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Comparison of the blood, bone 
marrow, and cerebrospinal fluid 
metabolomes in children with b‑cell 
acute lymphoblastic leukemia
Jeremy M. Schraw1,2,3,4,5*, J. P. Woodhouse1,2,3, Melanie B. Bernhardt1,2,3, Olga A. Taylor1,2,3, 
Terzah M. Horton1,3,4, Michael E. Scheurer1,2,3,4, M. Fatih Okcu1,3,4, Karen R. Rabin1,3,4, 
Philip J. Lupo1,2,3,4 & Austin L. Brown1,2,3,4

Metabolomics may shed light on treatment response in childhood acute lymphoblastic leukemia 
(ALL), however, most assessments have analyzed bone marrow or cerebrospinal fluid (CSF), 
which are not collected during all phases of therapy. Blood is collected frequently and with fewer 
risks, but it is unclear whether findings from marrow or CSF biomarker studies may translate. 
We profiled end‑induction plasma, marrow, and CSF from N = 10 children with B‑ALL using liquid 
chromatography‑mass spectrometry. We estimated correlations between plasma and marrow/
CSF metabolite abundances detected in ≥ 3 patients using Spearman rank correlation coefficients 
(rs). Most marrow metabolites were detected in plasma (N = 661; 81%), and we observed moderate‑
to‑strong correlations (median rs 0.62, interquartile range [IQR] 0.29–0.83). We detected 328 CSF 
metabolites in plasma (90%); plasma‑CSF correlations were weaker (median rs 0.37, IQR 0.07–0.70). 
We observed plasma‑marrow correlations for metabolites in pathways associated with end‑induction 
residual disease (pyruvate, asparagine) and plasma‑CSF correlations for a biomarker of fatigue 
(gamma‑glutamylglutamine). There is considerable overlap between the plasma, marrow, and CSF 
metabolomes, and we observed strong correlations for biomarkers of clinically relevant phenotypes. 
Plasma may be suitable for biomarker studies in B‑ALL.

Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in  children1,2. Steady gains in 
survival have been realized over the last several decades as new agents have been introduced, and 5-year overall 
survival rates for children treated with modern intensive multi-agent chemotherapy protocols exceed 90%3,4. 
Nonetheless, survival remains dismal (≤ 50%) for some children with high-risk  disease5,6, and while intensified 
chemotherapy has resulted in improved survival it has also resulted in high rates of acute  toxicities4,7,8 (e.g., 
infections, hepatic and kidney injury, and pancreatitis) and late effects among  survivors9,10 (e.g., cardiotoxicity, 
second malignant neoplasms, avascular necrosis, neurocognitive impairment, and frailty). Indeed, in recent trials, 
further intensification of therapy has either failed to improve survival or produced unacceptable  toxicities7,11,12. 
Continued improvements in survival for children with ALL will depend in part on the development of targeted 
therapies with improved safety profiles, or better methods for identifying and monitoring patients at risk of 
adverse outcomes. Both will require detailed understanding of host and tumor response to therapy.

Metabolomics encompasses a suite of approaches for systematically identifying and quantifying the small 
molecules present in a biological  system13. In the context of ALL, metabolomics has been used to characterize 
early life environmental exposures associated with ALL  incidence14, describe differences between cases and 
healthy  controls15, predict treatment  response16,17 and identify factors associated with treatment  toxicities18,19. 
Broadly, metabolomics also shows promise for monitoring and understanding drug  response20–23 and identifying 
individuals at risk of poor health  outcomes24–27.
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Many metabolomics studies performed in ALL patients have used either supernatant from bone marrow 
aspirate or cerebrospinal fluid (CSF) from lumbar puncture as the analytic  sample16,18,19. Bone marrow aspiration 
and lumbar puncture are invasive and generally require sedation, which has been linked to adverse neurode-
velopmental outcomes in children with  cancer28,29. These procedures are therefore typically performed only at 
diagnosis for clinical and molecular disease phenotyping, at the end of induction and/or consolidation chemo-
therapy to assess disease response, and for administration of intrathecal chemotherapy. While metabolomics 
may be useful for predicting adverse outcomes in children with ALL, it is not clear which samples are best suited 
to the study of which outcomes, or how venous blood, which can be collected with greater frequency and used 
to construct longitudinal profiles of response, correlates with bone marrow and CSF. Therefore, we set out to 
comprehensively describe the correlations between these three matrices. We aim to create a resource that will 
accelerate ALL research by facilitating translation of findings from bone marrow and CSF.

Results
Overview. Study participants were predominantly male and Latino. Eight patients had National Cancer 
Institute (NCI) standard-risk disease, and two had high-risk disease. Approximately equal proportions were 
normal weight and overweight/obese. Median age at diagnosis was 3.5 years (interquartile range [IQR] 2.4–
20.6 years) (Table 1). Figure 1 shows the number and class of compounds in plasma, marrow and CSF, as well 
as the overlap between the three matrices. Plasma demonstrated the greatest richness (N = 816 compounds), 
followed by marrow (N = 774 compounds) and CSF (N = 366 compounds).

Correlations between the plasma and marrow metabolomes. Plasma and marrow were similar 
with respect to the proportion of compounds annotating to different classes, and most marrow compounds were 
also detected in plasma (N = 661; 81%) (Fig. 1). Overall, we observed moderate-to-strong positive correlations: 
median rs was 0.62 (IQR 0.29–0.83), |rs| was > 0.5 for 412 compounds (62.3%) and > 0.75 for 236 compounds 
(35.7%) (Table 2). After false discovery rate (FDR) adjustment, 35.1% (N = 232) of correlations remained sig-
nificant (all q < 0.05). Median rs among these compounds was 0.87 (IQR 0.81–0.92) (Supplementary Table S1 
provides data on all metabolites common to the plasma and marrow metabolomes). Amino acids, carbohydrates 
and peptides were underrepresented in this set, whereas lipids were overrepresented (Table 2) (Fig. 2a). There 
was evidence that nucleotides were underrepresented among compounds with significant correlations (p = 0.05 
by hypergeometric test); 20% (N = 6) were correlated (q < 0.05).

We evaluated plasma-marrow correlations for compounds annotated to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)30 pathway “central carbon metabolism in cancer” (hsa05230), as we had previously reported 
an association between this pathway and end-induction minimal residual disease (MRD) in diagnostic marrow 
samples from children with  ALL16. Two of these compounds, pyruvate (rs 0.89; q = 0.01) and asparagine (rs 0.87; 
q = 0.01), demonstrated significant plasma-marrow correlations.

Correlations between the plasma and CSF metabolomes. Both the number of compounds detected 
in CSF and their distribution with respect to class differed relative to marrow and plasma. In particular, we 
observed proportionately fewer lipids and proportionately more amino acids (Fig. 1a). Similar to marrow, the 
majority of compounds in CSF were also detected in blood (N = 328, 89.6%) (Fig.  1b). Plasma-CSF correla-
tions were weaker than plasma-marrow correlations on average (median rs 0.37, IQR 0.07–0.70) (Table 3). We 
observed moderate correlations (0.5 <|rs|< 0.75) for 63 compounds (19.2%), and strong correlations (|rs|≥ 0.75) 

Table 1.  Demographic and clinical characteristics of B-ALL patients in the study sample.

N (%)

Sex

Male 7 (70)

Female 3 (30)

Race/ethnicity

Non-Latino White 2 (20)

Latino 8 (80)

BMI

Underweight 1 (10)

Normal weight 5 (50)

Overweight/obese 4 (40)

Age at diagnosis (years)

< 5 7 (70)

5–9 1 (10)

≥ 10 2 (20)

NCI risk group/treatment protocol

Standard risk/AAALL0932 8 (80)

High risk/AALL1131 2 (20)
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Figure 1.  (a) Number and class of compounds detected in plasma, bone marrow, and cerebrospinal fluid 
samples from children with B-ALL. (b) Overlap between the plasma, bone marrow, and CSF metabolomes.

Table 2.  Number of compounds detected in ≥ 3 plasma and marrow samples, and number that were 
significantly correlated after FDR correction, by class. a q < 0.05 after Benjamini–Hochberg correction.

N detected Rho, median (IQR) N  correlateda p (under-representation) p (over-representation)

Total 661 0.62 (0.29–0.83) 207 – –

Amino acid 161 0.58 (0.32–0.77) 44 0.01 0.99

Carbohydrate 21 0.28 (0.10–0.45) 2 0.01 0.99

Cofactor/vitamin 26 0.59 (0.28–0.82) 9 0.57 0.43

Energy 7 − 0.21 (− 0.36–0.57) 1 0.23 0.77

Lipid 332 0.70 (0.31–0.84) 142 0.99 < 0.001

Nucleotide 30 0.49 (0.32–0.69) 6 0.05 0.95

Peptide 19 0.33 (0.14–0.55) 2 0.02 0.98

Xenobiotic 65 0.77 (0.43–0.90) 26 0.85 0.15

a b

Figure 2.  Number of compounds detected (red) and number significantly correlated after 5% false discovery 
rate adjustment in (a) plasma and marrow, and (b) plasma and CSF.
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for 65 compounds (19.8%). Forty compounds (12.2%) had q-values < 0.05, and these demonstrated strong pos-
itive correlations on average (median rs 0.93, IQR 0.85–0.95) (Supplementary Table  S2 provides data on all 
metabolites common to the plasma and CSF metabolomes). Xenobiotics were overrepresented among com-
pounds with statistically significant FDR-adjusted correlations, whereas there was some evidence that lipids 
were underrepresented (p = 0.09) (Table 3) (Fig. 2b).

We previously reported associations between CSF abundances of asparagine, dimethylglycine and gamma-
glutamylglutamine and cancer-related fatigue in children with  ALL18. Here, we observed significant plasma-
CSF correlations for dimethylglycine (rs 0.84; q = 0.04) and gamma-glutamylglutamine (rs − 0.93; q = 0.002). 
Interestingly, the inverse correlation between CSF and plasma abundances of gamma-glutamylglutamine was 
the strongest observed, and one of only two which were statistically significant.

Discussion
Overall, we found that plasma metabolomics is appropriate for estimating metabolic processes in the marrow or 
CSF of children with B-ALL. The majority of compounds detected in marrow or CSF were also detected in plasma 
and (especially for marrow) the number and type of compounds was similar. Substantial proportions (62% in 
marrow and 41% in CSF) demonstrated moderate or strong correlations with plasma and many (35% in marrow, 
16% in CSF) remained statistically significant at q < 0.05 after multiple testing correction. Of note, we reported 
strong correlations for compounds previously associated with cancer-related  fatigue18 and  MRD16, supporting 
that blood may be useful for biomarker studies of these compounds and endpoints. These findings have practical 
implications for future metabolomics studies, since blood can be collected more frequently and less invasively.

When evaluating plasma and bone marrow, we observed a robust correlation for asparagine. Asparaginase has 
long been utilized in ALL chemotherapy, following the discovery of its anti-leukemic effect, mediated by serum 
asparagine and glutamine depletion, and clinical trials demonstrating improved survival for asparaginase-treated 
 patients31,32. In contrast to a previous magnetic resonance spectroscopy (MRS) and gas chromatography-mass 
spectrometry (GC–MS)-based untargeted metabolomics study which reported total depletion of asparagine 
at D29 in patients who received PEG-asparaginase between induction D4 and  D617, we detected asparagine in 
plasma and marrow samples from all children. Patients on both induction protocols (AALL0932 and AALL1131) 
received PEG-asparaginase on induction  D412,33; our observation is consistent that of Angiolillo et al., who dem-
onstrated that asparagine levels begin to recover 20–25 days after PEG-asparaginase  administration34. Given the 
importance of asparagine depletion in ALL chemotherapy, it may be noteworthy that it was readily detected in 
plasma using this approach, and that plasma and marrow asparagine abundances correlated strongly. Conversely, 
plasma and CSF asparagine abundances were not significantly correlated. Given that CSF asparagine depletion is 
also essential, measurement of plasma asparagine alone may be inadequate to quantify the extent and duration 
of asparagine depletion in the  CSF35.

We also observed a strong positive correlation between marrow and plasma pyruvate abundances. In a study 
of children with newly diagnosed ALL we reported that bone marrow pyruvate abundance at diagnosis was 
associated with subsequent MRD (1.9-fold increase among MRD-positive patients, p = 0.02)16. Pyruvate is a key 
intermediate in glycolysis and gluconeogenesis. Altered glucose metabolism has been described in ALL  cells36,37, 
and we and others have demonstrated that inhibitors of glycolysis exert anti-leukemic effects in vitro16,36. Whether 
plasma pyruvate abundances similarly associate with treatment response is unclear, but is a promising area for 
future research that aims to leverage metabolomics to understand ALL outcomes.

In our analysis of plasma and CSF, we observed a strong, albeit inverse, correlation between plasma and CSF 
abundances of gamma-glutamylglutamine. We previously reported an inverse (cross-sectional) association of 
CSF gamma-glutamylglutamine abundance and fatigue scores during post-induction chemotherapy, and reported 
that its abundance at the time of diagnosis was inversely correlated with fatigue severity at the start of delayed 
 intensification18. Gamma-glutamylglutamine is an intermediate in the gamma-glutamyl cycle, in which gamma-
glutamyl amino acids are formed by the transfer of glutamyl moieties (e.g., from glutathione to glutamate), then 
subsequently cleaved to the free amino acid and 5-oxoproline. This pathway may play a role in the regulation 
of amino acid transport across the blood–brain  barrier38, which could explain the observation that plasma and 
CSF gamma-glutamylglutamine abundances were inversely correlated.

Table 3.  Number of compounds detected in ≥ 3 plasma and CSF samples, and number that were significantly 
correlated after FDR correction, by class. a q < 0.05 after Benjamini–Hochberg correction.

N detected Rho, median (IQR) N  correlateda p (under-representation) p (over-representation)

Total 328 0.37 (0.07–0.70) 40 – –

Amino acid 133 0.45 (0.13–0.72) 15 0.41 0.59

Carbohydrate 20 0.15 (− 0.08–0.57) 3 0.79 0.22

Cofactor/vitamin 15 0.48 (0.11–0.74) 3 0.91 0.10

Energy 8 0.17 (0.08–0.31) 0 0.35 0.65

Lipid 71 0.28 (− 0.04–0.57) 5 0.09 0.91

Nucleotide 31 0.31 (0.16—0.46) 2 0.24 0.76

Peptide 12 0.13 (− 0.28–0.37) 2 0.83 0.17

Xenobiotic 38 0.76 (0.28–0.94) 10 0.99 0.002
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Saito et al. investigated changes in the plasma metabolome of patients with ALL pre- and post-induction 
and observed that > 20% of compounds, most notably lipids, were  altered39. The authors hypothesized that these 
alterations may affect the risk of adverse events in children with ALL, as previous studies suggest effects of 
docosahexaenoic acid (DHA)40–42 and  phosphatidylethanolamines43 on asparaginase-associated pancreatitis 
and relapse. We found that lipids demonstrated somewhat stronger plasma-marrow correlations than other 
compounds.

Tiziani et al. compared plasma and bone marrow samples from N = 10 children with ALL at diagnosis and 
reported differences among amino acids and  ketones17. Collectively, these findings suggest that the plasma and 
marrow lipids are well correlated, but that special care may be required when comparing diagnostic samples due 
to the high titer of leukemic cells. These findings may have particular implications for investigators wishing to 
perform longitudinal assessments or utilize lipidomics approaches.

Our study should be interpreted in light of certain strengths and limitations. Our sample size was small, which 
limited our ability to detect statistically significant correlations and prevented us from performing analyses strati-
fied by factors such as sex, age at diagnosis, BMI or end-induction MRD status. The study was also cross-sectional, 
with all samples collected at the end of induction chemotherapy. On the other hand, we performed metabolomic 
profiling using a well-described untargeted platform with broad coverage and an extensive reference panel, 
which identified > 1000 unique features. Because this platform is semi-quantitative, we present data on relative 
abundances rather than absolute concentrations. In future studies, targeted approaches may allow for improved 
quantitation of metabolite or drug concentrations. Finally, the study sample was relatively homogenous, consist-
ing entirely of pediatric patients with newly diagnosed B-ALL treated on standard protocols. This likely reduced 
heterogeneity in our analysis, but we caution that it is unknown whether our findings may be applicable to T-ALL.

Conclusions
Our findings highlight that untargeted plasma metabolomics readily detects compounds associated with the 
clinically relevant phenotypes of end-induction MRD and fatigue in children with ALL. ALL metabolomics is a 
nascent field and many of the studies performed to date have used bone marrow or CSF, which may be limiting 
for broader applications. To accelerate translation of these findings, we have comprehensively described the cor-
relations between the blood, marrow, and CSF metabolomes at end-induction (see Supplementary Material for 
correlations for all detected compounds). We observed generally strong correlations between plasma and marrow, 
suggesting that plasma may be an optimal and readily available source for use in future studies. In particular, 
quantitative evaluations of candidate biomarkers and longitudinal assessments of the plasma metabolome across 
therapy may be informative for precision medicine approaches, and ultimately drive improvements in survival 
for children with ALL. While we highlight findings for putative biomarkers of MRD and fatigue, we note that 
metabolomics has scarcely been applied to study other important outcomes such as cardiotoxicity, hepatotoxicity, 
and relapse, all of which may be promising directions for future research.

Methods
Study population. Participants (N = 10) were children diagnosed with B-lineage ALL in 2017–2018, and 
treated at Texas Children’s Hospital on or according to Children’s Oncology Group protocols appropriate for 
their age and disease characteristics. We obtained plasma, bone marrow and cerebrospinal fluid samples at the 
end of induction chemotherapy, during routine clinical care. We extracted demographic and clinical data includ-
ing sex, age, race/ethnicity, height, weight, disease type, NCI risk group and end-induction MRD status from 
the electronic health record. We defined children as overweight if their body mass index (BMI) was ≥ 85th per-
centile for their age and sex, and as obese if it was ≥ 95th percentile. We defined children as NCI standard risk 
if they were < 10 years of age at diagnosis and had an initial white blood cell count of < 50,000/µL and high risk 
 otherwise44. Children whose end-induction marrow specimen contained ≥ 0.01% leukemic blasts, measured by 
flow cytometry, were considered MRD-positive. This study was approved by the Baylor College of Medicine 
Institutional Review Board (H-29892) and performed in accordance with the Declaration of Helsinki. Informed 
consent was obtained from the parents/guardians of all participating children. All procedures were performed 
in accordance with the relevant guidelines and regulations.

Metabolomic profiling. Plasma, marrow and CSF samples were processed according to standard meth-
ods and stored at – 80 °C until they were batch shipped to Metabolon Inc. (Morrisville, NC) for analysis using 
the Precision Metabolomics™ platform. Sample processing and analysis procedures for this platform have been 
described  previously16,45. Briefly, methanol was added and samples were centrifuged to precipitate proteins. The 
resulting supernatant was divided into four extracts: two were analyzed by reverse phase ultrahigh performance 
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods with positive ion mode electro-
spray ionization, one by UPLC-MS/MS with negative ion mode electrospray ionization, and one by hydrophilic 
interaction UPLC-MS/MS. Organic solvent was removed using a TurboVap® (Zymark) and samples were stored 
overnight under nitrogen prior to analysis. Extracts were dried, reconstituted and analyzed using untargeted, 
UPLC-MS/MS-based approaches on a Waters ACQUITY chromatograph (Waters, Milford, MA) and a Thermo 
Scientific Q-Exactive spectrometer (Thermo Fisher Scientific, Waltham, MA). Instrument variability was meas-
ured by calculating the median relative standard deviation (RSD) for internal standards added to each sample 
prior to analysis, and was 4% for plasma and CSF and 5% for marrow. In addition to internal standards, a small 
amount of each sample was pooled and used as technical replicates throughout. Total process variability (6% 
for plasma, 7% for marrow and 9% for CSF) was determined by calculating the median RSD for all endogenous 
metabolites present in these pooled matrix samples. Data extraction, peak identification and compound identi-
fication were performed by Metabolon using an in-house bioinformatics pipeline. Peaks were quantified using 
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area under the curve. Values were normalized to total protein content, measured by the Bradford assay, and 
log-transformed. Compounds were identified by comparing retention index and spectral data against a library 
of > 3000 commercially available purified standards and categorized as belonging to one of the following classes: 
amino acid, carbohydrate, cofactor/vitamin, energy, lipid, nucleotide, peptide or xenobiotic.

Statistical methods. Compounds were level scaled using the median prior to  analysis46. For endogenous 
compounds (amino acids, carbohydrates, cofactors/vitamins, lipids, nucleotides and peptides) we imputed miss-
ing values with half the minimum observed  value47, as it was assumed that these were present in samples below 
the limit of detection. Missing values were not imputed for xenobiotics. We computed non-parametric Spear-
man rank correlation coefficients (rs) to describe correlations of compound abundances between plasma-mar-
row and plasma-CSF. We applied the Benjamini–Hochberg correction to maintain a 5% FDR, defining q < 0.05 
as the threshold for statistical significance. We visualized these correlations using heatmaps and summarized 
our results using median and IQR. To determine whether compounds from certain classes were overrepresented 
among those with FDR-significant correlations, we used hypergeometric tests, with p < 0.05 as the threshold 
for statistical  significance48. We excluded compounds detected in fewer than three children from all analyses. 
Analyses were performed in R v3.6.3 (R Foundation, Vienna, Austria).

Data availability
Underlying data are publically available through Mendeley Data (DOI: 10.17632/xz4m36dgzh.2). 
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