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On the statistical significance 
of communities from weighted 
graphs
Zengyou He1,2*, Wenfang Chen1, Xiaoqi Wei1 & Yan Liu1

Community detection is a fundamental procedure in the analysis of network data. Despite decades of 
research, there is still no consensus on the definition of a community. To analytically test the realness 
of a candidate community in weighted networks, we present a general formulation from a significance 
testing perspective. In this new formulation, the edge-weight is modeled as a censored observation 
due to the noisy characteristics of real networks. In particular, the edge-weights of missing links are 
incorporated as well, which are specified to be zeros based on the assumption that they are truncated 
or unobserved. Thereafter, the community significance assessment issue is formulated as a two-
sample test problem on censored data. More precisely, the Logrank test is employed to conduct the 
significance testing on two sets of augmented edge-weights: internal weight set and external weight 
set. The presented approach is evaluated on both weighted networks and un-weighted networks. The 
experimental results show that our method can outperform prior widely used evaluation metrics on 
the task of individual community validation.

Community detection is a fundamental issue in network data analysis. It aims at dividing nodes in a network 
into different groups called communities. It is expected that there should be more edges within each community 
and few edges across different communities. The community detection procedure has been widely used in many 
fields such as social science, biology, medicine, and  chemistry1.

During the past decades, numerous community detection algorithms have been developed from different 
 perspectives1–4. Despite these developments, the issue of deciding whether a derived community is real or not is 
far from being resolved. Such a community validation issue fits naturally into a framework of hypothesis testing, 
in which the null hypothesis is that the target community is not real.

In fact, many metrics such as modularity and conductance have been proposed for assessing the goodness 
of a potential  community5. However, most of these metrics are not developed based on a rigorous significance 
testing  procedure6. Theoretically, the realness of a community should be an analytical problem relative to some 
particular definitions of communities. Towards this direction, several research efforts have been conducted to 
analytically assess the realness of one candidate community, such as  OSLOM7,8 ,  ESSC9,  DSC10,  CCME11, and 
 FOCS12. Among these methods, only OSLOM and CCME focus on validating a community in weighted networks. 
Unfortunately, in both OSLOM and CCME, the statistical significance of a target community is assessed through 
the probability of association between each node and the  community13. One method that can directly test the 
realness of a community in edge-weighted graphs is still not available.

We formulate the community significance assessment problem in edge-weighted networks as a non-para-
metric two-sample test issue on censored data. In this paper, the edge-weights are assumed to be non-negative 
and continuous. The network structure and edge-weights may contain substantial measurement errors during 
the network inference  process14. Based on this observation, we model each edge-weight as a censored observa-
tion in survival  analysis15. If there is no edge between two nodes, the corresponding edge-weight is 0, which is 
either unobserved or truncated. Consequently, we construct two groups of edge-weights: one group is composed 
of edge-weights within the community and another group is composed of edge-weights between nodes in the 
community and remaining nodes outside the community. If the target community is not a real community, it is 
reasonable to expect that there is no difference between these two groups. Therefore, we can utilize a distribution-
free two-sample test procedure in censored data analysis to assess the statistical significance of the candidate 
community. In this paper, we choose the popular Logrank  test16 to fulfill this task.

One of the characteristics of the presented formulation is that the unreliability of edge-weights is fully incor-
porated into the model. Meanwhile, it provides a general framework for validating weighted communities from 

OPEN

1School of Software, Dalian University of Technology, Dalian 116024, China. 2Key Laboratory for Ubiquitous 
Network and Service Software of Liaoning Province, Dalian 116024, China. *email: zyhe@dlut.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99175-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20304  | https://doi.org/10.1038/s41598-021-99175-2

www.nature.com/scientificreports/

a new angle. In particular, for un-weighted networks, we can reveal some interesting connections between our 
formulation and the community evaluation metric in Ref.17. We evaluate our method on both weighted networks 
and un-weighted networks. Experiments demonstrate that our method is comparable with prior state-of-the-art 
metrics on individual community assessment.

The rest of this article is arranged as follows. In the next section, our formulation is described in detail. There-
after, the experimental results are presented and some discussions are given in the last two sections.

Method
Notations. Given a weighted network G = (V ,E,W) , where V is the node set, E is the edge set, and W is the 
set of positive weights. For a given subset of nodes S ( S ⊆ V  ), its induced subgraph G[S] can be regarded as a 
candidate community. All edges incident on the nodes in S could be divided into two groups: the set of internal 
edges within G[S] that are incident on two nodes from S and the set of external edges of G[S] which are incident 
on one node from S and another node from V\S.

Formulation. To test if a given candidate community in the weighted network is a real one, we present a 
formulation based on the non-parametric two-sample test for censored data. The main workflow of our method 
is shown in Fig. 1, which will be elaborated below.

In the first step of our method, we regard each edge-weight as a censored observation. As shown in Fig. 1 a, 
the set of edge-weights is augmented by including the weights of missing links. The edge-weights of these missing 
links are 0s since they are either truncated or unobserved. Then, we can construct two augmented sets of edge-
weights: the set of internal edge-weights Win

S = {win
1 ,w

in
2 , . . . ,w

in
(

|S|
2

)} and the set of external edge-weights 

Wout
S = {wout

1 ,wout
2 , . . . ,wout

|S|(|V |−|S|)}.

Figure 1.  The main workflow of our method. (a) The network with augmented edge-weights for missing links. 
Each solid line represents a real edge and each dashed line denotes an augmented edge that is not included 
in E. In this network, there are totally 7 nodes and the candidate community is the sub-graph induced by the 
node set {1,2,3,4}. The size of each line is proportional to the corresponding edge-weight and the weights of 
augmented edges for missing links are zeros. (b) The ordered edge-weights. For the given candidate community 
in (a), we can construct two sets of edge-weights. One set is composed of the internal edge-weights and 
another set is composed of the external edge-weights. We can order these two sets to check if their empirical 
cumulative distribution functions are different. If the candidate community is not a real one, it can be expected 
that these two sets of weights have the same distribution. In Logrank test, these two sets are merged to generate 
a combined ordered edge-weight list. (c) Contingency tables for distinct weights. For each of the five distinct 
weights in (b), we can construct a contingency table. For instance, there are 2 edges whose weights are 3.2 and 
these two edges are internal edges, the first column of the leftmost table is (2, 0, 2). The second column of the 
leftmost table is (4, 12, 16) since there are 4 (and 12) internal (and external) edges whose weights are less than 
3.2. (d) The final test statistic and its formula. Based on the contingency tables in (c), we can calculate the test 
statistic Z and the corresponding p-value to quantify the statistical significance of the candidate community. 
The Bonferroni correction is further applied to deliver an adjusted p-value, which is obtained by multiplying the 
original p-value with number of all possible communities of the same size.
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Let Fin(·) and Fout(·) be complementary cumulative distribution functions for internal and external weights, respec-
tively. Then, the community assessment issue can be modeled as a two-sample test problem, in which the hypotheses 
under consideration are:

H0 : Fin(w) = Fout(w);
H1 : Fin(w) > Fout(w) , for at least one w, where w ≥ 0 is the non-negative weight.
Note that a larger edge-weight indicates a stronger connection between two corresponding nodes and both Fin(·) 

and Fout(·) are complementary cumulative distribution functions. If H0 is violated and H1 holds, then there will be 
more internal edges with positive edge-weights and the internal edges are associated with larger weights. Hence, the 
proposed two-sample test is capable of quantifying the realness of a target community in a statistically sound manner.

To solve the above two-sample test issue, many effective methods can be utilized. Here we adopt the Logrank test 
due to its popularity in censored data analysis. As shown in Fig. 1b, Win

S  and Wout
S  are first merged to generate a new 

set WS and then all edge-weights in WS are sorted in a non-increasing order. For each distinct edge-weight wi in WS , 
we can construct a 2× 2 table as shown in Fig. 1c. In Fig. 1c, dini  , douti  and di denote the number of internal edges, the 
number of external edges and the number of edges in WS whose edge-weights are wi . Meanwhile, nini  , nouti  and ni denote 
the number of internal edges, the number of external edges and the number of edges in WS whose edge-weights are 
not bigger than wi.

Based on above notations, the test statistic Z of Logrank test is:

where q is the number of distinct edge-weights in WS , Ni = nini + nouti ,Eini =
nini
Ni
di and vini =

nini di(Ni−di)n
out
i

(Ni)
2(Ni−1)

 . 
When H0 is true, Z approximately follows a N(0, 1) distribution. In Eq. (1), each ( dini − Eini  ) can be regarded as 
the “observed minus expected” difference with respect to the number of internal edges of a specific weight. Thus, 
a real community should be associated with a large Z statistic. Based on this approximation, the corresponding 
p-value can be obtained to assess the statistical significance of G[S].

In regard to the combinatorial nature of community detection, the community significance assessment issue is 
actually a multiple hypothesis testing problem. Hence, we need to conduct a multiple testing correction by calculating 
an adjusted p-value for each candidate community. The most popular method for multiple testing correction is probably 
the Bonferroni correction approach, in which the original p-value is multiplied by the number of tested hypotheses to 
obtain an adjusted p-value. In our context, the number of tested hypotheses can be calculated as the number of possible 
communities of the same size. More precisely, for a given community G[S] of size |S|, its adjusted p-value is calculated 

as padj(G[S]) = min{1, p(G[S])×

(

|V |
|S|

)

} , where p(G[S]) is original p-value of G[S] and |V| is the number of nodes 

of the graph. In the experiment, the adjusted p-value is used instead of the original p-value in our method.

Un-weighted special case. For un-weighted networks, the edge-weight is either 1 or 0, and thus q = 2 in 

Eq. (1). For the weight w1 = 1 , we have: nin1 =
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)

 , nout1 = |S|(|V | − |S|) , and thus 
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the weight w2 = 0 , we have: nin2 = din2  , nout2 = dout2  , N2 = d2 , and thus Ein2 =
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In Ref.17, a new community evaluation metric has been presented, which can expressed as follows based on 
our notations:

Thus, we can get the mathematical relation between Z (our test statistic for un-weighted networks) and Z′ (the 
community evaluation metric in Ref.17):

As shown in Eq. (4), we can quantitatively establish the connection between the special case of our method for 
un-weighted networks and one popular metric in the literature.

Results
To test whether the presented p-value is effective on community evaluation, we conduct a series of experiments 
according to the pipeline shown in Fig. 2. Firstly, existing community detection algorithms are employed to 
produce a set of identified communities on networks with ground-truth communities. Then, we use both inter-
nal validation metrics (e.g. our method, modularity) and external validation metrics (e.g. precision, recall) to 
quantitatively validate each identified community. Since external validation metrics are calculated based on the 
ground-truth information, which can be used as the “gold standard”. In other words, one internal validation 
metric is a good community validation index if it is highly correlated with each external validation metric on the 
assessment of identified communities. Based on this assumption, we calculate the Pearson’s correlation coefficient 
between two vectors (one is generated from an internal validation metric and another one is produced by an 
external validation metric), where each vector is composed of the validation index values on a set of identified 
communities. Finally, the Friedman  test18 and three post-hoc tests: the Nemenyi  test19, the Bonferroni–Dunn 
 test20 and the Holm’s step-down  test21 are employed to check if our method is significantly better than other 
popular internal validation metrics.

Data sets. In our experiment, we use two groups of data sets. One group is composed of four weighted 
PPI (Protein–Protein Interaction) networks:  Collins200722,  Gavin200623,  Krogan2006_core24,  Krogan2006_
extended24. There are three sets of ground-truth communities for these weighted PPI networks, where each set 
is collected from one of the following databases of protein complexes:  CYC200825,  MIPS26 and  SGD27. There 
are 408, 203 and 323 ground-truth communities in these three sets, respectively. Another group is composed of 
six real un-weighted networks:  Karate28,  Football29, Personal Facebook (Personal)9, Political blogs (PolBlogs)30, 
Books about US politics (PolBooks)31, and  Railways32. The topological characteristics of six real un-weighted 
networks are provided in Supplementary Table S1.

Parameter setting. We choose three classical community detection methods:  SLPAw33,  Infomap34 and 
 Louvain35 to detect communities. In our experiment, we run these three methods with their default parameter 
settings for weighted graphs.

Experiment. We compare our method with four internal metrics:  conductance36,  modularity37, p-value in 
 OSLOM7 and p-value in  CCME11. The p-value of OSLOM is obtained with its default setting and the p-value 
of a community in CCME is the maximal p-value of all nodes within the community. Since Conductance, the 
p-values in our method, OSLOM and CCME are negatively correlated with Jaccard coefficient, Precision and 
Recall, we use the negative Pearson’s correlation coefficient for these three metrics in the performance com-
parison. Then, for the set of reported communities on each data set from each community detection algorithm, 
we can use the Pearson’s correlation coefficient with respect to each external validation metric to check which 
internal validation metric is better. More precisely, a better internal validation metric should have a larger cor-
relation coefficient. The detailed results are recorded in the Supplementary Tables S2–S5. From these tables, we 
can obtain the rank distribution for each internal validation metric, where a larger correlation coefficient will be 
assigned to a smaller rank. The rank distributions on weighted PPI networks and un-weighted networks in terms 
of box plots are provided in Fig. 3a,b, respectively.

From Fig. 3, it can be observed that our method can achieve the smallest average rank among five internal 
validation metrics. To check if our method is really better than the other four internal validation metrics, we first 
apply the Friedman test to assess the null hypothesis that all methods have the same rank. The χ2

F value in the 
Friedman test on weighted PPI networks and un-weighted networks is 200.5704 and 45.6889, respectively. This 
means that the performance gaps among different internal validation metrics are statistically significant when 
the significance level is specified to be 0.05. Then, we further employ the Nemenyi test, the Bonferroni-Dunn 
test and the Holm’s step-down test to compare our method with each competing internal validation metric in 
a pair-wise manner.

In Table 1, we record the rank difference between our method and each competing method on both weighted 
PPI networks and un-weighted networks. As shown in Table 1, the rank difference values between our method 
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and Modularity, Conductance and CCME on weighted PPI networks are larger than the critical difference (CD) 
thresholds for both the Nemenyi test and the Bonferroni–Dunn test when the significance level is 0.05. This 
indicates that our method is significantly better than Conductance, Modularity and CCME under these two 
tests. On the un-weighted networks, our method is significantly better than OSLOM and CCME according to 
the Bonferroni–Dunn test and the Nemenyi test.

In Table 2, we list the p-values for the average rank difference between our method and each competing 
method based on the Holm’s step-down test. Besides, the adjusted significance level for each position after 
sorting the p-values in a non-decreasing order is provided as well. As shown in Table 2, all the p-values on PPI 
networks are smaller than the corresponding adjusted significance levels. This indicates the superiority of our 
method over other four metrics on weighted networks is also confirmed by the Holm’s step-down test. Similar to 
results in Table 1, we can claim that our method is significantly better than OSLOM and CCME on un-weighted 
networks based on the hypothesis testing results in Table 2.

Discussion
We have presented a general approach for assessing the statistical significance of a community from weighted 
networks. In this new formulation, the weights of missing links are set to be zeros and all edge-weights are treated 
as truncated observations. Based on this assumption, the community validation issue is modeled as a two-sample 
test problem on censored data. The presented formulation provides a general framework for community valida-
tion from a significance testing perspective. Based on this framework, we can either reveal the rationale underly-
ing some existing community validation metrics or develop new community evaluation measures.

Figure 2.  The main workflow of our experiments. Given a network with three ground-truth communities: {1, 
3, 4, 5}, {2, 6, 7, 8} and {9, 10, 11, 12}, three communities are detected by the SLPAw algorithm: A = {1, 3, 4, 5} , 
B = {2, 6, 7, 8, 9} , C = {10, 11, 12} . Each identified community can be assessed using both the internal validation 
metric and the external validation metric. For example, the negative log value of our method and the precision 
for the identified community A is 9.39 and 1, respectively. Then, a vector for each metric on the set of identified 
communities is readily available. For instance, the validation index vector for our method and the Jaccard 
coefficient is (9.39, 6.31, 7.56) and (1, 0.8, 0.75), respectively. Consequently, the Pearson’s correlation coefficient 
is calculated between each pair of vectors: one from an internal validation metric and another one from an 
external validation metric. Based on the correlation coefficients, four statistical tests are further applied to 
check if our method is really better than other internal validation metrics on the task of individual community 
assessment.
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