of circulating sPD-L1 and investigated the relationship between these levels and 
clinical outcomes in patients with advanced solid tumors.

Results
Patient and sample characteristics. A total of 128 patients with stage IV solid tumors were included 
in this study. Samples were obtained between January 2015 and January 2019. The characteristics of the study 
population are presented in Table 1. The sample interval range was 14–49 days in 66 of the 67 patients with 
available pre- and posttreatment samples; in the remaining patient, the sample interval was 576 days (median, 
21 days; range, 14–576 days; Supplementary Table 1). The objective response rate (ORR) was 18.8% (among 112 
evaluable patients). The median progression-free survival (PFS) and overall survival (OS) were 4.2 months (95% 
CI 2.3–6.1 months) and 10.8 months (95% CI 7.9–13.8 months), respectively.

Pretreatment sPD‑L1 level and response. The mean pretreatment sPD-L1 level was 13.5 ± 12.1 pg/
μL and the median level was 11.0 pg/μL (range, 3.2–122.1 pg/μL). The mean sPD-L1 value in the patients with 
cancer was not significantly different from the mean level in healthy volunteers (13.5  pg/μL versus 10.6  pg/
μL, respectively; p = 0.312, t test). However, the mean sPD-L1 concentration was numerically higher in cancer 
patients and we have to consider the possibility that there was no statistical significance because of the small 
number of healthy volunteers (n = 20). We used a receiver operating characteristic (ROC) curve to determine the 
optimal sPD-L1 cutoff level for the prediction of progressive disease after ICI treatment (Supplementary Fig. 2). 
We found that a cutoff value of 11.0 pg/μL distinguished best between patients who showed progressive disease 
after ICI treatment versus those who did not have progressive disease (sensitivity, 65.7%; specificity, 60.3%). The 
area under the curve value was 0.668 (95% confidence interval (CI) 0.568–0.769; p = 0.004). This cutoff value was 
used for subsequent statistical analyses. We used χ2 tests to compare treatment response in patients with varying 
sPD-L1 levels (low versus high). The ORRs were not significantly different (23.4% versus 22.7% in the low and 
high groups, respectively; p = 0.573). However, the disease control rates were 79% versus 58% in patients with 
low and high sPD-L1 levels, respectively (p = 0.013) (Table 2). The relationship between sPD-L1 levels and treat-
ment response is illustrated with a bar chart in Supplementary Fig. 3.

Pretreatment sPD‑L1 levels and prognosis. PFS varied between patients with low versus high levels of 
sPD-L1. The median PFS was 6.3 months (95% CI 3.0–9.6 months) versus 2.9 months (95% CI 2.1–3.7 months); 
this difference was statistically significant (p = 0.023, log-rank test; Fig. 1a). OS was also significantly different 
between the two groups. The median OS was 13.3 months (95% CI 9.2–17.4 months) versus 7.4 months (95% CI 
6.3–8.5 months) (p = 0.005, log-rank test; Fig. 1b) in the low and high sPD-L1 groups, respectively. Univariate 
and multivariate analyses were performed to investigate potential correlations between sPD-L1 levels, clinical 
factors, and PFS and OS (Table 3). The results of the univariate analysis indicated that performance status, tis-
sue PD-L1 expression, neutrophil to lymphocyte ratio (NLR), serum albumin levels, and sPD-L1 levels were 
significant predictors of PFS. Performance status, NLR, platelet count, serum albumin levels, total serum protein 
levels, and sPD-L1 levels were significant predictors of OS. The PFS and OS of patients who received radiation 
prior to ICI therapy were not significantly different from those who did not. Factors with p-values < 0.05 were 
included in the multivariate analysis. The multivariate analysis found that tissue PD-L1 expression and sPD-L1 
levels were significant predictors of PFS. NLR, total serum protein levels, and sPD-L1 levels were significant 
predictors of OS (Table 3).

Changes in sPD‑L1 levels after treatment. We analyzed the changes in sPD-L1 concentrations in 67 
patients with available pre- and posttreatment samples. sPD-L1 levels generally increased with ICI administra-
tion during the 2- to 7-week period following the start of treatment. However, the changes in sPD-L1 concen-
tration (ΔsPD-L1) varied (Fig. 2a), and the patterns of change were somewhat different for each cancer type 
(Figs. 2b, 3e). A sharp increase was apparent in some patients with NSCLC or genitourinary cancer (Fig. 2b,e). 
However, with one exception, the amplitude of change was negligible in SCLC and melanoma patients (Fig. 2c,d). 
For comparison, we analyzed ΔsPD-L1 between pre- and posttreatment samples from NSCLC patients treated 
with tyrosine kinase inhibitors. The results indicated that the pattern of change in NSCLC patients treated with 
tyrosine kinase inhibitors was very similar to that of the SCLC patients (Fig. 2f). Interestingly, the pattern of 
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Table 1.  Patient characteristics. ECOG PS eastern cooperative oncology group performance status, NSCLC 
non-small cell lung cancer, SCLC small cell lung cancer, UCC  urothelial carcinoma, RCC  renal cell carcinoma, 
HNSCC head and neck squamous cell carcinoma, ICI immune checkpoint inhibitor. *Encompasses all types of 
radiotherapy, including stereotactic radiosurgery. † Denotes patients who received ICI as part of a clinical trial.

N (%) or median(range)

Total 128 (100)

Age 62 (21–82) years

Sex

Male 89 (69.5)

Female 39 (30.5)

ECOG PS

0 27 (21.1)

1 98 (76.6)

2 1 (0.8)

Unknown 2 (1.6)

Diagnosis

NSCLC 50 (39.1)

Melanoma 31 (24.2)

SCLC 14 (10.9)

UCC 13 (10.2)

RCC 6 (4.7)

HNSCC 5 (3.9)

Salivary gland cancer 4 (5.8)

Others 5 (3.9)

History of radiotherapy*

Never irradiated 50 (39.1)

Received radiotherapy 78 (60.9)

 Within 4 weeks to ICI treatment 14 (17.9)

 Earlier than 4 weeks 43 (55.1)

 After end of ICI treatment 21 (26.9)

Type of ICI treated†

Monotherapy

 Nivolumab 41 (32.0)

 Pembrolizumab 32 (25.0)

 Durvalumab 15 (11.7)

 Ipilimumab 5 (3.9)

 Atezolizumab 4 (3.1)

Combination therapy

 Pembrolizumab/other 13 (10.2)

 Atezolizumab/other 13 (10.2)

 Nivolumab and ipilimumab 2 (1.6)

Others 3 (2.3)

Table 2.  Response according to pretreatment sPD-L1 levels. Response was evaluated in 113 patients. The 
results are presented as total numbers (percentages). sPD-L1 soluble programmed death ligand-1, ICI immune 
checkpoint inhibitor, CR complete response, PR partial response, SD stable disease, PD progressive disease. 
*Significance at p < 0.05 (χ2 test).

ICI response

Total p value*CR, PR, SD PD

Low sPD-L1 46 (79) 12 (21) 58 (100)

0.013High sPD-L1 32 (58) 23 (42) 55 (100)

Total 78 35 113
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change was quite different among the ‘immunogenic’ tumor types, such as melanoma, NSCLC, and genitouri-
nary tumors. Possible explanations for these different patterns include different sources of sPD-L1 or carcinoma-
specific biological differences. These patterns might also have been affected by differences in sampling intervals; 
the median sampling interval for NSCLC patients was significantly shorter than the intervals for melanoma or 
SCLC patients (Supplementary Table 1).

Relationship between changes in sPD‑L1 levels and response or prognosis. The analyses to 
examine relationships between ΔsPD-L1 and treatment response did not reveal any apparent patterns (Sup-
plementary Fig. 4 and Supplementary Table 2). There was no significant difference in pan-cancer PFS according 
to ΔsPD-L1. However, NSCLC patients with a > 100% increase in sPD-L1 levels after ICI treatment had longer 
PFS than patients without this increase (Fig. 3a); the median PFS was 6.3 months (95% CI 0.0–19.4 months) 
versus 1.2 months (95% CI 0.6–1.8 months), respectively (p = 0.029, log-rank test). The opposite was observed 
in patients with melanoma. The median PFS was 0.9 months (95% CI not available) versus 5.7 months (95% CI 
3.8–7.6 months) in patients with ΔsPD-L1 of 100% or more versus those with ΔsPD-L1 less than 100% after 
ICI treatment (p < 0.001, log-rank test; Fig. 3b). The OS response was in the same direction as PFS but was not 
statistically significant in patients with melanoma. In patients with NSCLC, the median OS after ICI treatment 
was 14.3 months (95% CI 0.0–30.8 months) in patients with ΔsPD-L1 ≥ 100% versus 5.7 months (95% CI 0.0–
11.4 months) in those with ΔsPD-L1 < 100% (p = 0.022, log-rank test; Fig. 3c). The median OS was 3.9 months 
(95% CI 2.1–5.7 months) versus 11.4 months (95% CI 10.6–12.2 months) (p = 0.827, log-rank test) in patients 
with melanoma (Fig. 3d).

Correlation between sPD‑L1 levels and tissue PD‑L1 expression or circulating immune 
cells. We next examined the correlation between tissue PD-L1 expression and sPD-L1 levels. A Spearman’s 
rho value of 0.069 (p = 0.575) suggested that these two factors were not correlated. The mean sPD-L1 levels in 
the negative/low PD-L1 expression group were also not significantly different from those in the moderate/high 
expression group (12.0 ± 1.0 pg/μL versus 12.9 ± 1.2 pg/μL, respectively; p = 0.649, t test). We also examined the 
correlation between sPD-L1 levels and NLR or circulating immune cell numbers (Table 4 and Fig. 4). NLR, white 
blood cell count, and absolute neutrophil count (ANC) were positively correlated with sPD-L1 levels (Fig. 4a–c). 
The proportion and total number of lymphocytes were negatively correlated with sPD-L1 levels (Fig. 4e,f).

Discussion
The results of this study suggest that pretreatment serum sPD-L1 concentrations can be used to predict treat-
ment response, PFS, and OS in patients receiving ICI treatment for advanced solid tumors. We found that a high 
baseline sPD-L1 level predicted a low disease control rate. The pretreatment sPD-L1 level was an independent 
prognostic factor predicting PFS and OS, even after controlling for known prognostic variables. Many studies 
of sPD-L1 have been published in recent years. Most studies have found that high pretreatment sPD-L1 levels 
are associated with decreased survival in patients with advanced solid tumors (e.g., lung cancer, gastric cancer, 
renal cell carcinoma, melanoma, hepatocellular carcinoma, pancreatic cancer, and soft tissue sarcoma)31,33,35–43. 
High pretreatment sPD-L1 levels are also associated with a poor response to ICI treatment in patients with 
melanoma or lung  cancer36,44. Therefore, it has been generally accepted that high pretreatment sPD-L1 levels are 
associated with a poor treatment response and a worse prognosis. The results of this study are consistent with 

Figure 1.  Kaplan–Meier curves for progression-free survival (a) and overall survival (b) stratified by soluble 
programmed death ligand 1 level. PFS progression-free survival, OS overall survival.
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those of previous studies in that pretreatment sPD-L1 levels had predictive and prognostic value for patients 
with advanced cancer.

We also investigated whether changes in sPD-L1 levels after ICI treatment are associated with response or 
prognosis. We were not able to acquire the sample sizes required to identify correlations between the extent of 
sPD-L1 changes and tumor response or PFS. Because each tumor type had very different patterns of change in 
sPD-L1 levels, the effects of changes in sPD-L1 on PFS were likely diluted. This possibility was supported by our 
observation of the opposite pattern when each cancer type (melanoma and NSCLC) was analyzed separately. Few 
studies have examined the relationships between sPD-L1 dynamics and prognosis in patients receiving radiation 
or chemoradiation, and the results of those limited studies have been inconsistent. Increased sPD-L1 levels after 
chemoradiation are associated with a poor prognosis in patients with rectal  cancer45. In contrast, preliminary 
results indicate that in patients with biliary tract cancer, increased sPD-L1 levels after chemotherapy are associ-
ated with longer  PFS46. In patients with advanced pancreatic cancer receiving cytotoxic chemotherapy, sPD-L1 
dynamics correlate with the disease  course39. Several studies have been performed to investigate the dynamics of 
sPD-L1 changes over time in patients receiving ICI treatment. One study of patients receiving ipilimumab-based 

Table 3.  Univariate and multivariate analysis of PFS and OS* PFS progression-free survival, OS overall 
survival, CI confidence interval, ECOG PS eastern cooperative oncology group performance status, ICI 
immune checkpoint inhibitor, PD-L1 programmed death ligand-1, IHC immunohistochemical stain, NLR 
neutrophil to lymphocyte ratio, sPD-L1 soluble programmed death ligand-1. *Significant when p value is less 
than 0.05. Variables with p < 0.05 were examined in the multivariate analyses.

N = 128

PFS OS

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Median (95% CI) 
(months) p value Exp(B) (95% CI) p value

Median (95% CI) 
(months) p value Exp(B) (95% CI) p value

Age (years)

< 65 78 3.4 (2.4–4.4)
0.191

8.2 (5.4–11.0)
0.387

≥ 65 50 7.3 (5.8–8.7) 14.9 (10.5–19.2)

Sex

M 89 3.7 (2.4–5.0)
0.163

9.1 (6.0–12.3)
0.122

F 39 6.3 (2.4–10.2) 12.1 (9.1–15.1)

ECOG PS

0 28 7.7 (0.8–14.6)
0.012 1.223 (0.560–2.671) 0.614

12.7 (0–27.3)
0.036 1.402 (0.852–2.308) 0.184

1 100 4.0 (3.1–4.8) 10.6 (7.2–14.0)

Radiation therapy

Prior to ICI 57 3.7 (2.2–5.2)
0.056

8.1 (3.4–12.9)
0.058After ICI or never irradi-

ated 71 6.2 (3.3–9.0) 12.3 (8.1–15.9)

Tissue PD-L1 IHC

Negative, weak 43 3.0 (2.4–3.7)

0.021 2.232 (1.119–4.453) 0.023

8.2 (3.4–13.0)

0.841Moderate/strong 25 6.9 (5.8–8.1) 12.6 (6.0–19.1)

Unknown 60 – –

NLR

< 2.8 62 5.7 (3.8–7.6)
0.042 1.055 (0.531–2.099) 0.878

14.3 (9.5–19.2)
< 0.001 1.913 (1.242–2.946) 0.003

≥ 2.8 66 3.3 (1.8–4.7) 7.2 (4.2–10.1)

Platelet count

< 250k 67 6.3 (3.4–9.2)
0.065

12.4 (10.4–14.4)
0.016 1.474 (0.990–2.195) 0.056

≥ 250k 61 3.3 (2.0–4.6) 7.7 (6.7–8.7)

Serum albumin (g/dL)

< 4.0 70 2.8 (2.1–3.5)
0.047 1.788 (0.908–3.521) 0.093

6.8 (4.3–9.3)
0.006 1.083 (0.690–1.700) 0.729

≥ 4.0 58 6.9 (5.5–8.4) 14.3 (9.9–18.8)

Serum total protein (g/dL)

< 7.2 65 3.4 (2.5–4.3)
0.078

8.0 (6.5–9.4)
0.009 1.766 (1.148–2.719) 0.010

≥ 7.2 63 6.2 (2.7–9.7) 12.7 (9.6–15.8)

Glucose (mg/dL)

< 126 85 3.7 (2.5–4.8)

0.124

11.0 (7.2–14.8)

0.808≥ 126 41 6.5 (3.3–9.7) 12.3 (8.1–16.5)

Unknown 2 – –

sPD-L1 level (pg/μL)

< 11 64 6.3 (3.0–9.6)
0.023 1.928 (1.038–3.581) 0.038

13.3 (9.2–17.4)
0.005 1.788 (1.207–2.650) 0.004

≥ 11 64 2.9 (2.1–3.7) 7.4 (6.3–8.5)
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treatment for advanced melanoma found that many who had a ≥ 1.5-fold increase in sPD-L1 within 4.5 months 
after treatment experienced progressive  disease44. A study analyzed PD-L1 mRNA expression in plasma-derived 
exosomes in melanoma and NSCLC patients at baseline and 2 months after PD-1 inhibitor treatment. They 
showed that exosomal mRNA copies of PD-L1 were correlated with tumor response in melanoma (n = 18) and 
NSCLC (n = 8)  patients47. Another study of 21 patients with lung, gastric, or bladder cancer who underwent 
anti-PD-1 therapy found that a reduction in plasma sPD-L1 levels is significantly correlated with tumor size 
 reduction48. The significance of sPD-L1 in our NSCLC population was inconsistent with other studies. It seems 
too early to draw conclusions, as the sample size of all previously published studies was very small.

We also examined the association between PD-L1 expression levels in tumor tissue and circulating sPD-L1 
levels. PD-L1 expression in tumor tissue did not correlate with sPD-L1 levels. This was an unexpected finding, 
as we expected the levels of sPD-L1 to reflect the expression of tissue PD-L1. Therefore, we explored circulating 
immune cells as a possible source of sPD-L1. sPD-L1 levels were positively correlated with NLR and negatively 
correlated with total lymphocyte numbers. The results of previous studies suggest that sPD-L1 originates mainly 
from a membrane-bound form of PD-L1 present in cancer cells or immune  cells37,43,49. The results of our study 
suggest that sPD-L1 is derived from cells identified as neutrophils in routine complete blood count tests. Addi-
tionally, in a previous study that analyzed peripheral immune cells from 28 cancer patients, 5 to 35% of periph-
eral blood myeloid-derived suppressor cells (MDSCs) expressed PD-L1. The expression of PD-L1 is highest in 
granulocytic MDSCs (35.8%) and lower in T cells (< 1%), most NK cells (< 1%), and B cells (11%)50. Therefore, 
we can carefully assume that sPD-L1 originates from granulocytic MDSCs. Considering the limited information 
currently available, however, the main source of sPD-L1 should be explained in future studies.

This study had some limitations. The study population was heterogeneous with respect to cancer type, blood 
sampling times, ICI administration timing, and post-ICI treatment regimens. This heterogeneity might have 
reduced the power to detect the effects of various characteristics for individual types of cancer. There were also 
no reference levels for sPD-L1, and the results between assay kits seemed to be quite different. There are also no 
pre-established cutoff levels that predict response or prognosis. To overcome this problem, some researchers are 
investigating reproducible, standardizable methods that can be used instead of  ELISA49.

Figure 2.  Changes in sPD-L1 levels before and after treatment, according to cancer type and treatment type 
in all patients (a), NSCLC patients (b), SCLC patients (c), melanoma patients (d), GU cancer patients (e), and 
NSCLC patients treated with TKIs (f). The median time points for post-ICI sampling were 15 days (NSCLC), 
21 days (melanoma and GU cancer), and 42 days (SCLC). Pre-ICI before administration of immune checkpoint 
inhibitor, Post-ICI after administration of immune checkpoint inhibitor, NSCLC non-small cell lung cancer, 
SCLC small cell lung cancer, GU genitourinary, TKI tyrosine kinase inhibitor.
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In summary, high pretreatment sPD-L1 levels were associated with low disease control rates. sPD-L1 levels 
were an independent predictor of PFS and OS in patients receiving ICI treatment for advanced cancer. sPD-L1 
was likely derived from peripheral blood neutrophils, and levels generally increased following ICI administra-
tion. The amplitude of sPD-L1 change after ICI treatment was associated with PFS in patients with NSCLC and 
melanoma but in the opposite direction for each cancer type. A future, larger study should be undertaken to 
reveal the significance of changes in sPD-L1 levels for each carcinoma type.

Figure 3.  Kaplan–Meier curves for progression-free survival and overall survival in patients with NSCLC (a,c) 
and patients with melanoma (b,d) stratified by soluble programmed death ligand 1 levels. NSCLC non-small cell 
lung cancer, ΔsPD-L1 change in sPD-L1 concentration between pretreatment and posttreatment sampling, PFS 
progression-free survival, OS overall survival.

Table 4.  Analysis of correlations between sPD-L1 and circulating immune cells. Two outliers with extremely 
high sPD-L1 levels or absolute neutrophil counts were excluded from these analyses. sPD-L1 soluble 
programmed death ligand-1, NLR neutrophil to lymphocyte ratio, WBC white blood cell count, ANC absolute 
neutrophil count, ALC absolute lymphocyte count. *Significance at p < 0.05.

Pearson’s correlation coefficient p value*

NLR 0.309 < 0.001

WBC 0.202 0.023

ANC 0.183 0.040

Neutrophil 0.081 0.369

Lymphocyte − 0.277 0.002

ALC − 0.222 0.012



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19712  | https://doi.org/10.1038/s41598-021-99311-y

www.nature.com/scientificreports/

Methods
Patients. Blood samples were taken from each cancer patient before they received ICI treatment. Some 
patients participated in other, previously published  studies51–53. Posttreatment samples were obtained from 67 
patients at either the next visit or a later visit. Patients were eligible for the study if they (1) were 18 years of age 
or older, (2) had a histologically confirmed malignancy, (3) received ICI treatment at Seoul National University 
Hospital, (4) had study samples taken before and/or after ICI treatment, and (5) completed a written consent 
form for research using human derivatives, which allowed for secondary utilization of samples (IRB No. 1104-
086-359). A patient was excluded from the study if they had a diagnosis of two or more types of malignancy 
within the previous 5 years, withdrew consent before or during the study, or not enough samples were stored 
for analysis. Retrospective clinical and follow-up information was obtained from the medical records. Pre- and 
posttreatment samples from patients who received molecularly targeted agents were also analyzed. Blood sam-
pling and analyses were performed after the study protocol was approved by the Institutional Review Board. All 
patients provided written informed consent to participate in this study. The study protocol was approved by the 
Institutional Review Board of Seoul National University Hospital (IRB No. 2002-070-110). All study procedures 
were performed in accordance with the Helsinki Declaration and its later amendments or comparable ethical 
standards.

sPD‑L1 ELISA. Serum was obtained by centrifugation (1300×g for 10 min) and then aliquoted and stored 
at − 80 °C until study analysis. sPD-L1 was assayed using a commercially available ELISA Kit (BMS2212, Invit-
rogen, Vienna, Austria) following the manufacturer’s instructions. Samples were analyzed in duplicate for each 
marker.

Statistical analysis. Demographic and clinical parameters were analyzed using descriptive statistics. Dif-
ferences in sPD-L1 distribution and median values in healthy donors and cancer patients were compared using 
nonparametric Mann–Whitney U tests. ROC curve analysis was used to determine the optimal sPD-L1 cutoff 
point for predicting treatment resistance. Relationships between treatment response and sPD-L1 or clinical vari-
ables were analyzed using χ2-tests and Student’s t tests. Kaplan–Meier survival analyses and Cox proportional 
hazards models were used to analyze PFS and OS. Analyses of correlations between sPD-L1 and circulating 
immune cells were performed by calculating Pearson correlation coefficients because the data met the assump-
tions of a normal distribution. Because the data for tissue PD-L1 expression did not follow a normal distribution, 
correlations with sPD-L1 were assessed using the nonparametric Spearman’s rho method. Statistical analyses 

Figure 4.  Correlation between sPD-L1 levels and circulating immune cells, including NLR (a), WBCs (b), 
ANCs (c), neutrophils (d), lymphocytes (e), and ALCs (f). Pearson’s correlation coefficients are denoted as r. 
NLR neutrophil to lymphocyte ratio, WBC white blood cell, ANC absolute neutrophil count, ALC absolute 
lymphocyte count.
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were performed and graphics generated using IBM SPSS statistics v.21 (IBM, Armonk, NY, USA) and Excel 2019 
(Microsoft, Redmond, WA, USA) software. A p value < 0.05 was considered statistically significant.

Data availability
The datasets generated and/or analyzed in the current study are available from the corresponding author upon 
reasonable request.

Received: 26 October 2020; Accepted: 1 June 2021
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