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Brain age estimation at tract group 
level and its association with daily 
life measures, cardiac risk factors 
and genetic variants
Ahmed Salih1*, Ilaria Boscolo Galazzo1, Zahra Raisi‑Estabragh2,3, Elisa Rauseo2,3, 
Polyxeni Gkontra4, Steffen E. Petersen2,3, Karim Lekadir4, André Altmann5, Petia Radeva4 & 
Gloria Menegaz1

Brain age can be estimated using different Magnetic Resonance Imaging (MRI) modalities including 
diffusion MRI. Recent studies demonstrated that white matter (WM) tracts that share the same 
function might experience similar alterations. Therefore, in this work, we sought to investigate such 
issue focusing on five WM bundles holding that feature that is Association, Brainstem, Commissural, 
Limbic and Projection fibers, respectively. For each tract group, we estimated brain age for 
15,335 healthy participants from United Kingdom Biobank relying on diffusion MRI data derived 
endophenotypes, Bayesian ridge regression modeling and 10 fold‑cross validation. Furthermore, we 
estimated brain age for an Ensemble model that gathers all the considered WM bundles. Association 
analysis was subsequently performed between the estimated brain age delta as resulting from the six 
models, that is for each tract group as well as for the Ensemble model, and 38 daily life style measures, 
14 cardiac risk factors and cardiovascular magnetic resonance imaging features and genetic variants. 
The Ensemble model that used all tracts from all fiber groups (FG) performed better than other 
models to estimate brain age. Limbic tracts based model reached the highest accuracy with a Mean 
Absolute Error (MAE) of 5.08, followed by the Commissural ( MAE = 5.23 ), Association ( MAE = 5.24 ), 
and Projection ( MAE = 5.28 ) ones. The Brainstem tracts based model was the less accurate achieving 
a MAE of 5.86. Accordingly, our study suggests that the Limbic tracts experience less brain aging or 
allows for more accurate estimates compared to other tract groups. Moreover, the results suggest 
that Limbic tract leads to the largest number of significant associations with daily lifestyle factors than 
the other tract groups. Lastly, two SNPs were significantly (p value < 5E−8 ) associated with brain age 
delta in the Projection fibers. Those SNPs are mapped to HIST1H1A and SLC17A3 genes.

Aging is a complex process with substantial impact across multiple organ systems, yet to be fully characterised. 
In the specific case of the brain, previous studies have found evidence of considerable structural alterations of 
white and grey matter (WM/GM) structures as well as of morphological and functional connectivity changes 
across different  areas1. These modifications are associated with distinct aspects of cognitive functions, emotions, 
and neurodegenerative  disorders2. Several studies have demonstrated that groups of WM tracts that share the 
same function experience similar alterations during the life course and in specific brain disorders. In particular, 
Yang et al.3 investigated the association of brain aging with WM integrity and functional connectivity in a group 
of healthy subjects. Their findings demonstrated that Projection, Association and Commissural fibers were sub-
stantially affected by aging resulting in a significant reduction of their WM integrity, while Brainstem tracts were 
relatively preserved. In another study, Bender et al. compared different diffusion-based indices estimated over 
Association, Commissural and Projection fibers again in a healthy  population4, demonstrating a greater micro-
structural decline over time in the first FG compared to the Commissural and Projection ones, and a differential 

OPEN

1Department of Computer Science, University of Verona, Verona, Italy. 2William Harvey Research Institute, NIHR 
Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, 
UK. 3Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, 
UK. 4Departamento de Matemàtiques i Informàtica, University of Barcelona, Barcelona, Spain. 5Centre for Medical 
Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, 
London, UK. *email: ahmedmahdeeabdo.salih@univr.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99153-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20563  | https://doi.org/10.1038/s41598-021-99153-8

www.nature.com/scientificreports/

aging of cerebral WM. Moreover, the tracts that connect frontal and parietal heteromodal cortices have been 
shown to be more prone to age-related differences than those from projection  fibers5. In this context, the so-
called “lastly maturing, first going out” phenomenon, grounding on previous magnetic resonance imaging (MRI) 
 evidence4,6,7, is of great importance. This refers to a mirroring pattern of development and aging of the human 
brain, where the last regions to develop are degenerating relatively  early6. In particular, primitive sensorimotor 
structures encounter the most rapid development and greatest preservation, while more advanced structures (e.g., 
prefrontal cortex) seem to have slower development and faster decline, leading also to differential developmental 
trajectories across WM  tracts5–7. Therefore, existing work suggests differential aging-related changes depending 
on the specific WM FGs, which might result in diverse patterns of disease and cognitive impairment. However, 
the determinants of these different alteration patterns have not been adequately investigated so far.

Neuroimaging modalities can be adopted to estimate the so-called brain age which allows monitoring the 
longitudinal progression of brain during lifecourse. This is defined as the apparent biological age of the brain, 
when comparing individuals’ data against a population dataset spanning a range of  ages8,9. The difference between 
predicted brain age and actual (chronological) age, generally referred to as “predicted age delta” (brain-PAD), 
is often computed to verify whether a subject’s brain appears younger or older than their chronological  age10. 
Indeed, since humans do not experience brain aging at the same rate and pronounced differences possibly related 
to genetic and environmental factors are present, brain-PAD can be exploited as a novel biomarker to assess 
brain aging progression in both healthy and diseased populations. Greater brain age (positive brain-PAD) has 
been associated with increased risk of neurodegenerative diseases, whilst younger brain age (negative or small 
brain-PAD) correlates with healthy environmental exposures and lifestyle  habits11. Among these factors, daily 
lifestyle, physical activity, electronic device use, and sleeping habits have all shown significant effects on brain 
progress during the  lifecourse9,12, with smoking and greater alcohol intake frequency closely linked to increased 
brain-PAD for instance. Similarly, genetic factors also have a crucial role in brain aging.

In a recent study, Jonsson et al.8 demonstrated the presence of two single nucleotide polymorphisms (SNPs) 
significantly associated with brain-PAD by relying on a genome wide association study (GWAS), which were 
correlated with reduced WM surface area and reduced sulcal  width8. Other studies identified several SNPs 
associated with brain-PAD, with the most significant ones located in MAPT12 and TMEM106B  genes13. These 
two genes have been shown to be closely associated with frontotemporal  dementia14, and MAPT has also been 
considered as a model of interaction in Parkinson’s disease between functional disease outcomes and  genetic15.

Furthermore, there is a growing evidence suggesting complex cross-system interactions between brain and 
cardiovascular  systems17–19. Indeed, cardiovascular risk factors (CRFs) have been already associated with poorer 
cognitive function. Precisely, higher body mass index (BMI) has been linked to poorer performance across 
multiple cognitive indications including working memory, attention, delayed recall, and category  fluency20. 
In addition, other risk factors such as diabetes and hypertension have been associated with unhealthy brain 
aging, abnormal neuroanatomical alterations, and increasing risk of developing  AD21. Finally, DeLange et al.22 
demonstrated that CRFs such as stroke risk score and alcohol intake are associated with older appearing brains. 
All these elements deserve further investigations to better understand whether they might influence the brain 
aging processes differently.

In this context, neuroimaging data derived from MRI sequences have demonstrated to provide accurate 
estimates of the apparent age of individuals’ brains, generally relying on age regression  models23. Most brain-
age models only use T1-weighted structural MRI, reflecting brain volumes. However, the possibility to use 
complementary modalities mapping different aspects of brain structure and function has opened the way to 
the estimation of modality-specific brain aging models. In particular, diffusion MRI (dMRI), resting-state/task 
functional MRI (fMRI) and susceptibility weighted imaging are currently exploited in different studies to extract 
novel image-derived phenotypes (IDPs) to be used in specific brain-age models, thanks to the new opportunities 
offered by large-scale multimodal databases such as the  UKB24. . Statistical methods for modeling brain age using 
neuroimaging data are generally highly accurate, with MAE of predictions in the range of 4-5 years for most of 
the studies relying on different regression approaches such as simple linear regression, support vector regression 
(SVR) and least absolute shrinkage and selection operator (LASSO)9,11,12,23.

In addition, most of these previous studies have demonstrated better results when including multimodal 
neuroimaging data rather than a single modality in the  models22,26,27. In particular, findings from these multi-
modality studies suggest that dMRI measures have higher accuracy in predicting brain age compared to those 
derived from fMRI, SWI or even anatomical images in some  cases1,11. The diffusion-based features are generally 
extracted starting from the microstructural maps estimated using different models, such as the diffusion tensor 
imaging (DTI) and the neurite orientation dispersion and density (NODDI), and then averaging the correspond-
ing values over several WM tracts. Fractional anisotropy (FA) along with indices of diffusivity (mean/axial/radial 
[MD/AD/RD]) can be estimated from the DTI model, informing on the degree of anisotropy/diffusivity of dif-
fusion  process28. Conversely, more complex indices are derived from NODDI, a compartmental model where 
brain microstructure is described in terms of a set of predefined parameters that is neurite orientation dispersion 
(OD), representing the directional overall coherence of modeled axons, isotropic volume fraction (ISOVF), show-
ing the unhindered water volume fraction, and intracellular volume fraction (ICVF) that represents neuronal 
 density29–31. Previous works have demonstrated the importance of DTI and NODDI IDPs for estimating brain 
age in both healthy and diseased  populations32,33. Moreover, microstructural patterns have been demonstrated 
to follow different trajectories in brain aging within WM structures. In particular, FA tends to decrease during 
aging while MD, AD and RD have the opposite  pattern9,34.

In this study, we aimed at estimating and comparing diffusion-specific brain ages in a large cohort free from 
clinically diagnosed neurological disease from the UKB database, relying on dMRI measures of different FGs in 
order to assess the impact of aging on WM at the tract-group level. Indeed, investigating brain aging for tracts 
with shared functionality may permit a more accurate assessment compared to brain aging for the whole brain. 
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In addition, for each FG, we evaluated the relationship between brain predicted ages and several factors span-
ning across different scales, relating in particular to daily lifestyle, health, cardiac measures and genetics to verify 
whether a differential association might be present in specific WM tracts. This will also allow to identify those 
factors that can negatively impact brain aging, providing further insights on its complex mechanisms.

Materials and methods
Datasets. Participants. Data from n = 16,394 participants with complete brain and cardiac MRI assess-
ment were initially downloaded from the UKB database. Of these, 1059 subjects who reported neurological 
disorders that could directly affect cognitive function were excluded in order to include only people who met 
criteria for being neurologically intact at the time of scanning. These were identified using the self-reported 
medical conditions at baseline extracted from detailed questionnaires that the UKB participants had to answer, 
the relevant ICD-10 code, hospital episode statistics, and algorithmically-defined outcomes. This led to a final 
group of 15,335 subjects (mean age 54.79± 7.45 , 7277 males, 8058 females). The complete list of conditions and 
ICD-10 codes used as inclusion/exclusion criteria are available in supplementary table 1.

All the methods were conducted in accordance with the relevant guidelines and regulations and all partici-
pants provided informed consent. UKB received ethical approval from the NHS National Research Ethics Service 
on 17th June 2011 (Ref 11/NW/0382) and extended on 10th May 2016 (Ref 16/NW/0274). More details can be 
found on the UKB resource page https:// bioba nk. ndph. ox. ac. uk/ showc ase/ catal ogs. cgi. The present analyses 
were conducted under data application number 2964.

Brain and cardiac MRI features. The UKB brain imaging protocol was implemented on a 3T Siemens scanner 
(Skyra, VD13A SP4, Siemens Healthcare, Erlangen, Germany) and included six different sequences, covering 
structural, diffusion and functional imaging for a total of 35 min scan time. In particular, a multi-shell protocol 
has been used for dMRI data, with two b-values ( b = 1000 , 2000 s/mm2 ), a 2-mm isotropic resolution and a 
multiband acceleration factor of 3. 50 diffusion-encoding directions were acquired per shell, covering a total of 
100 distinct directions over the two b-values. Full details on the neuroimaging data can be found at https:// bioba 
nk. ctsu. ox. ac. uk/ cryst al/ cryst al/ docs/ brain_ mri. pdf. Cardiac MRI was performed on a 1.5T Siemens scanner 
(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare) according to a pre-defined  protocol36,37. Left 
and right ventricular (LV, RV) function was assessed using standard long and short axis acquisitions.

Genotype data. UKB genotyped genetic data for 488,377 participants were obtained using two genotyping 
arrays. A small subsets of the participants (49,950) involved in UKB Lung Exome Variant Evaluation (UK 
BiLEVE) study were genotyped using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix. Con-
versely, the majority of the participants (438,427) was genotyped using the closely related Applied Biosystems 
UKB Axiom Array. More details about genotyping and genotype calling steps can be found  in38.

Feature extraction. Brain microstructure feature extraction. In the current study, we relied on the IDPs 
derived centrally by the researchers involved in the UKB project and made available via the data showcase 
( https:// bioba nk. ctsu. ox. ac. uk/ cryst al/ index. cgi). Of these, we focused on the 675 dMRI IDPs extracted for each 
participant using the following pipeline. First, both the diffusion tensor and the NODDI models were fitted 
to the pre-processed data leading to nine voxelwise microstructural maps, namely FA, MD, axial diffusivity 
(L1), radial diffusivities (L2, L3) and mode of anisotropy (MO) from DTI, and ICVF, ISOVF, and OD from 
NODDI. Two sets of measures were used as microstructural features, both obtained from the UKB repository 
and extracted following two different  approaches24,39. The first used tract-based spatial statistics (TBSS). Each 
individual dMRI map was aligned to a standard-space WM tract skeleton and a series of ROIs was then defined 
as the overlap of this skeleton with 48 standard-space tract masks from the JHU ICBM-DTI-81  atlas40. For each 
skeletonised microstructural index, the mean value was calculated in each region, leading to a total of 432 IDPs 
(that is 48 ROIs times 9 IDPs). The second relied on probabilistic tractography. A total of 27 major tracts were 
identified using standard-space start/stop ROI masks defined by AutoPtx toolbox (http:// fsl. fmrib. ox. ac. uk/ fsl/ 
fslwi ki/ AutoP tx). The mean value of each DTI/NODDI parameter was calculated across each tract and weighted 
by the tractography output as in Alfaro et al.39 in order to emphasize values in regions most likely to belong to the 
tract of interest, resulting in a total of 243 IDPs (27 tracts times 9 IDPs). Table 2 in the supplementary material 
shows these tracts and their FG.

Each ROI and tract was subsequently assigned to one out of five FGs following the fiber tract-based  atlas41. 
In particular, the following FG were considered: (1) Association; (cortex-cortex connections); (2) Brainstem; 
(3) Commissural (left-right hemispheric connection); (4) Limbic; and (5) Projection (cortex-brainstem, cor-
tex–spinal cord and cortex-thalamus connections) fibers. Each FG consisted of a different number of tracts, 
that is: 22 for Association, 13 for Brainstem, 13 for Commissural, 9 for Limbic, and 18 for Projection. An 
illustration of these five fiber families is reported in Fig. 1, where the different tracts are depicted in different 
colors. Association fibers interconnect different cortical areas in the same  hemisphere42. These might be short 
association fibers that connect adjacent gyri, or long association fibers linking more distant parts of the cerebral 
cortex. Important examples of this category are the superior/inferior longitudinal fasciculus, inferior fronto-
occipital fasciculus, and uncinate  fasciculus43. Brainstem fibers involve the tracts that connect cerebrum to the 
spinal cord and  cerebellum44. These includes the corticospinal tract, the posterior column-medial lemniscus 
pathway and the spinothalamic tract. Commissural fibers interconnect corresponding cortical regions of the 
two hemispheres and are mainly represented by the corpus callosum and anterior  commissure42. Limbic fibers 
involve structure in both sides of  thalamus45. Fornix is one of the main vital tract of this  system46, alongside the 
Cingulum bundle that connects parietal, frontal and temporal  lobe47. Finally, Projection fibers connect cortical 

https://biobank.ndph.ox.ac.uk/showcase/catalogs.cgi
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/index.cgi
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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areas with deep nuclei, cerebellum, brainstem, and spinal  cord48. Corticospinal and corona radiata tracts are 
the two main examples for this  category49. By subsequently assigning each ROI and tract to the respective FG, 
summary IDP values could be finally derived by averaging across ROIs and tracts, respectively, in each FG. In 
this way, the whole set of IDPs were assigned to each FG resulting in a total of 18 IDPs (9 from the ROI-based 
and 9 from the tract-based analyses).

Cardiovascular feature extraction. Cardiovascular Magnetic Resonance (CMR) data were analysed using an 
automated  pipeline50. The extracted cardiovascular indices included measures of LV and RV structure and 
function. Specifically, the indices derived for the LV were end-diastolic volume (LVEDV), end-systolic volume 
(LVESV), stroke volume (LVSV) and mass (LVM). The RV indices included stroke volume (RVSV), end-dias-
tolic volume (RVEDV) and end-systolic volume (RVESV) were considered. LV and RV volumes are markers of 
cardiac remodelling, from these stroke volume may be derived as a measure of ventricular function. LVM is an 
independent risk predictor in clinical cohorts and an indicator of heart aging in population cohorts. To correct 
for variation in CMR metrics related to body size, these measures were indexed to body surface area (calculated 
as per Du Bois formula)51. As an additional measure of arterial health in a larger sample, we considered arterial 
stiffness index (ASI) derived from finger  plethysmography52. ASI was measured at the baseline UKB visit using 
the PulseTrace PCA2 (CareFusion, USA) device according to a pre-defined protocol, UKB Arterial Pulse-Wave 
Velocity (2011) that is available at https:// bioba nk. ndph. ox. ac. uk/ showc ase/ showc ase/ docs/ Pulse wave. pdf. Out-
liers were removed from the ASI variable using a 1.5 interquartile range (IQR) rule. Finally, CRFs included 
hypertension, diabetes, deprivation (reported in UKB as the Townsend index), body surface area (BSA), BMI 
and exercise level.

Lifestyle features. Regarding daily life measures, 38 variables were available in the UKB database at baseline. 
The lifestyle and environment measures included seven categories that are: physical activity (7 measures), sun 
exposure (2 measures), electronic devise use (2 measures), smoking (2 measures), sleeping habits (5 measures), 
alcohol (3 measures) and diet (17 measures). All the used variables are available in supplementary Table 3.

Brain age estimation. All the analyses performed in our study were carried out using Python 3.8.5 and 
Scikit-learn version 0.23.2. A tract-based healthy aging model was defined for each of the five FG, using the 
corresponding 18 dMRI IDPs as neuroimaging predictors and the chronological age as dependent variable. To 
account for the different measurement scales, the features were normalized to zero mean and unit  variance9. 
Sex, education level, height and volumetric scaling from T1-weighted head image to standard space were used 
as covariates because they could be statistically associated with the outcome variable, as previously reported in 
similar  studies9,11,53. A Bayesian ridge regression model was run in combination with a 10-fold cross-validation, 
where the data samples were randomly assigned into ten equal-sized groups. For each group of left out data, the 
other 90% of subjects were used to estimate the model parameters which were then applied to this additional 
group for validation. The performance of each model was assessed using MAE and Coefficient of Determination 
( R2).

Several studies have revealed a proportional bias in brain age estimation related to regression model dilution, 
leading to a significant age-dependency between delta age and chronological  age54,55 that needs to be statistically 
corrected. In this study, we adopted the method proposed by Beheshti et al.54 which entailed calculating the 
regression line between brain-PAD and chronological age in the training set:

where D is the brain-PAD from training data, α and β represent the slope and the intercept of the linear regres-
sion model, and � is the corresponding chronological age. Then, these intercept and slope values were used to 
correct the predicted brain age in the validation set set as follows:

where CPBA represents the corrected predicted brain age (bias-free). After bias correction, the brain-PAD was 
calculated as the actual age subtracted from the brain-predicted age. Pearson correlation was calculated between 
actual and predicted brain age as well as actual age and brain-PAD, both before and after the bias correction 

(1)D = α ∗�+ β

(2)CPBA = Predicted BrainAge − (α ∗�+ β)

Figure 1.  White matter tract groups.

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/Pulsewave.pdf
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steps. An Ensemble tract-based aging model was finally defined using the overall 90 dMRI IDPs (18 from each 
FG), and the same analyses detailed above were implemented.

Association analysis. In order to highlight the role of the different variables to model brain age, the asso-
ciation between delta values as resulting from the five FG models and a set of imaging/non-imaging variables 
was assessed using linear regression model. This included the corresponding 18 dMRI IDPs, 14 CRFs/CMR 
measures, and 38 daily life measures. In addition, the same analyses were performed for the brain-PAD values 
derived from the Ensemble model, with the only difference being represented by the associations with the whole 
set of 90 IDPs for the dMRI part (rather than 18 only). In all models, the brain-PAD represented the outcome 
measure, while the feature of interest was the independent variable alongside all the above mentioned covari-
ates plus  age9,11. The resulting p-values were Bonferroni-corrected for multiple comparisons at alpha = 0.0556, 
assuming that each model is independent from the others. The p-values were multiplied by the number of tests 
performed in each analysis, 18 for the associations with the IDPs in each of the five FG models and 90 for the 
Ensemble model. The association was considered significant if the corrected p-value was less then 0.05.

Of note, Cook’s distance was used to identify potential influential observations before performing the asso-
ciation analyses. In particular, a subject was removed if the Cook’s distance was greater than 3 times the mean 
distance of all the  subjects12. The association between genetic variants and brain-PAD values as resulting from 
each model was also conducted. The quality control steps on SNPs included Minor allele frequency (MAF) 
thresholding at 0.01, missing rate less than 0.02 and Hardy–Weinberg equilibrium p value >= 1E−6 . Quality 
control on samples ensured that all participants had genotyping rate > 0.98 , heterozygosity rate within 3 standard 
deviation, matched genetic/reported gender and were of European ancestry (according to both genetic ethnicity 
based on principal component analyses and self-reported ethnicity). Related samples were removed based on 
kinship coefficient > 0.1 . The quality control steps resulted in 574,492 autosomal SNPs and 12,364 subjects for the 
GWAS analyses. Thereafter, linear regression was performed using  PLINK57 and adjusted for education, gender, 
age, volumetric scaling from T1-weighted head image to standard space, and 40 genetic principal components 
of ancestry. For each GWAS analysis,  FUMA58 was used to map the significant SNPs to genes based on positional 
mapping and eQTL. Using FUMA and GTEx (https:// gtexp ortal. org/ home/), we also identified Expression quan-
titative trait loci (eQTL) to take advantage of gene expression. Finally, we looked at UKB genetic data (http:// big. 
stats. ox. ac. uk/)59 to find association between the significant SNPs and other phenotypes.

Results
Brain age estimation. The impact of aging was separately assessed in terms of MAE and R2 values after 
fitting the five considered multivariate linear FG-based models plus the Ensemble one. The mean and standard 
deviation of such values across a 10-fold cross-validation were reported in order to probe the reliability of the 
estimation. Results are summarized in Table 1 where the columns 2–6 correspond to the five FG, that is, Associa-
tion, Brainstem, Commissural, Limbic and Projection fibers, and the last column reports the results for the FG 
Ensemble. In the table, the Pearson correlation coefficient between the actual age and the predicted age before 
(CAPB) and after (CAPA) correction, the actual age and the brain-PAD before (CADB) and after (CADA) cor-
rection are also reported in the last four rows.

As it can be observed, the performance is quite uniform across FG, with the exception of the Brainstem group 
especially regarding the R2 value that is the lowest. The best MAE was obtained for the tract Ensemble model 
followed by the Limbic FG, which also corresponds to the highest R2 . The last four rows prove that the age-bias 
was successfully removed.

Association studies. IDPs association with brain‑PAD. Linear regression results describing the relation-
ships between the bias-adjusted brain-PAD values for the five FG-based models and each microstructural IDPs 
are illustrated in Fig. 2. In addition, results for the Ensemble model are also reported, including in this case the 
associations with 90 dMRI IDPs rather than 18 as in the case of the previous five FG models. The coefficient 
value are unitless because we standardized the IDPs and brain-PAD before performing the analysis. The coef-

Table 1.  Performance of the five FG-based models plus the Ensemble one to estimate brain age in terms 
of MAE and R2. The last four rows provide the CAPB, CAPA, CADB and CADA, respectively. The best 
performing model is identified by star symbol. The last four rows provide the CAPB, CAPA, CADB and 
CADA, respectively. The best performing model is identified by star symbol.

Matrices Association Brainstem Commissural Limbic Projection Ensemble

Mean R2 0.26 0.11 0.26 0.29 0.25 ⋆ 0.42

STDV R2 0.02 0.01 0.01 0.02 0.03 0.015

Mean MAE 5.24 5.86 5.23 5.08 5.28 ⋆ 4.55

STDV MAE 0.1 0.09 0.11 0.12 0.13 0.08

CAPB 0.51 0.33 0.51 0.54 0.5 0.65

CAPA 0.91 0.95 0.91 0.9 0.91 0.89

CADB − 0.85 − 0.94 − 0.86 − 0.83 −0.86 −0.75

CADA − 0.001 − 0.003 − 0.001 − 0.001 − 0.001 − 0.006

https://gtexportal.org/home/
http://big.stats.ox.ac.uk/
http://big.stats.ox.ac.uk/
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ficient value refers to how many standard deviations a dependent variable (brain-PAD) will change per standard 
deviation increase in the independent variable (individual IDPs) A highly similar association pattern is apparent 
across FG, though higher variability was observed for the Limbic FG. More specifically, all the IDPs were signifi-
cantly associated with brain-PAD in Association and Commissural groups, while few associations did not reach 
significance in the other three tract groups, that is: mean L1 and mean ICVF in Brainstem, weighted mean L1 
in Limbic and weighted mean MO in Projection fibers. Considering the different imaging variables, anisotropy 
(FA, ICVF, OD and MO and respective weighted versions) and diffusivity (MD, L1, L2, L3, ISOVF and weighted 

Figure 2.  Association of the IDPs and brain-PAD for the different models. For each model, the numbers on the 
x-axis represents the order of the different IDPs summarised in the legend, while the regression coefficient (the 
diamond shape represents the beta coefficient) values are reported in the y-axis along with their standard error 
(the small black dot inside the diamond shape). Grey color indicates non-significant association.
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versions) indices led to associations of opposite direction, as expected, in almost all the cases. More precisely, 
FA and weighted FA showed a significant negative association with brain-PAD in all five groups, while MD/
weighted MD presented the opposite pattern and appeared to more strongly contribute to modelling the out-
come in all cases. Similarly, increased L1, L2 and L3 plus their weighted versions were associated with increased 
the brain-PAD for all groups, except L1 and weighted L1 in Brainstem and Limbic FGs, respectively. Finally, the 
weaker associations were observed for MO and weighted MO in all models. Consistently with what above, for 
NODDI-based measures, the diffusivity index ISOVF was positively associated with the brain-PAD in all cases. 
A slightly different pattern was observed for OD and its weighted version across the FG, that presents a higher 
variability. OD is positively associated with the brain-PAD, as expected, in Brainstem and Limbic fibers, though 
not in the weighted version, and has a different pattern in the other three groups, with a prevalence of a nega-
tive association of the weighted version. The association between the IDPs and the brain-PAD was also assessed 
FG-wise relying on the Ensemble model, revealing that the pattern was preserved though with slightly differ-
ent values. In particular, the association was slightly reduced with respect to the values that were obtained for 
FG-specific brain-PADs. Please refer to table 4 in the supplementary for more details regarding the association.

CRFs and vascular measures association with brain‑PAD. Figure 3 reports the results of the linear regression 
analyses between the bias-adjusted brain-PAD values and the CRFs/CMR measures, revealing consistent pat-
terns across the five FG models. In all conditions, several measures were significantly associated with PAD after 
multiple comparison correction, in particular increased brain-PAD was associated with a diagnosis of diabetes, 
hypertension and increased LVM, as well as with reduced LVSV/RVSV and RVEDV/RVESV. Greater BMI was 
also associated with increased brain-PAD in three out of five models (Projection, Brainstem and Limbic), with 
the last two FGs also showing a positive relationship between delta and BSA. Of note, the model based on Limbic 
fibers presented the highest number of significant associations and the direction of the relationships was consist-
ent in all the five FC-based models. The same trend was observed for the Ensemble model. These associations 
followed the same pattern compared to the other five FG models. More precisely, the association results were 
closer to those found for the the Brainstem and Limbic FG, especially in eight out of 14 measures. Please refer to 
table 5 in the supplementary for more details regarding the association.

Lifestyle association with brain‑PAD. Figure 4 reports the results of the linear regressions between the bias-
adjusted the brain-PAD values and the daily life measures in each of the five FG-based models plus the Ensemble 
one. Consistent patterns were visible across the FG.

The highest number of significant associations was observed for the Limbic tracts, while only four measures 
survived for the Brainstem group, though in agreement with the others. In all cases, increased brain-PAD was 
associated with ever smoked, smoking status, greater oily fish intake, and tea intake (except for Association fib-
ers). In addition, increased brain-PAD values from Association, Commissural and Limbic fibers were associated 
with greater lamb/mutton intake and greater frequency of alcohol intake. Duration of walk for pleasure had a 
positive impact on brain age, being associated with reduced brain-PAD values in both Limbic and Projection 
fiber models, while increased brain-PAD was associated with water intake in Commisural and Projection FG 
models. Finally, seven additional daily life measures, including time spent watching TV or using computer and 
sleep duration, presented only selective associations in one of the models (4 for Limbic, 2 for Association and 1 for 
Projection). Please refer to table 6 in the supplementary for more details regarding the association. The coefficient 
value for all those are significantly associated with brain-PAD in FG is small (less than 0.3) indicating small effect.

Association between SNPs and brain‑PAD. Two SNPs located on chromosome 6 showed significant associations 
( p < 5E−08 ) with brain-PAD values in the Projection FG, namely rs1045537 ( p = 2.87E−08 ) and rs16891334 
( p = 4.268E−08 ). Figure 5 illustrates the Manhattan plot showing the association between the SNPs in all chro-
mosomes and brain-PAD from the Projection FG.

Moreover, the Manhattan plots for the other FG and the Ensemble model were also reported (Appendix, 
Figures 1 to 5).

The leading SNP (rs1045537) was mapped to BTN3A cluster (BTN3A1 to BTN3A3), SCGN, SLC17A cluster 
(SLC17A1 to SLC17A4), HIST1H1A group of genes based on FUMA results using positional mapping and eQTL 
based on GTEx database (version 8 54 and 8 30) and general tissue types. In addition, it is significantly associated 
significantly with forced vital capacity, BMI, headache and coeliac disease in UKB cohort.

Discussion
This study focuses on providing a holistic view on the endogenous end exogenous factors shaping brain aging as 
expressed by brain microstructural features of specific WM tracts, providing hints for the multiscale and mul-
tifactorial analysis of the system ‘human being’. The challenge being to link heterogeneous information living at 
different scales, this work takes a step in that direction by linking microscopic (genes), mesoscopic (dMRI IDPs), 
macroscopic (cardiovascular IDPs) and behavioral (lifestyle) measures through their respective association to 
the brain age picture provided by dMRI. After investigating the potential of microstructural measures derived 
from dMRI in estimating brain-PAD relying on five different FG, the associations of neuroimaging, genetic and 
cardiovascular IDPs with brain-PAD were assessed and, as a final step, lifestyle and behavioral measures were 
also considered. The rest of this section will be dedicated to the discussion of the results as well as of the potential 
consistency of the observed associations across scales while referring to the existing literature.

The estimated brain-PAD was minimized by the Ensemble model, gathering the whole set of 18× 5 micro-
structural features, leading to the minimum MAE (4.55 years) and the maximum R2 (0.42). On the other end, 
Brainstem FG led to worst performance, with the highest value for the MAE (5.86 years with std = 0.01) and the 
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minimum for R2 (0.11). The Brainstem FG, including the midbrain, pons, and medulla, involves structures with 
complex WM pathways and GM nuclei that are concentrated in a small area. Intricate Brainstem circuitries are 
difficult to capture using conventional dMRI measures such as DTI, with the consequence that both the trac-
tography and the estimation of microstructural indices are prone to  errors60.

Among the other single FG-based models, the Limbic one provided the best MAE (5.08 with std = 0.02 ) and 
R2 (0.29), closely followed by the others (Association-, Commissural- and Projection-based FG models) showing 
a similar pattern. The Ensemble model relying on all available IDPs provided the best results compared to single 
FG-based models, suggesting that the inclusion of multiple features from different WM FG could better depict 
the modulations related to brain aging and therefore lead to more accurate estimates.

Figure 3.  Association of the CMR measures, CRFs and brain-PAD. For each model, the numbers on the x-axis 
represents the order of the different CMR and CRFs measures summarised in the legend, while the regression 
coefficient (the diamond shape represents the beta coefficient) values are reported in the y-axis along with their 
standard error. Grey color indicates non-significant association.
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Figure 4.  Association of daily lifestyle measures and brain-PAD. For each model, the numbers on the x-axis 
represents the order of the daily lifestyle measures summarised in the legend, while the regression coefficient 
(the diamond shape represents the beta coefficient) values are reported in the y-axis along with their standard 
error. Grey color indicates non-significant association. A unique color was assigned to each group measures(e.g 
physical activity).
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However, this would impeed to disambiguate the impact of the aging process on the different FGs, that is 
the main objective of this work. The association of PAD with the dMRI IDPs revealed the path these measures 
follow in brain aging. Based on the corrected p value, their association with PAD wes significant in all FGs apart 
from very few cases. Fractional anisotropy (FA) and ICVF were reduced in all tract groups while L1, L2, L3, MD, 
ISOVF increased with advancing age. This is in agreement with the expectation since they are consistent with 
neuronal loss as discussed in [ADD REFS]. The contribution of OD and MO was relatively inconsistent among 
tract groups featuring an increment in some FGs and a decrement in others. The pattern was similar for the 
Association, Commissural and Projection FGs, as well as for the Ensemble model. The results for Limbic tract 
showed a different pattern compared to other FGs. Overall, our results are inline with what have been published 
before in terms of the direction these IDPs follow in brain aging, as reported, for instance, in Smith et al.9. Their 
results indicate that FA and ICVF decrease with aging while L1, L2, L3, MD and ISOVF increase. In addition, 
they showed that the dMRI features are among of those most relevant for the estimation of brain age in Fornix 
irrespectively of the sex. Our results are consistent with these findings since as the IDPs from the Limbic FG, 
which is dominant in the Fornix tracts, were on the top of the list of relevant features to model brain age in the 
Ensemble model. Another interpretation for such results could be that brain age is more accurately estimated in 
these regions than other regions which result in reduced error (MAE). In addition, the diffusion indices in the 
Limbic tracts, specially in the Fornix, might be very sensitive to aging and indicate an atrophy of the tract rather 
than alterations in WM  microstructure16.

Most of CRFs and CMR measures led to significant associations with brain-PAD in different FGs. The direc-
tion of the association was shared by all tract groups. Brain-PAD in the Limbic FG was significantly associated 
(5 positively and 5 negatively) with most of these measures. Brainstem FG brain-PAD was significantly associ-
ated with 4 measures negatively and 5 positively. Brain-PAD in Ensemble model was significantly and positively 
associated with 6 measures and significantly and negatively associated with 3 measures. Positive associations 
was two times compared to negative with brain-PAD in the case when all IDPs were used to model brain age, 
while association and commissural seem less affected. Among these measures, diabetes, hypertension and LVM 
were positively associated with brain-PAD in all tract groups while RVEDV, RVESV and RVSV were negatively 
associated with brain-PAD in all tract groups. The other measures showed inconsistent association with brain-
PAD across different tract groups. Body mass index and diabetes were positively associated with brain-PAD 
which indicates induced acceleration in brain aging. Based on these results, people who suffer from diabetes 
might experience accelerate brain aging by about half a year, consistently  with11 reporting an acceleration of 
about 2 years. The difference might be related to the features preprocessing and normalization steps. The body 
mass index has been associated with risk of developing neurodegeneration or cognitive decline. Increasing in 
adiposity in overweight and obese individuals might alter the WM volume that causes faster brain aging up to 
10  years61. Cardiac index is significantly associated with brain aging even for healthy people. People who pre-
sent a lower cardiac index or least pumping blood rate appeared almost 2 years older than those having highest 
cardiac  index21. Moreover, low cardiac index might be an indication of increase risk of brain disorders.  In62 they 
have concluded that low cardiac index increase the risk of incident Dementia and AD. Our results demonstrate 
novel associations between accelerated brain-PAD and vascular risk factors. However, as we do not account for 
potential co-existence of multiple risk factors we cannot conclude independent associations with individual risk 

Figure 5.  Manhattan plot reporting the association results between SNPs and brain-PAD in Projection FG. 
The red line indicates the GWAS threshold on p value (i.e.,5E−8), while the blue line indicates the suggestive 
threshold of p = 5E−5.
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factors. More detailed examination of these relationships including accounting for possible confounding and 
evaluation of mediating mechanisms is warranted, although beyond the scope of the present work.

Regarding daily lifestyle factors and activities, 11 measures had significant associations with limbic tracts. 
Among them, 5 measures were negatively associated with brain-PAD meaning that these factors might slow 
down and preserve from brain aging. Brainstem tracts were significantly associated with only 4 measures, out 
of which three were positive (indicating accelerated brain aging) and one was negative (indicating delaied brain 
aging). Association, Commissural and Projection FG showed close results of 7 significant associations for each 
one of them. For the Ensemble model, 9 measures were significantly associated with brain-PAD, and mostly were 
positively associated. Among all these measures, smoking statues and alcohol frequency intake was significant in 
all cases (apart from alcohol frequency intake in Brainstem). Alcohol frequency intake was negatively associated 
with brain-PAD which indicates acceleration in brain aging. This has been confirmed before in other studies. 
Of note, alcohol frequency intake was coded as lower value means higher intake.  In63, alcohol intake history 
was negatively associated with WM volume specially in corpus callosum. In addition, alcohol frequency intake 
was associated with deleterious in WM tracts cause atrophy in Ensemble and regional  brain64. Our findings are 
inline with previous studies and this was observed in most tract groups. Two variables were considered to define 
smoking status based on data available in UKB these included ever smoked (UKB ID 20160) and smoking status 
(UKB ID 20116). Smoking is associated positively with brain-PAD suggesting that smoking has a negative impact 
on brain aging. It should be noted that smoking habits is being associated with different alterations in both WM/
GM. Moreover, smoking duration linked with reduced total volume of WM . It is also associated with reduction 
in FA in the cingulate  gyrus65. Lamb/mutton intake was also positively associated with brain-PAD in some tract 
groups. Low red meat intake has been associated with better cognitive  function66. In addition, limited consump-
tion of red meat might reduce risk of AD, slow cognitive decline and reduce AD biomarker such as  atrophy67.
Time spent using computer and sleep duration were positively associated with brain-PAD in Limbic fibers causing 
acceleration in brain aging. Finally, duration of walk for pleasure was negatively associated pointing to a healthy 
brain aging as walking stimulates blood circulations and exposition to the sun light.

The association of SNPs and brain-PAD in different FGs led to the identification of one significant locus 
with leading SNP rs1045537 ( p < 5× 10−8 ) in Projection fibers. Significant association was observed between 
rs1045537 SNP and an eQTL of BTN3A2 in heart left ventricle, basal ganglia, Frontal Cortex and Cortex. BTN3A2 
gene has been identified as a potential risk gene for  schizophrenia68,69. The SNP is also significantly associated 
with malabsorption/coeliac disease, body mass index and headache. HIST1H1A gene was associated with DNA 
methylation at early AD  stages70. SCGN gene was identified as one of the most common psychostimulants in 
brain-wide  targets71. SLC17A2 is one of the solute carrier family that is membrane protein and transporter. It was 
associated with neurodegenerative disorders because of its important role in the recovery of  neurotransmitters72.

Estimating brain age for a specific region within brain or using different modes of structural and functional 
change were proposed before to detect the alterations in brain functions and structures in both healthy and 
diseased populations. Kaufmann et al.73 estimated brain age using features from frontal, occipital, temporal, 
cingulate, parietal, insula, or cerebellar–subcortical regions. They found that the brain-PAD was increased in 
dementia and multiple sclerosis when the model estimated brain age using features only from cerebellar–subcor-
tical while the largest effect was observed in the frontal lobe in schizophrenia. Smith et al.16 estimated brain age 
using 62 modes representing distinct patterns of structural and functional brain alteration and distinct patterns 
of association with genetics, cognition, lifestyle, disease and physical measures. They suggested that modelling 
of distinct pattern of brain alterations would provide more biologically meaningful biomarkers to detect brain 
aging than one single homogeneous process.

To conclude, in this study we propose to detect the disparity in the alterations of WM FGs through life-course 
using brain age. Results suggest that brain PAD holds the potential as an aging biomarker. Moreover, it shows 
which FGs are more prone to aging than others which could be further investigated and exploited to estimate an 
aging-driven risk factor and an alert for cognitive decline and brain disorders related to the regions in each FG. 
In addition, we explored the association between daily life style, CRFs and genetic variations and their effects on 
each FG as well as on the Ensemble model gathering all the considered tracts. Such kind of associations can be 
employed to examine the influence of environment and genetic factors to shape and control the aging process and 
related alterations at a FG level, providing a more localized information than the one obtained using the whole 
WM. Overall, consistent results were obtained regarding the associations in different FGs. Some FGs showed 
similar pattern for the different considered associations. One of the main contributions of the study shows which 
FGs are more affected by the aging process as reflected by the considered IDPs. Furthermore, we were able to 
show that the Limbic FG plays a prominent role in driving brain aging. In addition, brainstem FG observed to 
age faster and lest affected by the used measures in the analysis, precisely with daily life styles and activities This 
could be explained that brainstem might age faster as it is more involved in many body functions.  Benarroch74 
reported that Brainstem involves tracts that are critically associated with the control of the cardiovascular func-
tion, respiration, arousal and wake-sleep cycle. In that matter, brainstem tracts are more prone to alterations due 
to direct association with body organs. These findings suggest that further research is required to obtain a more 
comprehensive understanding of the role of Limbic and Brainstem tracts in brain aging and their association 
with both body functions and environmental exposures.
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