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An improved data‑free surrogate 
model for solving partial 
differential equations using deep 
neural networks
Xinhai Chen1,2, Rongliang Chen3, Qian Wan1, Rui Xu1 & Jie Liu1,2*

Partial differential equations (PDEs) are ubiquitous in natural science and engineering problems. 
Traditional discrete methods for solving PDEs are usually time-consuming and labor-intensive due 
to the need for tedious mesh generation and numerical iterations. Recently, deep neural networks 
have shown new promise in cost-effective surrogate modeling because of their universal function 
approximation abilities. In this paper, we borrow the idea from physics-informed neural networks 
(PINNs) and propose an improved data-free surrogate model, DFS-Net. Specifically, we devise an 
attention-based neural structure containing a weighting mechanism to alleviate the problem of 
unstable or inaccurate predictions by PINNs. The proposed DFS-Net takes expanded spatial and 
temporal coordinates as the input and directly outputs the observables (quantities of interest). It 
approximates the PDE solution by minimizing the weighted residuals of the governing equations 
and data-fit terms, where no simulation or measured data are needed. The experimental results 
demonstrate that DFS-Net offers a good trade-off between accuracy and efficiency. It outperforms the 
widely used surrogate models in terms of prediction performance on different numerical benchmarks, 
including the Helmholtz, Klein–Gordon, and Navier–Stokes equations.

Numerical simulations play a vital role in the fields of scientific and engineering applications, such as aerospace, 
finance, civil, energy engineering, and biological engineering1–3. The principle of the simulation process is to solve 
linear/nonlinear partial differential equations (PDEs). Since the 1970s, various mesh-based numerical methods, 
such as finite difference (FD), finite element (FE), and finite volume (FV) methods, have been developed to solve 
PDE systems4. These methods first discretize the computational domain into mesh units and then iteratively 
solve the system of PDEs on each subdomain in order to yield an analysis capability for the numerical solution 
of the unknown functions.

However, traditional discrete methods often involve tedious meshing and iterative solving of large sparse 
nonlinear systems, which are computationally cumbersome on modern parallelized architectures5–8. Moreover, 
the current meshing process is still a highly specialized activity that remains in the empirical, descriptive realm of 
knowledge, especially for complex geometries and physical configurations9,10. Careful human-computer interac-
tion is usually required to ensure a valid, high-quality mesh for the convergence of the PDE solvers. The extensive 
computational overhead and manual interaction limit the use of a principled PDE model for real-time analysis 
and optimization design. Therefore, developing a cost-effective surrogate model is desirable. An ideal model is 
one that takes the coordinates of some random points in the computational domain and automatically outputs 
the corresponding degrees of freedom of the PDE.

To fulfill this role, Raissi et al.11,12 employed machine learning techniques (Gaussian process and Bayesian 
regression) to devise functional representations for linear/nonlinear operators in physical and mathematical 
problems. Tartakovsky et al.13 presented a physics-informed machine learning approach, PICKLE, for elliptic 
diffusion equations. This approach uses conditional Karhunen–Loè ve expansion (cKLE) to minimize the PDE 
residuals and approximate the observed parameters and states. Ahalpara14 developed a surrogate model for solv-
ing the Korteweg–de Vries (KdV) equation using a genetic algorithm. A random forest regression model was 
introduced by Wang et al.15 to predict the Reynolds stresses in the flow over periodic hills. However, the above 

OPEN

1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense 
Technology, Changsha  410000, China. 2Laboratory of Software Engineering for Complex System, National 
University of Defense Technology, Changsha  410000, China. 3Shenzhen Institutes of Advanced Technology, 
Chinese Academy of Sciences, Shenzhen 518000, China. *email: liujie@nudt.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99037-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19507  | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

machine learning-based models show difficulties in generalization to different physical problems. Moreover, 
due to the limited approximating capacity of machine learning techniques, these models may not guarantee the 
desired prediction result and tend to yield an inaccurate solution for complex nonlinear PDE systems.

Deep neural networks (DNNs) are rapidly gaining more attention in many physical problems requiring 
intensive computing and extensive domain expertise16–20. DNNs utilize multiple layers of interconnected neu-
rons to automatically learn important features from high-dimensional parameter spaces. By performing an 
optimization process based on the loss function, the network model brings the promise of a powerful approach 
to approximate the complex and nonlinear mapping relations of the input-output model. Theorems in21,22 prove 
that the universal function approximation capabilities of neural networks open a new way to obtain the latent 
solutions of PDE systems.

Recently, pioneering works began to explore the possibility of solving PDEs via deep neural networks. Raissi, 
Perdikaris, and Karniadakis23,24 first introduced physics-informed neural networks (PINNs) to solve forward 
and inverse problems involving PDEs. In PINNs, the governing equations, as well as the initial/boundary condi-
tions, are embedded in the loss function as penalizing terms in order to constrain the space of latent solutions. 
Then, one trains and updates the variables (weights and biases) in the constructed network by minimizing this 
loss function using optimization methods such as gradient descent methods and quasi-Newton methods. After 
suitable training, the resulting network is able to form a new class of data-free universal function approxima-
tors that naturally encode any underlying physical laws as prior information and provide the solution to a PDE 
system. Although PINN-based methods appear to be straightforward, these methods usually incur difficulties 
in satisfying all equation residuals (especially for boundary conditions), leading to slow convergence or unstable 
approximation results of some local solutions.

To solve the deficiency of original PINNs, Wang et al.25 studied the gradient pathologies in physics-informed 
neural networks and introduced a gradient pathology physics-informed neural network (GP-PINN) for PDE solv-
ing. The proposed network balances the interplay between the different terms in the loss function by reweight-
ing gradients during backpropagation training. Inspired by Galerkin methods, Sirignano and Spiliopoulos26 
proposed a well-designed long short-term network, called the deep galerkin method (DGM), to solve high-
dimensional PDEs. The DGM is trained to satisfy the differential operator and the initial/boundary conditions, 
thus providing an approximation to the latent solution. Their method has been successfully used in different 
contexts, such as approximating very high-dimensional problems arising in mathematical finance by exploiting 
integral representation formulas for the underlying solutions. However, one disadvantage of this method is the 
need for additional parameters and computational effort to obtain satisfactory solution accuracy, which leads 
to a significant increase in the training and prediction overhead. Lu et al.22 proposed deep operator networks 
DeepONets to learn nonlinear operators for differential equations. This network employs two subnetworks (truck 
and branch net) in order to extract the operator-related features from prior knowledge and then approximates 
the mapping relations between the input function and the unknown operator. Despite the high efficiency and 
flexibility, this type of method is data-dependent and supervised, which means that a labeled dataset is required 
for the supervised training process, therefore the quality and scale of this dataset can greatly affect the prediction 
performance of the underlying operator networks.

In this paper, we develop an improved data-free surrogate model, DFS-Net, to enable fast and accurate 
inference of PDE solutions. In the proposed methodology, we take spatial and temporal coordinates as the 
input and feed them into the network for training. The variables in DFS-Net are optimized by minimizing the 
loss function leveraging the PDE residual and data-fit terms, where no supervised simulation data are needed. 
Based on the observation that existing surrogate models tend to obtain unstable prediction results in different 
subdomains (e.g., interior or near-wall domains), we propose a weighting mechanism to calibrate the weight of 
input coordinates in the loss function. Moreover, we introduce an attention-based excitation block in DFS-Net 
to increase the approximating accuracy and accelerate the training. The experimental results show that DFS-Net 
can achieve a good trade-off between accuracy and efficiency. It outperforms the widely used surrogate models 
and yields remarkable prediction results on different benchmarks, including the Helmholtz, Klein–Gordon, and 
Navier–Stokes equations.

The remainder of the paper is organized as follows: in “Methodology”, we first introduce the problem setup 
and provide a recap of PINN for solving PDE. Next, we develop our data-free surrogate model DFS-Net. The 
proposed model is then applied to different PDE benchmarks to validate its robustness. The performance of 
DFS-Net and the comparison results with some other widely used surrogate models are discussed in “Results 
and discussion”. Finally, conclusions and future work are drawn in “Conclusion”.

Methodology
Problem setup.  We begin with the description of a system of nonlinear partial differential equations (PDEs) 
in the following generalized form:

where the spatial domain � ∈ R
d , D represents the differential operator, and u(x, t) is the unknown solution we 

wish to solve for. The above system is subject to the well-posed boundary condition,

and the initial condition,

(1)∂ku

∂tk
(x, t) = D [u(x, t)], x ∈ �, t ∈ [0, T],

(2)Dbc[u(x, t)] = h(x, t), x ∈ ∂�,
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where ∂� denotes the boundary of � , and Dbc is the differential operator that imposes boundary conditions for 
the PDE. h(x, t) : Rd+1  → R , g(x) : Rd  → R are given functions.

When a set of physical parameters and data-fit terms are given, the unknown function of interest u(x, t) can 
be solved by discretizing the nonlinear/linear system using traditional numerical methods, such as the finite 
difference method, the finite element method, and the finite volume method. However, these methods involve 
tedious mesh generation and iterative solving, which heavily increases the simulation overhead.

Deep neural network and physics‑informed training.  Deep neural networks have proven their pow-
erful learning ability in many time-consuming classification- and regression-based physical applications9,27–29. 
Well-trained networks utilize multiple layers of neural units to automatically approximate complex input-output 
mapping from high-dimensional parameter spaces. Mathematically, a surrogate network model F is built to 
approximate the latent solution F̂ for the underlying application:

where θW ,b is a set of network parameters, including the weights and biases of the constructed network. Minimiz-
ing the mismatch between the desired solution F̂ and the DNN-based predictions F is known to be a nonconvex 
optimization problem. A key element in the resulting problem is the training of tuning parameters on a very 
high dimensional parameter space. This process can be formulated as:

where � · � denotes the L2-norm over the domain � . After suitable training, one can find a set of optimal or sub-
optimal network parameters W∗, b∗ , such that Loss(θW ,b, x, t) is as close to zero as possible.

Recently, physics-informed neural networks (PINNs)23,24,30 have been employed to infer PDE solutions by 
building complex features from multiple layers of neural units via input-output relationships. In PINNs, neurons 
are fully connected. A loss function satisfying the PDEs [(Eqs. (1)–(3)] is employed to constrain the optimization 
process of the neuron parameters. Let (xrn, trn)

n=Nr
n=1  be a preselected set of spatial and temporal points inside the 

solution domain � . (xbn, tbn)
n=Nb

n=1  and (xin, tin)
n=Ni

n=1  denote the preselected point data sampled from the boundary 
and initial condition, respectively. The loss function of PINN is formulated as:

Given a specific neural network architecture, the PINN can be viewed collectively as a function of the input 
data and the parameters θW ,b . It maps the time t, spatial coordinates x , and variables to the quantities of interest, 
e.g., the velocity field u or pressure field p, thus allowing a data-free PDE “solver” that does not require meshing 
or numerical iteration. If the physics-based loss function Loss(θW ,b, x, t) becomes identically zero, the output pre-
dictions will exactly satisfy the underlying PDE system. However, experimental results in31,32 indicate that PINN 
shows difficulties in fitting all equation residuals and fails to guarantee a stable approximation of the solution. 
This may lead to serious errors in the PINN and return incorrect predictions, especially in the near-wall domains.

DFS‑Net: a data‑free surrogate model for solving PDEs.  Following the original works of PINN, we 
propose an improved deep neural network DFS-Net to tackle the aforementioned challenges.

To alleviate the problem of unstable predictions in different subdomains and obtain more accurate results, 
we first introduce a weighting mechanism in DFS-Net. The key idea is to associate the weights of each training 
point with its coordinates in the computational domain. Through trial and observation, we found that the center 
points are more informative than the edge points. Based on this observation, we set the point weighting mecha-
nism with a function that gives more weight to these “pivotal” points. Taking a 2-D domain as an example (see 
Fig. 1), for training points sampled inside the domain � , we use a piecewise function ω to give different weights 
to points in different domains:

where dl is the shortest distance of the weighted point from boundaries (bc1-bc4), and dt is an empirical param-
eter controlling the scope of the weighting area.

(3)∂ lu

∂tl
(x, 0) = g(x), l = 0, . . . , k − 1, x ∈ �,

(4)F̂(x, t) ≈ F(θW ,b, x, t),

(5)Loss(θW ,b, x, t) = � F̂(x, t)− F(θW ,b, x, t) ��,

(6)W∗, b∗ = argmin
W ,b

(Loss(θW ,b, x, t),

(7)

Loss(θW ,b, x, t) =
1

Nr

Nr
∑

n=1

|
∂ku

∂tk
(xrn, t

r
n)−D [u(xrn, t

r
n)]|

2 +
1

Nb

Nb
∑

n=1

|Dbc[u(x
b
n, t

b
n)] − h(xbn, t

b
n)|

2

+
1

Ni

Ni
∑

n=1

|
∂ lu

∂tl
(xin, 0)− g(xin)|

2
,

(8)ω(p) =







1

0.5− dt
dl , if dl > 0.5− dt

1, else

, p ∈ �,
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For the boundary data, ω is defined as a parabolic function describing weight characteristics (see Fig. 1c), 
where the midpoint has a weight of 1 and the endpoints have a weight of 0.

In this way, DFS-Net is able to better balance the contribution of training points sampled from different 
subdomains (e.g., interior or boundary points) and accelerate the loss convergence. Moreover, this mechanism 
could also eliminate the potential singular values caused by discontinuities or sudden changes in the boundary 
conditions, thus allowing us to achieve better accuracy.

We now introduce the overall pipeline of the proposed DFS-Net. Instead of employing a very deep neural 
network, DFS-Net uses a lightweight structure to learn solution-related features from the space-time input. 
As depicted in Fig. 2, we first introduce a linear expanding layer as a data enhancement in DFS-Net. This layer 
defines a mapping from the input layer zin ∈ R2 to the output z1 ∈ R8:

where pow(·) computes the square of the (x, t) element-wise, and sin(·) and cos(·) compute the sine and cosine 
of (x, t), respectively.

The affine transformation in the expanding layer can make the input (x, t) better suited for nonlinear par-
tial differential function approximation, thereby capturing the complex high-dimensional features inherent in 

(9)ω(p) =

{

1− y2, p ∈ ∂�1,3,

1− x2, p ∈ ∂�2,4.

(10)zin[(x, t)] �→ z1[pow(x, t), sin(x, t), cos(x, t), (x, t)],

Figure 1.   The weighting mechanism used in the proposed DFS-Net.

Figure 2.   The overall pipeline of the proposed DFS-Net.
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conservation laws. Our experiments show that the introduced expanding layer improves the performance of 
neural network-based surrogate models compared with no expansion, albeit leading to a higher computational 
cost at the beginning of the training phase.

After expansion, a series of hidden layers are employed to extract the features of interest from the expanded 
spatial and temporal coordinates. In these hidden layers, the neurons of adjacent layers are fully connected, and 
each hidden layer of the network receives an output from the previous layer. Inspired by33, we introduce one-
dimensional excitation blocks to further increase the approximating ability of DFS-Net. An excitation block is a 
computational unit built upon a transformation between two layers. It takes the output of the last hidden layer 
as the input and produces a collection of per-channel modulation weights, which can be regarded as a simple 
self-gating mechanism. The affine transformation in each hidden layer is computed as:

where the subscript l denotes the index of the hidden layer, and Wl and bl are the weight matrix and bias vector 
in layer l, respectively. The element-wise activation function σ is applied to the transformed vector (Wlzl−1 + bl) , 
for which a number of options can be chosen, e.g., sigmoids, rectified linear units (ReLU), and tanh functions34. 
⊙ represents a point-wise multiplication operator. Wexcitation is the weight matrix provided by the excitation 
block. In DFS-Net, we provide two excitation modes: (1) fixed excitation mode and (2) unfixed excitation mode. 
Among them, the fixed excitation mode adaptively recalibrates the per-channel feature responses by explicitly 
modeling interdependencies between the channels using a shared excitation block for each hidden layer. The 
unfixed excitation mode employs different excitation blocks for different hidden layers. Both modes help DFS-
Net reweight channel attention without requiring additional supervision, where the fixed block mode induces a 
relatively small computational and memory overhead.

The detailed training procedure of the data-free surrogate model DFS-Net is shown in Algorithm 1. In our 
work, we consider the spatial and temporal coordinates as inputs. We first randomly select the training data from 
the solution domain. One can also sample training data uniformly depending upon space (time) scales or using 
other randomized designs, such as Latin hypercube sampling strategy and a truncated Gaussian distribution23. 
Then, we adopt the weighting mechanism to compute weights for each set of preselected training data, aimed at 
alleviating the prediction inaccuracy in the near-wall domains.

In step 3, we construct the loss function corresponding to the underlying PDE system. The loss function is 
used to constrain the DFS-Net, such that the conservation laws, boundary conditions, and initial conditions 
are satisfied at each iteration of subsequent training. The loss function Loss(θW ,b, x, t) of DFS-Net for solving 
PDEs is defined as follows:

where LossNr , LossNb
 and LossNi represent the loss terms corresponding to the residual of the governing equation, 

the boundary condition, and the initial condition, respectively. Nr , Nb and Ni denote the number of preselected 
point samples for different loss terms. ωn is the weight of the n-th point calculated by the weighting mechanism. 
�1 and �2 are penalty coefficients introduced by the learning rate annealing method, which work as a dynamic 

(11)zl = σ(Wlzl−1 + bl)⊙Wexcitation,

(12)

Loss(θW ,b, x, t) = LossNr + �1 LossNb
+ �2 LossNi ,

LossNr =
1

Nr

Nr
∑

n=1

ωn · |
∂ku

∂tk
(xrn, t

r
n)−D [u(xrn, t

r
n)]|

2
, LossNb

=
1

Nb

Nr
∑

n=1

ωn · |Dbc[u(x
b
n, t

b
n)] − h(xbn, t

b
n)|

2
,

LossNi =
1

Ni

Ni
∑

n=1

ωn · |
∂ lu

∂tl
(xin, 0)− g(xin)|

2
,
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penalty strategy to overcome the imbalance contribution of the governing equation term and the boundary/
initial condition terms in Loss(θW ,b, x, t) . The balanced interplay between different terms can help DFS-Net 
better learn the rule-based algorithm from the PDE systems and accelerate convergence during training. In our 
experiments, �1 and �2 are initialized by 10 and are updated every 10 gradient descent steps.

After constructing the network structure (Step 4) and initializing the network parameters (Step 5), we feed 
the preselected data into DFS-Net for feedforward training. The input signals are passed between all hidden 
layers (with activation functions) and converted into high-level features. During the backpropagation process, 
the loss function concludes the partial derivatives of the layer outputs with respect to the variables. The network 
variables (weights, biases, and � ) are optimized via non-convex optimization algorithms (e.g., stochastic gradi-
ent descent or quasi-Newton) to minimize Loss(θW ,b, x, t) . The optimization process stops after converging to a 
local optimum. Thereafter, the well-trained DFS-Net with a set of (sub)optimal network parameters can be used 
as a black box to rapidly compute the prediction solution for any given input vector (coordinates), such as the 
velocity, temperature, or pressure field. Since this feedforward prediction procedure only involves a few matrix 
multiplications, the computational cost for the prediction can be neglected compared to that of a traditional 
numerical simulation.

Training.  The activation functions play an important role in neural network training. They perform a non-
linear transformation to the output of each hidden layer, making it possible for neurons to approximate complex 
patterns. The swish activation function is a widely used nonlinear mapping function for deep neural networks, 
which is defined as:

Previous studies show that swish is less prone to the vanishing and exploding gradient problem35. In DFS-
Net, we use the swish function with β = 10 for activation in each hidden layer, except for the last layer, where a 
linear activation function is used.

For the non-convex optimization algorithm, we combine the Adam and L-BFGS-B optimizers36 to minimize 
the loss function. We first apply the Adam optimizer for stochastic gradient descent training and then employ 
the L-BFGS-B optimizer to finetune the results. During the Adam-based training, the optimizer randomly sam-
ples a subset of data (called a mini-batch) from the training set to calculate the direction of the gradient at each 
iteration. In our work, the initial learning rate is 1× 10−4 and decays 0.9 every 1000 epochs (iterations). The 
mini-batch size is 128, and the number of training epochs is 1× 104 for Adam-based training. L-BFGS-B is a 
limited-memory quasi-Newton optimizer for bound-constrained optimization. It is known to work very well at 
escaping from local optima during network training and requires little tuning. For L-BFGS-B training, the input 
training set is 1280 points that are randomly sampled from the solution domain. We set the stopping criterion 
of L-BFGS-B to sys.float_info.min , which is the minimum float value in Python37.

For all test cases, we trained the DFS-Net on Intel Intel(R) Xeon(R) Gold 6150 CPUs. The partial differential 
operators in governing equations are computed using “tf.gradients()” based on the chain rule and automatic 
differentiation in TensorFlow 1.15.038,39. During training, the random seeds for TensorFlow and Numpy37 are 
set to 666 to ensure the reproducibility of the experimental results.

Results and discussion
In this section, we study and compare the performance of DFS-Net with some other widely used DNN-based 
surrogate models for PDE solving, including PINN23, PINN with the learning rate annealing algorithm25, DGM26, 
and GP-PINN25. To evaluate the prediction accuracy of different models, we use the relative L2-error criterion, 
which is defined as:

where uref  denotes the reference solution given by the analytical solution or high-fidelity DNS numerical results, 
and upred denotes the predicted solution obtained by surrogate models.

Helmholtz equation.  In the first test case, we use the two-dimensional Helmholtz equation as a bench-
mark to investigate the function approximation capability of the proposed methodology. This equation is one 
of the fundamental PDEs arising in various fields, such as acoustics, electromagnetism, and elastic mechanics40. 
The two-dimensional Helmholtz equation we used is given by:

where � denotes the Laplace operator, � ∈ [0, 1] × [0, 1] , and q(x, y) is a source term given by:

To obtain the predicted solution of Eqs. (15 and 16), we formulate the following loss function to guide the 
subsequent training:

(13)f (x) = x · sigmoid(βx),

(14)L2 − error =
�uref − upred�2

�uref �2
,

(15)�u(x, y)+ k2u(x, y) = q(x, y), (x, y) ∈ �,

(16)u(x, y) = h(x, y), (x, y) ∈ ∂�,

(17)
q(x, y) =− (α1π)

2 sin (α1πx) sin
(

α2πy
)

− (α2π)
2 sin (α1πx) sin

(

α2πy
)

+ k2 sin (α1πx) sin
(

α2πy
)

,
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Note that the governing equation and boundary condition are embedded in the loss terms as constraints. 
h(x, y) is computed by the analytical solution (k = 1) given by:

In this case, we construct a three-hidden-layer DFS-Net with 50 neural units per layer to find the optimal 
network parameters for which the suitably defined loss function (Eq. 18) is minimized. We conduct experi-
ments on two different equation settings: (1) α1 = 1 and α2 = 4 and (2) α1 = 2 and α2 = 3 . Figure 3 depicts the 
convergence of DFS-Net on these two Helmholtz benchmarks. From the variation curves of the loss value, we 
can observe that applying a two-step optimization (Adam and L-BFGS-B) is robust for the DFS-Net. During the 
Adam training phase, the value of the loss terms ( LossNr and LossNb

 ) decreases as the learning rate decays with 
the increase in the epoch. For the L-BFGS-B phase, DFS-Net rapidly converges after 3417 epochs (for α1 = 1 
and α2 = 4 ) and 2251 epochs (for α1 = 2 and α2 = 3 ), respectively.

In Fig. 4, we compare the predicted solution upred with the reference solution uref  and report the point-wise 
absolute error between them. It is evident that the DFS-Net based approximation does a good job at fitting the 
governing equation and boundary conditions on Helmholtz benchmarks. In particular, the introduced point 
weighting mechanism and excitation blocks in DFS-Net effectively alleviate the problem of unstable predictions 
by PINNs. Compared with the absolute error of PINN and GP-PINN depicted in Fig. 4b and d, we can clearly 
see the advantage of the proposed DFS-Net, that is, the prediction solution is more accurate, especially in sub-
domains near the boundaries.

In Table 1, we compare the DFS-Nets (fixed excitation mode DFS-Netfix and unfixed excitation mode DFS-
Netunfix ) against the other surrogate models. To ensure fairness in the comparison of different models, we set the 
number of hidden layers of all models to 3× 50 and use the same hyperparameter settings. The experimental 
results show that DFS-Nets outperform the existing neural network-based solvers. When α1 = 1,α2 = 4 , DFS-
Netfix achieves an average L2-error of 3.27e−03 in this case, while DFS-Netunfix yields 1.48e−03. The prediction 
errors of DFS-Net are approximately two orders of magnitude lower than those of PINN and DGM and one 
order of magnitude lower than those of PINN-anneal. Similar results can be seen in Table 2, where α1 = 2 and 
α2 = 3 . We can see that the proposed DFS-Nets are able to better extract the solution-related features inherent 
in conservation laws compared to other models, and DFS-Netunfix achieves the best performance of 2.95e−03 
on this benchmark.

The training time column of Table 1 records the time overhead required to complete each training epoch. It 
is clear that the proposed model achieves a good trade−off between accuracy and efficiency. DFS-Netfix with a 
shared excitation block takes approximately 10 ms for one Adam epoch and 22 ms for one L-BFGS-B epoch, while 
DFS-Netunfix with unfixed excitation blocks leads to a relatively higher computational cost. The total training 
time required for DFS-Net to achieve the best prediction is 188.19 s and 150.64 s for two different modes, while 
the total time for PINN, PINN-anneal and GP-PINN are 184.0, 216.4, and 491.2, respectively.

Klein–Gordon equation.  Here, we use DFS-Net to simulate the time−dependent Klein–Gordon equation. 
This equation is a second-order nonlinear PDE closely related to many scientific fields, such as quantum, solid-
state, and condensed matter physics41. The initial boundary value problem of the one−dimensional Klein–Gor-
don equation is given by:

(18)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |�u(x, y)+ k2u(x, y)− q(x, y)|2 +
1

Nb

Nb
∑

n=1

ωn · |u(x, y)− h(x, y)|2.

(19)uref = sin (α1πx) sin
(

α2πy
)

.

Figure 3.   The convergence of DFS-Net (on the log scale) on the Helmholtz equation. The Adam optimizer is 
used before the vertical dashed line, and the L-BFGS-B optimizer is used afterwards.
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(20)∂2u(x, t)

∂t2
−

∂2u(x, t)

∂x2
+ u(x, t)3 = q(x, t), (x, t) ∈ �× [0,T],

(21)u(x, t) = h(x, t), (x, t) ∈ ∂�× [0,T],

Figure 4.   Performance of different surrogate models on the Helmholtz benchmarks.
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where the computation domain � ∈ [0, 1] and T = 1 . The boundary conditions h(x,  t), initial conditions 
( g1(x), g2(x) ), and forcing term q(x, t) are extracted from the analytical solution given by:

A composite loss function that includes the governing equation term, boundary condition term, and initial 
condition term for this benchmark is formulated as follows:

The DFS-Net used in this case consists of five hidden layers with 50 neural units in each layer. During the 
DFS-Net training process, we seek to find the minimum loss value by tuning the network parameters. For this 
purpose, we use the chain rule to back-propagate derivatives from the output layer to the inputs and update the 
weights, biases, and � . After offline training, this DNN-based surrogate model is expected to provide a rapid 
online prediction of observables with a set of optimal parameters θ.

In Fig. 5a, we present the comparison results of the reference solution and the predicted solution given by 
DFS-Net. We also summarize the pointwise absolute error of different surrogate models on the Klein–Gordon 
equation in Fig. 5b. As expected, DFS-Net presents good agreement with the reference solution and achieves the 
smallest pointwise absolute error in the solution domain of this problem.

Table 3 provides a more detailed evaluation of the L2-error for different models. As shown in Table 3, both 
modes of DFS-Net are able to yield solutions with a high accuracy. The network with unfixed excitation blocks 
(DFS-Netunfix ) achieves the best performance of 1.45e−03 at the end of 13775 epochs (10000 epochs of Adam-
based training and 3775 epochs of L-BFGS-B-based training). We can also observe that by introducing the 
learning rate annealing method, the DNN-based surrogate models can obtain more robust prediction results 
(corresponding to model PINN-anneal, GP-PINN, and DFS-Nets). In contrast, PINN and DGM fail to yield the 
desired prediction accuracy, leaning to L2-errors of 1.38e−01 and 2.09e−01, respectively.

(22)u(x, 0) = g1(x), x ∈ �, t = 0,

(23)
∂u(x, 0)

∂t
= g2(x), x ∈ �, t = 0,

(24)u(x, t) = x cos(5π t)+ (xt)3.

(25)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |
∂2u(x, t)

∂t2
−

∂2u(x, t)

∂x2
+ u(x, t)3 − q(x, t)|2 +

1

Nb

Nb
∑

n=1

ωn · |u(x, t)− h(x, t)|2

+
1

Ni

Ni
∑

n=1

ωn · |u(x, 0)− g1(x)|
2 +

1

Ni

Ni
∑

n=1

ωn · |
∂u(x, 0)

∂t
− g2(x)|

2
.

Table 1.   Comparison of the relative L2-error of different neural network-based surrogate models on the 
Helmholtz equation ( α1 = 1,α2 = 4). a All models consists of three hidden layers with 50 neurons in each 
layer. b The training time for each Adam epoch. c  The training time of DFS-Netfix for each L-BFGS-B epoch is 
22.01 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 23.88 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 7.14e−01 44.12

PINN 2.27e−01 4.60

PINN-anneal 1.83e−02 5.41

GP-PINN 5.59e−03 12.28

DFS-Netfix 3.27e−03 10.11c

DFS-Netunfix 1.48e−03 10.66d

Table 2.   Comparison of the relative L2-error of different neural network-based surrogate models on the 
Helmholtz equation ( α1 = 2,α2 = 3). a All models consists of three hidden layers with 50 neurons in each 
layer. b  The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is 
22.00 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 23.86 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 6.21e−01 43.82

PINN 1.37e−01 4.57

PINN-anneal 2.95e−02 5.34

GP-PINN 3.48e−03 12.12

DFS-Netfix 3.14e−03 10.08c

DFS-Netunfix 2.95e−03 10.68d
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In this case, we also investigate the effect of different architectures, i.e., the number of hidden layers and the 
number of neurons per layer, on the relative L2-error of the predicted solution. Figure 6a shows the performance 
when the number of model layers varies from 1 to 10. As we can see, a single−layer architecture tends to return 
incorrect predictions. By increasing the number of layers, the improved surrogate model yields a better accuracy. 
However, we can also observe that excessive layers will lead to overfitting of the model, resulting in suboptimal 
results. Similar results can be obtained in Fig. 6b, which analyzes the performance for a varying number of 
neurons. It can be seen that the increase in the number of neurons may not guarantee the desired performance, 
and the model works best when the number of neurons per layer is 50 to 70.

Lid‑driven cavity flow.  In the last case, we employ a canonical benchmark problem, the steady-state flow 
in a two-dimensional lid-driven cavity (see Fig. 7), to analyze the performance of the DNN-based surrogate 
models. The flow system is governed by the Navier–Stokes equation42,43, which can be written as:

(26)u(x, y) · ∇u(x, y)+∇p(x, y)−
1

Re
�u(x, y) = 0 (x, y) ∈ �,

(27)∇ · u(x, y) = 0 (x, y) ∈ �,

Figure 5.   Performance of different surrogate models on the Klein–Gordon equation.

Table 3.   Comparison of the relative L2-error of different neural network-based surrogate models on the 
Klein–Gordon equation. a  The training time for each Adam epoch. b  The training time of DFS-Netfix for each 
L-BFGS-B epoch is 41.14 ms. c  The training time of DFS-Netunfix for each L-BFGS-B epoch is 44.44 ms.

Surrogate model Accuracy ( L2-error) Training time (ms)a

DGM 2.09e−01 50.74

PINN 1.38e−01 6.01

PINN-anneal 8.71e−03 7.19

GP-PINN 2.57e−03 21.88

DFS-Netfix 2.29e−03 17.73b

DFS-Netunfix 1.45e−03 19.36c
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where u(x, y) is a velocity vector field, p(x, y) is a scalar pressure field, Re is the Reynolds number of the flow, 
� ∈ [0, 1] × [0, 1] , Ŵ1 denotes the top boundary of the two-dimensional square cavity, and Ŵ0 denotes the other 
three sides.

In our experiments, we perform a neural network-based simulation using the vorticity–velocity (VV) formu-
lation of the Navier–Stokes equations42. In this formulation, the velocity components u, v are obtained by taking 
derivatives of the scalar potential function ψ(x, y) with respect to the x and y coordinates:

As a result, the continuity equation ∇ · u(x, y) = 0 for incompressible fluids is automatically satisfied. Moreo-
ver, since only steady-state solutions are considered for this proof of concept, the constraint of temporal terms 
can be neglected. The corresponding loss function for this benchmark is defined as:

where h1(x, y) = (1, 0) for (x, y) ∈ Ŵ1 , and h0(x, y) = (0, 0) for (x, y) ∈ Ŵ0 . The first and second derivative terms 
of ψ , u, v, and p with respect to the spatial coordinates (x, t) are computed using automatic differentiation.

In this case, we conduct experiments at Reynolds numbers Re = 100, 300, 600 to comprehensively study the 
prediction performance of neural network-based surrogate models. The DFS-Net we used again contains three 
hidden layers. To better infer the PDE solutions, we gradually increase the number of neurons in each hidden 

(28)u(x, y) = (1, 0) (x, y) ∈ Ŵ1,

(29)u(x, y) = (0, 0) (x, y) ∈ Ŵ0,

(30)u =
∂ψ(x, y)

∂y
, v = −

∂ψ(x, y)

∂x
.

(31)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
−

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

|2

+
1

Nr

Nr
∑

n=1

ωn · |u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
−

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

|2

+
1

Nb

Nb
∑

n=1

ωn · |u− h1(x, y)|
2 +

1

Nb

Nb
∑

n=1

ωn · |v − h0(x, y)|
2
,

Figure 6.   Performances of different architectural designs obtained by varying the number of hidden layers and 
the number of neurons per layer.

Figure 7.   Lid-driven cavity flow.
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layer as the Reynolds number increases: 50 neurons per layer at Re = 100 , 128 at Re = 300 , and 256 at Re = 600 . 
For each Re, we implement two modes of DFS-Net for training by means of the point weighting mechanism 
and excitation blocks. The models take the expanded spatial coordinates as inputs and output the pressure and 
vorticity fields. To validate the prediction accuracy of the trained models, we solve the Navier–Stokes equations 
to generate the reference solution using the open-source CFD solver OpenFOAM44.

For different Reynolds numbers, DFS-Nets show a rapid convergence and reach their local optimum after 
approximately 20,000 epochs. The reference and predicted distributions of velocity are shown in Fig. 8. It is 
observed that DFS-Net can accurately capture the intricate nonlinear behavior of the Navier–Stokes equations 
and agrees well with the CFD solutions.

It is worth noting that in this case, the velocity of u changes sharply from 0 to 1 at the junction of Ŵ1 and Ŵ0 
[e.g., points (0,1) and (1,1)] according to the definition of the boundary velocity. These sharp discontinuities 
can lead to instability during neural network training in the near-wall regions. To emphasize the ability of the 
proposed model to handle nonlinearity in different subdomains, we plot and compare the point-wise absolute 
error obtained by PINN, GP-PINN, and DFS-Net in Fig. 9. It is observed that PINN fails to provide satisfactory 
prediction results for the underlying NS equations with different Re settings. At a Reynolds number of 100, PINN 
suffers a large error near the right boundary, yielding a prediction error of 3.47e−01. As the Reynolds number 
increases, the errors are more severe: 6.25e−01 at Re = 300 and 7.76e−01 at Re = 600.

When Re = 100 , GP-PINN can mitigate the prediction errors caused by sharp discontinuities. However, the 
incorrect prediction in the near-wall subdomains is still obvious (see Fig. 9). In contrast, the proposed DFS-Net 
appears to be more robust as the Reynolds number increases. The visualization results show that DFS-Net has a 
better ability to approximate complicated functions than other models and obtains a stable prediction accuracy 
in all three Re cases. This proves that the combined use of the weighting mechanism and the excitation blocks in 
DFS-Net has a positive effect on the velocity prediction of near-wall regions. The weighting mechanism assigns 
different weights to the sample points, thus eliminating any potential discontinuities (the loss weight of the 
discontinuous points is 0). Meanwhile, the introduced excitation blocks work as a tool to bias the allocation of 
available processing resources towards the most informative components of the expanded channels and cor-
respondingly increase the weights of these solution-related features. As a result, they speed up the convergence 
of DFS-Net and allow us to achieve better accuracy.

To further analyze the performance of our method, we compare the L2-error given by DFS-Nets against the 
other four widely used surrogate models. The experimental results are summarized in Tables 4, 5 and 6. When 
Re = 100 , DFS-Netfix and DFS-Netunfix perform better than the other comparative models, and the resulting 
prediction error is measured at 1.34e−02 and 2.91e−02 in the relative L2-error, respectively. These two models 
improve the prediction accuracy of PINN and PINN-anneal by a factor of 5-25, although more training time 
is required. Compared with DGM and GP-PINN, the proposed models are more accurate and more efficient. 
Benefiting from the lightweight structure of DFS-Nets, the total training time of DFS-Netfix is 1610.1 s, while 
that of DFS-Netunfix is 1730.3 s. The prediction overhead for each sample is approximately 0.5 ms.

When Re = 300 and 600, DFS-Net uniformly leads to the most accurate results we have obtained for this 
benchmark. Compared with the widely used models, the prediction error of the two DFS-Nets can be largely 
reduced by nearly an order of magnitude, yielding L2-errors ranging from 3.31–3.80% at Re =300 and 7.25–8.50% 
at Re =600. We also conducted experiments for higher Re settings to verify the performance of the proposed 
methodology. However, problems with higher Reynolds numbers tend to have more stringent requirements on 
the depth (width) of the underlying network, which can lead to very large training overheads (e.g., more than 
100k epochs of training are required to ensure a L2-error of less than 10% at a Reynolds number of 1000). The 
excessive training overhead weakens the practicability of neural network-based methods and is therefore not 
discussed in this paper.

The tuning of hyperparameters is an essential ingredient and important process of deep learning methods. 
Here, we evaluate the effect of two basic training hyperparameters, namely, the learning rate and batch size, at 
Re = 600 . During Adam-based training, the learning rate is a key hyperparameter used to control the step size 
of the gradient descent. An overly large learning rate might overshoot and prevent convergence, while at small 
step size may get stuck in a local minima, thus providing suboptimal solutions. A comparison of the L2-error 
for different learning rates is shown in Fig. 10a. We can see that in this test case, the range of 1.0e−02 to 1.0e−03 
yields a good convergence. Figure 10b depicts the performance when DFS-Net is trained on different batch sizes. 
Due to the memory limitations of the underlying system, we only test the results for batch sizes smaller than 
512. The experimental results show that a relatively large batch size is required in order to achieve the desired 
accuracy, and that the minimum error is achieved when the batch size is 256.

Overall, we performed a comprehensive study on the robustness of the proposed DFS-Net model using three 
PDE benchmarks (Helmholtz equation, Klein–Gordon equation, and Navier–Stokes equation). To keep the 
training and prediction costs low, we did not consider very deep architectures throughout all test cases. Instead, 
we employed a fixed neural architecture (less than 256 neural units per layer) to evaluate the L2-error against the 
reference solution, as well as the time cost required to complete each simulation. The experimental results dem-
onstrate that DFS-Net is able to alleviate the problem of unstable predictions of existing neural network-based 
surrogate models and infer a solution of the underlying partial differential equations with a remarkable accuracy.

Conclusion
Deep neural networks provide an efficient substitute for inferring PDE solutions because of their universal 
approximation capabilities in the high-dimensional parameter space. In this paper, we designed an improved 
neural network-based surrogate model, DFS-Net, for PDE solving. The proposed model employs a series of 
attention-based neural units to approximate the nonlinear mapping relations between the coordinate inputs and 



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19507  | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

predictions. Moreover, we introduced a weighting mechanism in DFS-Net to enhance its ability to encode the 
underlying physical laws that govern a given PDE system. After suitable training, DFS-Net allows us to construct 
a computationally efficient and fully differentiable surrogate, where the quantities of interest can be immediately 
obtained by evaluating the trained network with any given input point without meshing.

To verify the robustness of DFS-Net, we conducted a collection of numerical studies on different surrogate 
models in terms of their learning efficiency and prediction accuracy. The experiments demonstrated that DFS-Net 
is able to yield a good trade-off between accuracy and efficiency. It outperforms the widely used surrogate models 

Figure 8.   Lid-driven cavity flow: comparison of the reference solution with the predicted solution given by 
DFS-Net.
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and achieves the best prediction performance on different numerical benchmarks, including the Helmholtz, 
Klein–Gordon, and Navier–Stokes equations.

Designing a suitable deep neural network for the PDE system is challenging, despite there are many architec-
tural and parametric possibilities to consider. In future work, we will focus on studying the implicitly encoded 
features in the current DFS-Net and calibrating the model to more complex tasks. As deep learning technology 
is continuing to grow rapidly in terms of both methodological and algorithmic developments, we believe that 

Figure 9.   Performance of different surrogate models on the lid-driven cavity flow benchmarks.

Table 4.   Comparison of the relative L2-error of different neural network-based surrogate models on the lid-
driven cavity flow benchmark ( Re = 100). a All models consists of three hidden layers with 50 neurons in each 
layer. b The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is 
103.16 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 110.38 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 6.69e−02 275.39

PINN 3.47e−01 13.33

PINN-anneal 1.42e−01 15.44

GP-PINN 4.01e−02 66.07

DFS-Netfix 2.91e−02 58.68c

DFS-Netunfix 1.34e−02 63.53d
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this new class of universal function approximators has high potential for data-efficient prediction, control, and 
optimization across a wide range of physical applications.
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