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Reducing soft‑tissue shrinkage 
artefacts caused by staining 
with Lugol’s solution
Y. Dawood1,2, J. Hagoort2, B. A. Siadari2, J. M. Ruijter2, Q. D. Gunst2, N. H. J. Lobe4, 
G. J. Strijkers3, B. S. de Bakker2 & M. J. B. van den Hoff2*

Diffusible iodine‑based contrast‑enhanced computed tomography (diceCT) is progressively used in 
clinical and morphological research to study developmental anatomy. Lugol’s solution (Lugol) has 
gained interest as an effective contrast agent; however, usage is limited due to extensive soft‑tissue 
shrinkage. The mechanism of Lugol‑induced shrinkage and how to prevent it is largely unknown, 
hampering applications of Lugol in clinical or forensic cases where tissue shrinkage can lead to 
erroneous diagnostic conclusions. Shrinkage was suggested to be due to an osmotic imbalance 
between tissue and solution. Pilot experiments pointed to acidification of Lugol, but the relation of 
acidification and tissue shrinkage was not evaluated. In this study, we analyzed the relation between 
tissue shrinkage, osmolarity and acidification of the solution during staining. Changes in tissue volume 
were measured on 2D‑segmented magnetic resonance and diceCT images using AMIRA software. 
Partial correlation and stepwise regression analysis showed that acidification of Lugol is the main 
cause of tissue shrinkage. To prevent acidification, we developed a buffered Lugol’s solution (B‑Lugol) 
and showed that stabilizing its pH almost completely prevented shrinkage without affecting staining. 
Changing from Lugol to B‑Lugol is a major improvement for clinical and morphological research and 
only requires a minor adaptation of the staining protocol.

Over the last decades, three-dimensional (3D) imaging techniques greatly improved morphological research 
by enabling non-destructive visualization of anatomical and morphological structures at a histological  level1. 
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) is a major scientific breakthrough 
and is progressively used in morphological  research2. Currently, diceCT with the use of microfocus machinery 
(i.e. micro-CT) is also being evaluated in a clinical setting for post-mortem fetal imaging as adjunct, or even 
replacement, of  autopsy2–4. DiceCT, alongside Ultra-High Field Magnetic Resonance Imaging (UHF-MRI), 
enables the study of development of internal structures and their anatomy, including soft  tissues5–7. Besides its 
non-destructive character and the acquisition of high-resolution images, specimens once stained using iodine 
may be used subsequently in histological studies to verify and validate  findings2.

Potassium triiodide  (I2KI) solution, also known as Lugol’s solution (Lugol), has gained interest as an effec-
tive contrast agent because of its relative ease of handling, cost-effectiveness and differential affinity for differ-
ent types of soft  tissue5,8,9. An important limitation of using Lugol is that the staining process causes extensive 
soft-tissue  shrinkage7,10.11. This shrinkage was shown to be  I2KI concentration  dependent10,12 and to vary across 
tissue types 10,13. We have seen extensive shrinkage in lung, brain, liver and total body volume after staining of 
human fetal specimens using 3.75% Lugol, which varied between 15 to 35% of the initial volume using MR 
images recorded prior to staining as a reference (Fig. 1)13. Such differential shrinkage of fetal tissues might 
obscure malformations or induce artefacts which erroneously could be interpreted as malformations. The lack 
of knowledge about how these shrinkage artefacts can be reduced, or prevented, hampers future application 
of Lugol in morphological research, especially in clinical or forensic cases where tissue shrinkage can lead to 
erroneous diagnostic conclusions.

The mechanism of the Lugol-induced differential tissue shrinkage is largely unknown but was suggested to 
be due to an osmotic imbalance between tissue and  solution11. However, the use of  isotonic11 or even hypotonic 
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 Lugol11,13 was not found to prevent tissue shrinkage, thus demonstrating that osmotic imbalance cannot be 
the sole mechanism. Pilot experiments to evaluate different Lugol’s solutions used in the staining procedure 
point to acidification of the solution, rather than changes in osmolarity as cause of tissue shrinkage. Although 
acidification has been suggested to cause demineralization of bone tissue, its relation with tissue shrinkage has 
never been  evaluated14.

In this study, we used mouse livers to assess the relation between osmotic imbalance, acidification of Lugol 
and tissue shrinkage over time. The results showed that acidification of Lugol is the main factor affecting tissue 
shrinkage. Hence, we hypothesized that stabilizing the pH of the staining solution, thus preventing its acidifica-
tion, would reduce or even prevent tissue shrinkage. We, therefore, designed a modified Lugol’s solution, referred 
to as buffered Lugol’s solution (B-Lugol), and measured pH and tissue shrinkage by staining an additional series 
of mouse livers and compared this to Lugol. Following the successful application of B-Lugol on mouse livers, 
we stained and imaged three human fetal samples. These specimens provided evidence that this new formula is 
also suitable to stain complex organisms with minimal tissue shrinkage.

Results
Mouse liver experiments. To study the amount of tissue shrinkage due to staining with Lugol’s solution 
(Lugol) and to determine the contribution of osmolarity and pH to this shrinkage, a total of 15 mouse livers 
(N = 3 per condition) were stained in five different solutions of Lugol with different concentration and/or tonici-
ties (i.e. five conditions); while the liver volume, as well as the osmolarity and the pH of the staining solution 
were monitored over time. As controls, three mouse livers were not stained and remained in the storage solution 
(0.2% PFA in PBS). Because initial volumes of the livers differed, systematic differences in observed liver vol-
umes were corrected by determining and applying a correction factor per  liver15 and normalized by setting the 
mean volume at time 0 to 100% (Table 1).

The liver volume remained stable for the three control samples, with an average increase of 0.3 ± 0.8% 
(mean ± SD). For all livers stained in the different concentrations and/or tonicities of Lugol, a significant decrease 
in volume was observed of at least 25%. The highest amount of shrinkage was observed in 2.5% hypotonic Lugol 
(32.6 ± 1.1%) and the lowest in 1.25% isotonic Lugol (25.0 ± 1.6%) (Fig. 2A).

The osmolarity of 3.75% Lugol was reported to be isotonic with respect to human and mouse  tissue11 and 
after preparation of this solution its osmolarity was confirmed to be approximately 300 milliosmole (mOsm). 
After preparing the other solutions their osmolarity was measured and found to be at the expected level of 

Figure 1.  Micro-CT images of a human fetus at 19 weeks of gestation (total length = 24 cm). The fetus was 
stained with 3.75% Lugol’s solution for 26 days in total. The fetus was scanned on a GE Phoenix v|tome|x 
scanner (General Electric, Wunstorf, Germany) with an isotropic resolution of 50 µm. (A) Transversal section 
at the level of the heart, (B) mid coronal section and (C) mid sagittal section. Volume analyses showed that 
the staining caused extensive shrinkage: 9% in total fetal volume, 24% in lung and liver volume, 31% in kidney 
volume and 33% in brain volume Images adapted from Organ specific shrinkage in iodine stained human 
fetuses13. White arrows point to the empty space between skull and brain and liver and body cavity, which is 
reminiscent of soft-tissue shrinkage. B = Brain, H = Heart, Li = Liver, Lu = Lung. Scale bar represents 10 mm.
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195 mOsm for 2.5% hypotonic Lugol, 99 mOsm for 1.25% hypotonic Lugol, 290 mOsm for 2.5% isotonic Lugol 
and 301 mOsm for 1.25% isotonic Lugol. Independent of the Lugol concentration, these osmolarities were 
observed to increase with increasing staining time (Fig. 2B). The largest increase was observed in the 1.25% 
isotonic Lugol (44 ± 7 mOsm) and the smallest increase in the 0.2% PFA in PBS (15 ± 10 mOsm) after 152 h of 
incubation (Fig. 2B).

All freshly prepared Lugol’s solutions showed a pH between 6.0 and 7.5. The pH decreased substantially dur-
ing the staining period for all conditions, except for the control samples (Fig. 2C). In all Lugol’s solutions used, 
an exponential decrease in pH was observed, steep in the first two hours of staining and more gradual up to the 
last time point included (152 h). Since pH is a log-based measurement, this exponential decrease of pH over 
time means that the  H+-ion concentration increases linearly with the logarithm of staining time. Moreover, the 
higher the starting concentration of Lugol was, the lower the pH value was, with the lowest pH value measured 
in 3.75% isotonic Lugol after 152 h (pH 2.8 ± 0.2). Furthermore, the isotonic 2.5% and 1.25% Lugol solutions 
became less acidic (pH 3.3 ± 0.1 and 4.3 ± 0.1, respectively) compared to the hypotonic 2.5% and 1.25% Lugol 
solutions (pH 3.1 ± 0.1 and 3.4 ± 0.1, respectively).

Evaluation of the relation between the tonicity of the different solutions and tissue shrinkage during the 
staining procedure revealed that the decrease in tissue volume occurred in a similar range in isotonic as well as 
hypotonic solutions (Fig. 3A). Partial correlation analysis, controlling for the correlation of each variable with 
time (Fig. 2), showed no significant correlation between osmolarity of the solution and neither tissue volume 
(r = 0.05, p = 0.674) nor pH (r = 1.66, p = 0.177). On the other hand, pH and tissue volume were significantly corre-
lated (r = 0.627, p < 0.001); in all Lugol solutions, tissue volume showed similar downward trends with decreasing 
pH (Fig. 3B). Linear regression analysis of volume on pH resulted in  R2 values between 0.63 and 0.99, indicating 
that between 63 and 99% of the variation in tissue volume could be explained by the decreasing pH (Table 2A, 
 R2 values; Supplemental PDF: SPSS output). Further regression analysis of volume on pH interestingly showed 
that overlapping confidence intervals for the slope coefficients in each of the solutions, pointing to a similar role 
of acidification in Lugol-induced tissue shrinkage across conditions (Table 2A; B-coefficients). As expected from 
the correlation analysis, when the residual volumes were fitted to osmolarity, significant regression coefficients 
were found in 1.25% and 3.75% Lugol (Table 2A). However, calculation of the contribution of osmolarity to the 
predicted liver volume showed that on average only 1% to 5% of the residual volume variation could be explained 
by osmolarity change (Supplementary PDF: SPSS output). Taken together, this stepwise multiple regression 
analysis showed that the decrease in tissue volume over staining time can primarily be attributed to the decreasing 
pH, and that the osmolarity of the staining solution only plays a minor, if any, role in causing tissue shrinkage.

Table 1.  Between-liver correction and normalization. To remove random differences between livers, 
without losing the effects of Condition and Time, a correction factor (column Between-liver correction) was 
 determined15 and applied to the data measured for each liver. Thereafter, the volume data were normalized 
by dividing each value by the average volume per condition at time 0 (column normalization factor) and 
multiplied by 100; effectively scaling the average volume at time 0 to 100%.

Experiment 1 Experiment 2

Condition Livers Between-liver correction Normalization (time 0 = 100) Condition Livers Between-liver correction Normalization (time 0 = 100)

0.2% PFA in PBS

1 1.114

421.78

3.75% Lugol

19 1.072

518.512 0.955 20 1.153

3 1.031 21 0.955

Hypotonic 1.25%

4 1.188

453.50

22 0.775

512.415 0.733 23 0.844

6 1.031 24 1.032

Hypotonic 2.5%

7 1.128

571.64

25 1.283

489.178 0.994 26 0.775

9 1.458 27 0.862

Isotonic 1.25%

10 0.786

426.48

3.75% B-Lugol

28 1.047

443.8211 1.133 29 1.141

12 0.932 30 0.828

Isotonic 2.5%

13 0.868

533.47

31 1.319

435.3014 0.818 32 0.990

15 1.691 33 0.794

Isotonic 3.75%

16 1.025

401.51

34 1.052

449.5617 0.760 35 1.265

18 0.800 36 1.033

37 1.077

448.8938 0.981

39 0.983



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19781  | https://doi.org/10.1038/s41598-021-99202-2

www.nature.com/scientificreports/

Stabilizing pH reduces shrinkage artifacts. We hypothesized that stabilizing the pH of the staining solution 
would prevent acidification of the solution and subsequently reduce or even prevent tissue shrinkage. In an effort 
to stabilize the pH, Lugol was prepared in a strong phosphate buffer (Sorensen’s buffer). In this manuscript, this 
buffered Lugol’s solution will be referred to as B-Lugol, while unbuffered Lugol’s solution will be referred to as 
Lugol. To evaluate the effect of this stronger phosphate buffer, mouse livers were stained using 3.75% B-Lugol 
(N = 12) and compared to mouse livers that were stained using 3.75% Lugol (N = 12).

During the 152 h staining period the livers incubated in 3.75% Lugol showed a decrease in volume of 
31.9 ± 2.8%, which is in line with the previous experiment. The volumes of the livers incubated in 3.75% B-Lugol 
decreased significantly  (5.9 ± 1.7%; p < 0.001) over the complete staining period, but only slightly compared to 
3.75% Lugol  (Fig. 4A). In the presence of Sorenson’s buffer, the pH showed a decrease from 7.2 ± 0.0 to 6.4 ± 0.3 
(Fig. 4C). However, this decrease is small compared to the decrease in pH of 3.75% Lugol, which decreased from 
6.5 ± 0.1 to 2.8 ± 0.4 (Fig. 4C). Regression analysis showed that these pH changes were enough to explain 57% and 
90% of the variation in tissue volume in 3.75% B-Lugol and 3.75% Lugol, respectively (Table 2B,  R2 values). As 
in the first experiment, the confidence intervals of the slope parameters overlapped between 3.75% B-Lugol and 
3.75% Lugol (Table 2B), and also with those confidence intervals observed in the five solutions of the first experi-
ment (Table 2A). This shows that the role of pH on tissue shrinkage is similar in both experiments is. Because 
of the small decrease of the pH in B-Lugol hardly any tissue shrinkage is observed in this solution (Fig. 4A). As 
expected, the osmolarity of 3.75% B-Lugol was hypertonic (536 mOsm) at the start of staining and increased 
69 ± 12 mOsm over time, showing a larger increase compared to the osmolarity of 3.75% Lugol (42 ± 13 mOsm) 
(Fig. 4B). However, the regression analysis showed no significant contribution of this osmolarity change to the 
variation in tissue volume (Table 2B).

Triiodide uptake is similar in unbuffered and buffered Lugol’s solution. By changing the buffer system of the 
Lugol’s solution, the triiodide uptake into the tissue might be altered. The triiodide uptake in the tissue was 
determined from the decrease of triiodide concentration in the solution, measured spectrophotometrically in 
the solution at different time points (Fig. 4D). To quantify the concentration of triiodide in the staining solution, 
a calibration curve of optical density (OD) versus defined Lugol concentrations was prepared by serial dilution 
of the Lugol’s stock solution (Supplemental Fig. 1). Figure 4D shows that the decrease in Lugol concentration is 
similar between 3.75% Lugol and 3.75% B-Lugol, suggesting that changing the buffer system does not negatively 
affect the triiodide uptake in the mouse livers. This analysis also showed that the largest decrease in the concen-
tration of Lugol, and thereby the fastest uptake of triiodide in the tissue, occurs in the first 24 h of staining in both 

Figure 2.  Mouse livers stained in different Lugol’s solutions. Mouse livers were stained in Lugol’s solutions 
that differed with respect to Lugol concentrations and tonicities. Observed liver volumes were normalized 
by setting the mean volume at time 0 to 100%. All presented values are the average and standard deviation of 
three different livers. (A) Liver volume. Liver volume remained stable in the control samples, with an average 
increase of 0.3% ± 0.8% relative to its volume at the start of the staining. In Lugo’s solution, irrespective of 
the Lugol concentration or tonicity, liver volumes decreased at least 25%. (B) Osmolarity. Independent of the 
Lugol concentration or original tonicity, the osmolarity of each staining solution was observed to increase over 
time. The largest increase was observed in the 1.25% isotonic Lugol (44 ± 7 mOsm) and the smallest increase 
in storage solution (15 ± 10 mOsm). (C) pH. The pH of the staining solutions decreased significantly over the 
staining period for all different Lugol solutions, except for the storage solution. The higher the concentration of 
Lugol, the lower the pH became, with the lowest pH measured in 3.75% isotonic Lugol (pH 2.8 ± 0.2).
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solutions. Between 40 and 152 h the Lugol concentration only decreased slightly, suggesting saturation of the 
uptake of triiodide in the livers. These observations are in line with the observations in 2D CT images, showing 
that the staining intensity gradually increases from the periphery to the center of the tissue. The observation that 
in both Lugol and B-Lugol the center of the liver was similarly stained after 65 h (Fig. 4E) is highly suggestive of 
a similar uptake velocity of triiodide in the tissue in unbuffered Lugol and buffered B-Lugol, and that triiodide 
uptake is therefore considered independent of the buffer system.

Human fetus experiments. Three human fetuses were stained in B-Lugol to provide evidence that this 
new formulation of Lugol is also suitable to stain complex specimens and to show that B-Lugol prevents differ-
ential shrinkage that occurs when Lugol is used for staining. As a starting reference for the volume of the entire 
fetus and its organs, an MRI scan was made because a CT scan of unstained tissue hardly shows any anatomical 
detail at this developmental stage. During the B-Lugol staining period CT scans were made at different time 
points and, in these images, volume of the body, the brain, the lungs, the liver and the kidneys were measured.

During the entire staining procedure, the pH of B-Lugol remained, as expected, stable with a slight decrease 
from 7.1 to 7.0 for all three fetuses (Fig. 5, right Y-axis). In line with the mouse liver experiments, the osmolarity 
of the 3.75% B-Lugol gradually increased and the Lugol concentration (OD measurements) decreased over time 
(data not shown). Analysis of the CT scans showed that all internal organs were completely and uniformly stained 
after 92, 150 and 192 h for fetus #1, #2 and #3, respectively. The observed difference in staining time is correlated 
with specimen size; the larger the specimen, the longer the required staining time. Measuring the volume of the 
fetus and its organs revealed that there was a small degree of shrinkage, which showed some organ-specificity. 
In general, the measured volumes revealed a decrease of at most 5% compared to the original volume measured 
in the MRI images (Fig. 5, left Y-axis). However, it is of relevance to note that the volume of the total body and 
kidneys of fetus #1 (Fig. 5A) and the lungs of fetus #2 (Fig. 5B), were affected most, showing a decrease of 8% 
after the entire staining procedure.

To illustrate the beneficial effect of B-Lugol compared to Lugol, Fig. 6 shows a micro-CT image of a 
15 + 2 weeks old fetus (fetus #2), stained with 3.75% B-Lugol. The 19 weeks old fetus shown in Fig. 1, was fixed 
identically, stained similarly (in 10 volumes relative to the fetal weight)  3.75% Lugol and scanned at the same 
time points. Compared to the fetus in Fig. 6, the fetus stained in Lugol, showed extensive shrinkage: 9% in total 
fetal volume, 24% in lung and liver volume, 31% in kidney volume and 33% in brain volume. This differential 
shrinkage is reflected in the increase of empty space between skull and brain and liver and body cavity. In con-
trast, upon staining in B-Lugol hardly any shrinkage was observed in fetus #2, with at most 8% shrinkage of the 

Figure 3.  Scatterplots showing the relation between liver volume and osmolarity or pH of the staining solution. 
Observed liver volumes were normalized by setting the mean volume at time 0 to 100%. Each dot represents a 
mouse liver at a different time point. (A) Volume versus Osmolarity. The decrease in tissue volume in isotonic 
solutions (approximately 300 mOsm) was in the same range as in both hypotonic solutions (approx. 100 and 
200 mOsm), showing no correlation between tissue shrinkage and osmolarity. (B) Volume versus pH. The 
decrease in tissue volume, tissue shrinkage, shows a similar trend with decreasing pH in each of the tested 
Lugol’s solutions.
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lungs (Fig. 5B); note that hardly any empty space is observed between the skull and the brain, nor the liver and 
body cavity (Fig. 6).

Discussion
In this study we show that acidification, rather than osmolarity, is the key player underlying soft-tissue shrink-
age that occurs during Lugol staining. Based on this finding we adapted the staining protocol such that tissue 
shrinkage was reduced to a level that is within the biological variation among fetuses of the same age (c.f. fetus 
#2 and #3).

Our experiments showed that, in line with published research, the use of Lugol’s solution causes extensive 
tissue  shrinkage10,11. However, contrary to earlier  hypotheses10–12 we did not observe a significant correlation 
between osmolarity and tissue shrinkage: the same range of shrinkage occurred in hypotonic as well as isotonic 
Lugol’s solutions (Fig. 2). Furthermore, we observed that the pH decreased significantly over time and regres-
sion analysis showed that decreasing pH—and not tonicity of the solution—is the most significant parameter 
associated with tissue shrinkage.

As pH and tissue shrinkage turned out to be strongly related, we sought to stabilize the pH in order to dimin-
ish soft-tissue shrinkage artefacts. Results from the experiments with mouse livers and human fetuses showed 
that staining in B-Lugol resulted in pH stabilization of the solution during the entire staining period (Figs. 4C 
and 5). By keeping the pH of the staining solution constant, tissue shrinkage of ex vivo mice livers and of entire 
fetuses was hardly observed during the entire staining period (Figs. 4A and 5). However, the volume of the body 
and kidneys of fetus #1 (Fig. 5A) and lungs of fetus #2 (Fig. 5B), were affected, showing a decrease of 8%. We 
speculate that this difference in shrinkage could possibly be due to the fact that fetus #1 was two weeks younger; 
having a less mineralized skeleton and as such being more prone to volume changes. Further research using 

Table 2A.  Stepwise regression analysis in Experiment 1. Multiple regression analysis was performed out in 
two steps. Firstly, a regression of Volume on pH was carried out, storing the residual in the variable Res1. 
Secondly, a regression was carried out of Res1 on Osm. For both analyses the  R2, coefficient value and standard 
error of the A and B coefficients are given as well as their 95% confidence interval. Note that the intercepts 
and slope coefficients (A and B) of the volume—pH relation show overlapping confidence intervals among 
conditions, indicating that the effect of pH on volume is similar in the different conditions.

Experiment 1

Step 1: regression of Volume on pH (saving residuals to Res1)

Model: Volume = A + B * pH

Condition R2 Coeff. value Std. Error

95% confidence 
interval

Lower Upper

Hypotonic 1.25% 0.630
A 34.06 8.75 15.91 52.20

B 11.02 1.74 7.42 14.62

Hypotonic 2.5% 0.970
A 19.16 2.43 14.13 24.20

B 14.84 0.54 13.72 15.96

Isotonic 1.25% 0.952
A 22.91 3.21 16.26 29.56

B 11.67 0.55 10.54 12.80

Isotonic 2.5% 0.990
A 35.21 1.10 32.92 37.49

B 9.71 0.21 9.28 10.13

Isotonic 3.75% 0.858
A 35.13 4.52 25.75 44.51

B 11.89 1.00 9.80 13.97

Step 2: regression of Res1 on Osm

Model: Res1 = A + B * Osm

Condition R2 Coeff. value Std. Error

95% confidence 
interval

Lower Upper

Hypotonic 1.25%  − 0.044
A 12.10 21.98  − 36.88 61.08

B  − 0.13 0.18  − 0.53 0.27

Hypotonic 2.5%  − 0.109
A 2.85 26.16  − 56.32 62.02

B  − 0.02 0.12  − 0.29 0.26

Isotonic 1.25% 0.720
A  − 72.69 13.31  − 102.35  − 43.03

B 0.22 0.04 0.13 0.31

Isotonic 2.5%  − 0.095
A 3.67 18.30  − 37.11 44.45

B  − 0.01 0.06  − 0.14 0.12

Isotonic 3.75% 0.422
A  − 124.18 45.24  − 224.98  − 23.38

B 0.40 0.15 0.07 0.73
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more fetuses of different developmental ages should address the possibility of differential shrinkage between 
organs across different gestational ages. Furthermore, we did not observe any negative effects of buffering Lugol’s 
solution with Sorenson’s buffer, because triiodide uptake and staining time remained similar compared to Lugol. 
However, the triiodide concentration of B-Lugol dropped slightly more than of Lugol (Fig. 4D), this is possibly 
due to the lack of shrinkage of the mouse livers stained in B-Lugol. Hence, these livers have a relatively larger 
volume, therefore more tissue volume is available for the uptake of triiodide.

Although Lugol gradually becomes acidic on the shelf (approximately pH 4, Supplemental Fig. 2), this acidifi-
cation does not explain the observed exponential decrease in pH levels during tissue staining (Fig. 2C). Because 
of the log-based pH, one could understand that the  H+-ion concentration increases linearly with the logarithm 
of staining time. A possible explanation for this initially quick decrease in pH might be due to the release of free 
excess formaldehyde (the monomeric product of PFA) from the tissue into the solution; formaldehyde is subse-
quently degraded into formic  acid16. Furthermore, such release of free formaldehyde into the staining solution 
might also explain the small increase in osmolarity that was observed; freshly dissolved 4% PFA in PBS has a 
high osmolarity (1607 mOsm). This idea is underscored by the observation that adding freshly dissolved 4% PFA 
solution to isotonic 3.75% Lugol’s solution enhances the acidification process significantly and is proportional to 
the amount of formaldehyde added (Supplemental Fig. 2). Moreover, in immunohistochemistry the cross-linking 
of proteins in formaldehyde-fixed tissue can be reversed using antigen unmasking  solutions17. Such antigen 
unmasking solutions are most often acidic citrate based  solutions18 which, in combination with high temperature, 
will quickly release the covalent linked formaldehyde from the fixed tissue. We propose that the tendency of 
Lugol’s solution to acidify over time, in combination with the long staining time, releases formaldehyde bound 
to the tissue which subsequently promotes further acidification of the staining solution and enhances this effect. 
Therefore, we tested, as is common practice in histological procedures, various washing steps prior to the start 
of the staining procedure, to remove excess free formaldehyde and impregnate tissue with buffer. However, this 
procedure did not improve the stabilisation of pH, nor did it prevent tissue shrinkage (data not shown).

Even though this study provides strong evidence that pH is a key factor in soft-tissue shrinkage, the molecular 
mechanisms between acidification and tissue shrinkage remain unclear. Nevertheless, one could speculate that 

Figure 4.  Comparison of staining of livers in 3.75% Lugol and 3.75% B-Lugol. The values are the average and 
standard deviation of 12 biological replicates. (A) Liver volume. The volume of the livers in B-Lugol decreased 
slightly during staining, whereas in Lugol the mouse liver volumes almost decreased to one third of the original 
volume. (B) Osmolarity. In both solutions the osmolarity increased over time. (C) pH. The pH of the Lugol’s 
solutions decreased significantly in both Lugol and B-Lugol, 6.50 ± 0.1 to 2.8 ± 0.4 and 7.2 ± 0.0 to 6.4 ± 0.3, 
respectively. However, in B-Lugol this decrease was small because of the buffering. (D) Lugol concentration. 
Both solutions showed a similar decrease in the Lugol concentration. (E) Tissue staining. The binding of 
triiodide to the tissue is illustrated in 2D CT images of the mouse livers after 8, 22 and 65 h of staining (red 
outlined = stained in Lugol, green outlined = stained in B-Lugol), showing comparable staining intensity and 
penetration over time.
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during staining of the tissue, i.e. uptake of  I3
- in the tissue, a surplus of  K+ is created in the staining solution. These 

 K+ ions could hold negative hydroxide molecules, allowing free hydrogen atoms to accumulate in the solution, 
thus lowering the pH. Further research will be required to improve the washing protocol and the buffering of the 
triiodide solution and thus provide answers on the mechanisms underlying the observed pH-dependent shrink-
age. Nevertheless, our newly developed and tested buffered hypertonic 3.75% B-Lugol already shows that B-Lugol 
can serve as a practical alternative for Lugol because it provides pH stability, thus reducing tissue shrinkage and 
deformation without affecting the time required to reach sufficient intensity of staining.

In conclusion, we provide evidence that the acidification of Lugol’s solution is the key factor in soft-tissue 
shrinkage rather than the osmolarity of the staining solution. We showed that staining in Lugol’s solution pre-
pared in Sorensen’s buffer (B-Lugol) leads to a stable pH and almost completely prevents soft-tissue shrinkage, 
without affecting the staining process or timing.

Methods
Mouse livers. Mouse livers of the FVB (Friend leukemia Virus B) strain were used as model tissue, because 
of the homogeneity of the tissue and the size of the organ, allowing the preparation of multiple highly similar 
samples. In total 39 adult mouse livers were collected and fixed for 48 h in freshly dissolved 4% paraformalde-
hyde (PFA) (w/v) in Phosphate Buffered Saline (PBS, 10 mM  H2NaPO4/HNa2PO4, 150 mM NaCl, pH 7.4) at 
room temperature. These FVB mice were not bred for the purpose of this study, but were surplus mice of breed-
ing or of other research projects. After fixation the livers were stored in a storage solution (0.2% PFA in PBS) at 
room temperature for 48 h up until staining.

Human fetuses. Three human fetuses, donated to the Dutch Fetal Biobank after termination of pregnancy. 
After a written maternal informed consent, the donated fetuses were completely anonymized. Research has been 
approved by the Medical Ethical Committee (MEC) and Biobank Committee (BC) of the Amsterdam Univer-
sity Medical Centers, location AMC, Amsterdam, the Netherlands (METC 2016_285, #B2017369). Fetus #1: 
13 + 1 weeks of gestation (weeks + days), total length = 8 cm, weight = 17 g. Fetus #2: 15 + 2 weeks of gestation, 
total length = 15 cm, weight = 58 g. Fetus #3: 16 + 2 weeks of gestation, total length = 17 cm, weight = 85 g. After 
acquisition, the fetuses were fixed in 4% PFA in PBS for 4 days at 4 °C and subsequently stored in storage solution 
(0.2% PFA in PBS) at 4 °C.

Different Lugol solutions. To study the relations between tissue shrinkage and tonicity and/or acidifica-
tion of Lugol, five different Lugol’s solutions containing different  I2KI concentrations and tonicities were pre-
pared from a 15% stock solution of Lugol (10 g KI and 5 g  I2 dissolved in 100 mL bi-distilled water). From 
this stock solution isotonic 3.75%, hypotonic 2.5% and hypotonic 1.25% Lugol were prepared by dilution in 
bi-distilled water. To prepare isotonic solutions with 2.5% and 1.25% of Lugol, the 3.75% isotonic solution was 
further diluted in PBS. 3.75% buffered Lugol (B-Lugol) was prepared by combining in an 1:1 ratio 7.5% Lugol’s 
solution with 2 × Sorensen’s buffer (71.5 mL 266 mM  Na2HPO4 and 28.5 mL 266 mM  KH2PO4 to pH 7.2) (Sup-
plementary PDF: formulas and protocols). 7.5% Lugol was prepared by diluting the 15% stock solution with 

Table 2B.  Stepwise regression analysis in Experiment 2. For description of the procedure: see Table 2A. Note 
that the intercepts (A) and slope coefficients (B) of the volume—pH relation show overlapping confidence 
intervals with those in the different conditions in Experiment 1, indicating that, even in B-Lugol a similar effect 
of pH on volume is present, but hardly any volume change is observed because the pH is almost constant.

Experiment 2

Step 1: regression of Volume on pH (saving residuals to Res1)

Model: Volume = A + B * pH

Condition R2 Coeff. value Std. Error

95% confidence 
interval

Lower Upper

3.75% Lugol 0.899
A 44.556 1.609 41.35 47.76

B 8.485 0.317 7.85 9.12

3.75% B-Lugol 0.570
A 24.33 6.12 12.19 36.47

B 10.610 0.892 8.84 12.38

Step 2: regression of Res1 on Osm

Model: Res1 = A + B * Osm

Condition R2 Coeff. value Std. Error

95% confidence 
interval

Lower Upper

3.75% Lugol 0.010
A 3.55 7.29  − 11.16 18.26

B  − 0.02 0.024  − 0.064 0.033

3.75% B-Lugol 0.110
A  − 15.87 5.38  − 26.64  − 5.09

B 0.03 0.01 0.008 0.046
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bi-distilled water. As a control, in the comparison of the effects of different Lugol staining solutions, three fixed 
livers were kept in storage solution.

Staining and evaluation procedure. Specimens were stained in a volume of Lugol’s solution equivalent 
of 20 times their weight for the mouse livers and 10 times their weight for the fetal specimens  at room tempera-
ture. Before and during the experiments, pH, osmolarity and optical density (OD) of the staining solutions were 
measured at predefined time points. pH was measured using a Consort P901 Electrochemical analyzer (Consort 
bvba, Turnhout, Belgium). Osmolarity was measured using a Gonotec Osmomat 030 cryoscopic osmometer 
(Gonotec, Berlin, Germany). OD was measured spectrophotometrically using a Nanodrop ND-1000 (Thermo 
Fisher Scientific, United States, Thermo Fisher |  AMIRA19) with function UV–Vis at 550 nm. To convert the 
observed OD value in the Lugol solutions at the different time points into the concentration of triiodide in the 
solution a calibration curve of OD versus defined Lugol concentrations was prepared by serial dilution of the 
Lugol’s stock solution (Supplementary Fig. 1); assuming that the decrease of triiodide concentration in the stain-
ing solution reflects the uptake of triiodide in the tissue.

Figure 5.  Three different human fetuses stained in 3.75% B-Lugol for a period of 90 to 190 h depending on fetal 
size. pH remained stable (red line) with a slight decrease from 7.1 to 7.0 (right Y-axis) during the entire staining 
procedure. (A) Fetus #1, 13 + 1 weeks of gestation (weeks + days), total length = 8 cm, weight = 17 g. (B) Fetus 
#2, 15 + 2 weeks of gestation, total length = 15 cm, weight = 58 g). (C) Fetus #3, 16 + 2 weeks of gestation, total 
length = 17 cm, weight = 85. In each of the fetuses, total body volume and almost all organ volumes showed only 
a limited shrinkage of between 0 and 5%. Only the total body and kidneys of fetus #1 (A) and lungs in Fetus #2 
(B) showed, with 8%, slightly more shrinkage.
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Visualization of the Lugol staining. The mouse livers were scanned using a SOMATOM clinical CT 
scanner (Siemens Healthineers AG, Erlangen, Germany). Scans were made before the start of the staining and 
subsequently every two hours up to 8 h of staining. Thereafter, the samples were scanned depending on scanner 
availability. All livers were scanned in one scan session, using the following settings: X-ray tube voltage = 150 kV, 
X-ray tube current = 200 mAs, voxel size = 0.2 × 0.2 × 0.1 mm anisotropic and scan time depended on the chosen 
field of view (30–60 s). The DICOM-files were imported in software package AMIRA (version 2019.3, Thermo 
Fisher Scientific, USA, Thermo Fisher |  AMIRA19). This package was used to determine liver volumes and to 
evaluate staining. Liver volumes were determined by automatically segmenting the 2D-images using specific 
threshold grey values which were adapted depending on the intensity of staining. Volume was then calculated 
as segmented tissue area times slice thickness. Staining was considered complete when the center of the liver 
reached the maximum detectable value (around 3000 Hounsfield Units).

The three human fetuses were scanned using magnetic resonance imaging to determine total body and 
organ volumes prior to staining with B-Lugol. The largest fetus was scanned using the clinical 3 T MRI scanner 
(Philips Healthcare, Best, The Netherlands) with a bore diameter of 70 cm and integrated gradient coils, produc-
ing a maximum amplitude of 45 mT/m. A 160 mm knee coil was used for radio frequency excitation and signal 
reception. T1 weighted images were produced with the following parameters: echo time (ET) = 4.4 ms, repetition 
time (RT) = 18 ms, number of signal averages (NSA) = 3, total scanning time = 50 min and voxel size = 0.33 mm 
isotropic. The two smaller fetuses were scanned using the preclinical 7 T MRI scanner (MR Solutions, Guildford, 
UK) with a bore diameter of 17 cm and a 70 mm rat body coil, reaching a maximum magnetic field strength of 
600 mT/m. T1 weighted images were produced with the following parameters: ET = 7 ms, RT = 20 ms, NSA = 16, 
total scanning time = 3 h 17 min–5 h 50 min (depending on fetal size) and voxel size = 0.156–0.195 mm isotropic 
(depending on fetal size). The fetuses were embedded in alginate to stabilize them during MRI scanning. During 
Lugol’s staining the fetuses were regularly scanned using the clinical CT scanner to evaluate the progress of the 

Figure 6.  Fetus #2 stained with 3.75% B-Lugol. Mid sagittal section of fetus #2 (15 + 2 weeks of gestation 
(weeks + days), total length = 15 cm, weight = 58 g). It was stained for 150 h in 3.75% B-Lugol, image analysis 
shows hardly any shrinkage reflected by the almost no space around the organs, as compared to the fetus shown 
in Fig. 1 which was stained in Lugol. B = Brain, H = Heart, Li = Liver. Scale bar represents 5 mm.
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staining. Scanner settings were: X-ray tube voltage = 150 kV, X-ray tube current = 200 mAs, voxel size = 0.1 mm 
isotropic and scan time depended on fetal size. Staining was considered complete when the vessels in the center 
of liver were completely visible. The fetuses were then scanned using a GE Phoenix v|tome|x m tomographer 
(General Electric, Wunstorf, Germany). The voltage (180–210 kV) and current (180–210 µA) were adjusted to 
the fetal size. A full scan consisted of 1500 projections that were made with continuous sample rotation over 
360°. One saved projection is the average of 4 images, where every image is acquired with an exposure time of 
333 ms, giving an acquisition time of 33 min per scan. To avoid beam hardening, a 0.5 mm copper (Cu) filter 
was applied. All fetuses were scanned in two parts, first the cranial part and then the caudal part with overlap, 
to enable a shorter source-to-object distance, resulting in a higher spatial resolution (voxel size = 20–50 µm)7. 
Phoenix datos|x (version 2.2, Baker Hughes, Texas, USA, Baker Huges |  Phoenix20) software was used to recon-
struct the raw scan data.

The MRI and CT images were converted into the DICOM format and imported into AMIRA (version 2019.3, 
Thermo Fisher Scientific, USA, Thermo Fisher |  AMIRA19) software. Total body and different organs (liver, lung, 
kidney and brain) were manually segmented in 2D-images using a systematic random sample of one in three, five 
or ten slices, with the first slice picked randomly in this range, to determine the total volume of each structure 
using  AMIRA21,22. Body and organ volumes were calculated as the sum of the segmented tissue area times slice 
distance. Unfortunately, due to damage to the head, reliable brain segmentation and volume estimation of the 
brain was not possible for fetus #3.

Statistical analysis. Because initial volumes of the livers differed, the observed liver volumes were cor-
rected by determining and applying a correction factor per  liver15 and normalized by setting the mean volume at 
time 0 to 100% (Table 1). Statistical analyses were performed using SPSS (version 24, IBM, Chicago, USA, IBM 
|  SPSS23). To assess the correlation between tissue volume, osmolarity and pH without the confounding effect of 
time, a Pearson’s partial correlation test, controlling for time, was performed. Because of the correlation result, 
and literature data suggesting an effect of osmolarity, a stepwise multiple regression analysis, consisting of linear 
regression of tissue volume on pH followed by regression of the residual volume on osmolarity, was performed. 
We did not include the controls in the regression analysis because the tissue volume, acidity and osmolarity 
did not show any changes. A p-value equal or below 0.05 was considered to indicate statistical significance. The 
results of these analysis are presented in Tables 2A and 2B for the first and second experiment with mouse livers, 
respectively.

Method statement. All methods were carried out in accordance with relevant guidelines and regulations. 
The study was carried out in accordance to the ARRIVE  guideline24.
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