
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports

An improved data‑free surrogate
model for solving partial
differential equations using deep
neural networks
Xinhai Chen1,2, Rongliang Chen3, Qian Wan1, Rui Xu1 & Jie Liu1,2*

Partial differential equations (PDEs) are ubiquitous in natural science and engineering problems.
Traditional discrete methods for solving PDEs are usually time-consuming and labor-intensive due
to the need for tedious mesh generation and numerical iterations. Recently, deep neural networks
have shown new promise in cost-effective surrogate modeling because of their universal function
approximation abilities. In this paper, we borrow the idea from physics-informed neural networks
(PINNs) and propose an improved data-free surrogate model, DFS-Net. Specifically, we devise an
attention-based neural structure containing a weighting mechanism to alleviate the problem of
unstable or inaccurate predictions by PINNs. The proposed DFS-Net takes expanded spatial and
temporal coordinates as the input and directly outputs the observables (quantities of interest). It
approximates the PDE solution by minimizing the weighted residuals of the governing equations
and data-fit terms, where no simulation or measured data are needed. The experimental results
demonstrate that DFS-Net offers a good trade-off between accuracy and efficiency. It outperforms the
widely used surrogate models in terms of prediction performance on different numerical benchmarks,
including the Helmholtz, Klein–Gordon, and Navier–Stokes equations.

Numerical simulations play a vital role in the fields of scientific and engineering applications, such as aerospace,
finance, civil, energy engineering, and biological engineering1–3. The principle of the simulation process is to solve
linear/nonlinear partial differential equations (PDEs). Since the 1970s, various mesh-based numerical methods,
such as finite difference (FD), finite element (FE), and finite volume (FV) methods, have been developed to solve
PDE systems4. These methods first discretize the computational domain into mesh units and then iteratively
solve the system of PDEs on each subdomain in order to yield an analysis capability for the numerical solution
of the unknown functions.

However, traditional discrete methods often involve tedious meshing and iterative solving of large sparse
nonlinear systems, which are computationally cumbersome on modern parallelized architectures5–8. Moreover,
the current meshing process is still a highly specialized activity that remains in the empirical, descriptive realm of
knowledge, especially for complex geometries and physical configurations9,10. Careful human-computer interac-
tion is usually required to ensure a valid, high-quality mesh for the convergence of the PDE solvers. The extensive
computational overhead and manual interaction limit the use of a principled PDE model for real-time analysis
and optimization design. Therefore, developing a cost-effective surrogate model is desirable. An ideal model is
one that takes the coordinates of some random points in the computational domain and automatically outputs
the corresponding degrees of freedom of the PDE.

To fulfill this role, Raissi et al.11,12 employed machine learning techniques (Gaussian process and Bayesian
regression) to devise functional representations for linear/nonlinear operators in physical and mathematical
problems. Tartakovsky et al.13 presented a physics-informed machine learning approach, PICKLE, for elliptic
diffusion equations. This approach uses conditional Karhunen–Loè ve expansion (cKLE) to minimize the PDE
residuals and approximate the observed parameters and states. Ahalpara14 developed a surrogate model for solv-
ing the Korteweg–de Vries (KdV) equation using a genetic algorithm. A random forest regression model was
introduced by Wang et al.15 to predict the Reynolds stresses in the flow over periodic hills. However, the above

OPEN

1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense
Technology, Changsha 410000, China. 2Laboratory of Software Engineering for Complex System, National
University of Defense Technology, Changsha 410000, China. 3Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518000, China. *email: liujie@nudt.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99037-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

machine learning-based models show difficulties in generalization to different physical problems. Moreover,
due to the limited approximating capacity of machine learning techniques, these models may not guarantee the
desired prediction result and tend to yield an inaccurate solution for complex nonlinear PDE systems.

Deep neural networks (DNNs) are rapidly gaining more attention in many physical problems requiring
intensive computing and extensive domain expertise16–20. DNNs utilize multiple layers of interconnected neu-
rons to automatically learn important features from high-dimensional parameter spaces. By performing an
optimization process based on the loss function, the network model brings the promise of a powerful approach
to approximate the complex and nonlinear mapping relations of the input-output model. Theorems in21,22 prove
that the universal function approximation capabilities of neural networks open a new way to obtain the latent
solutions of PDE systems.

Recently, pioneering works began to explore the possibility of solving PDEs via deep neural networks. Raissi,
Perdikaris, and Karniadakis23,24 first introduced physics-informed neural networks (PINNs) to solve forward
and inverse problems involving PDEs. In PINNs, the governing equations, as well as the initial/boundary condi-
tions, are embedded in the loss function as penalizing terms in order to constrain the space of latent solutions.
Then, one trains and updates the variables (weights and biases) in the constructed network by minimizing this
loss function using optimization methods such as gradient descent methods and quasi-Newton methods. After
suitable training, the resulting network is able to form a new class of data-free universal function approxima-
tors that naturally encode any underlying physical laws as prior information and provide the solution to a PDE
system. Although PINN-based methods appear to be straightforward, these methods usually incur difficulties
in satisfying all equation residuals (especially for boundary conditions), leading to slow convergence or unstable
approximation results of some local solutions.

To solve the deficiency of original PINNs, Wang et al.25 studied the gradient pathologies in physics-informed
neural networks and introduced a gradient pathology physics-informed neural network (GP-PINN) for PDE solv-
ing. The proposed network balances the interplay between the different terms in the loss function by reweight-
ing gradients during backpropagation training. Inspired by Galerkin methods, Sirignano and Spiliopoulos26
proposed a well-designed long short-term network, called the deep galerkin method (DGM), to solve high-
dimensional PDEs. The DGM is trained to satisfy the differential operator and the initial/boundary conditions,
thus providing an approximation to the latent solution. Their method has been successfully used in different
contexts, such as approximating very high-dimensional problems arising in mathematical finance by exploiting
integral representation formulas for the underlying solutions. However, one disadvantage of this method is the
need for additional parameters and computational effort to obtain satisfactory solution accuracy, which leads
to a significant increase in the training and prediction overhead. Lu et al.22 proposed deep operator networks
DeepONets to learn nonlinear operators for differential equations. This network employs two subnetworks (truck
and branch net) in order to extract the operator-related features from prior knowledge and then approximates
the mapping relations between the input function and the unknown operator. Despite the high efficiency and
flexibility, this type of method is data-dependent and supervised, which means that a labeled dataset is required
for the supervised training process, therefore the quality and scale of this dataset can greatly affect the prediction
performance of the underlying operator networks.

In this paper, we develop an improved data-free surrogate model, DFS-Net, to enable fast and accurate
inference of PDE solutions. In the proposed methodology, we take spatial and temporal coordinates as the
input and feed them into the network for training. The variables in DFS-Net are optimized by minimizing the
loss function leveraging the PDE residual and data-fit terms, where no supervised simulation data are needed.
Based on the observation that existing surrogate models tend to obtain unstable prediction results in different
subdomains (e.g., interior or near-wall domains), we propose a weighting mechanism to calibrate the weight of
input coordinates in the loss function. Moreover, we introduce an attention-based excitation block in DFS-Net
to increase the approximating accuracy and accelerate the training. The experimental results show that DFS-Net
can achieve a good trade-off between accuracy and efficiency. It outperforms the widely used surrogate models
and yields remarkable prediction results on different benchmarks, including the Helmholtz, Klein–Gordon, and
Navier–Stokes equations.

The remainder of the paper is organized as follows: in “Methodology”, we first introduce the problem setup
and provide a recap of PINN for solving PDE. Next, we develop our data-free surrogate model DFS-Net. The
proposed model is then applied to different PDE benchmarks to validate its robustness. The performance of
DFS-Net and the comparison results with some other widely used surrogate models are discussed in “Results
and discussion”. Finally, conclusions and future work are drawn in “Conclusion”.

Methodology
Problem setup.  We begin with the description of a system of nonlinear partial differential equations (PDEs)
in the following generalized form:

where the spatial domain � ∈ R
d , D represents the differential operator, and u(x, t) is the unknown solution we

wish to solve for. The above system is subject to the well-posed boundary condition,

and the initial condition,

(1)∂ku

∂tk
(x, t) = D [u(x, t)], x ∈ �, t ∈ [0, T],

(2)Dbc[u(x, t)] = h(x, t), x ∈ ∂�,

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

where ∂� denotes the boundary of � , and Dbc is the differential operator that imposes boundary conditions for
the PDE. h(x, t) : Rd+1 → R , g(x) : Rd → R are given functions.

When a set of physical parameters and data-fit terms are given, the unknown function of interest u(x, t) can
be solved by discretizing the nonlinear/linear system using traditional numerical methods, such as the finite
difference method, the finite element method, and the finite volume method. However, these methods involve
tedious mesh generation and iterative solving, which heavily increases the simulation overhead.

Deep neural network and physics‑informed training.  Deep neural networks have proven their pow-
erful learning ability in many time-consuming classification- and regression-based physical applications9,27–29.
Well-trained networks utilize multiple layers of neural units to automatically approximate complex input-output
mapping from high-dimensional parameter spaces. Mathematically, a surrogate network model F is built to
approximate the latent solution F̂ for the underlying application:

where θW ,b is a set of network parameters, including the weights and biases of the constructed network. Minimiz-
ing the mismatch between the desired solution F̂ and the DNN-based predictions F is known to be a nonconvex
optimization problem. A key element in the resulting problem is the training of tuning parameters on a very
high dimensional parameter space. This process can be formulated as:

where � · � denotes the L2-norm over the domain � . After suitable training, one can find a set of optimal or sub-
optimal network parameters W∗, b∗ , such that Loss(θW ,b, x, t) is as close to zero as possible.

Recently, physics-informed neural networks (PINNs)23,24,30 have been employed to infer PDE solutions by
building complex features from multiple layers of neural units via input-output relationships. In PINNs, neurons
are fully connected. A loss function satisfying the PDEs [(Eqs. (1)–(3)] is employed to constrain the optimization
process of the neuron parameters. Let (xrn, trn)

n=Nr
n=1 be a preselected set of spatial and temporal points inside the

solution domain � . (xbn, tbn)
n=Nb

n=1 and (xin, tin)
n=Ni

n=1 denote the preselected point data sampled from the boundary
and initial condition, respectively. The loss function of PINN is formulated as:

Given a specific neural network architecture, the PINN can be viewed collectively as a function of the input
data and the parameters θW ,b . It maps the time t, spatial coordinates x , and variables to the quantities of interest,
e.g., the velocity field u or pressure field p, thus allowing a data-free PDE “solver” that does not require meshing
or numerical iteration. If the physics-based loss function Loss(θW ,b, x, t) becomes identically zero, the output pre-
dictions will exactly satisfy the underlying PDE system. However, experimental results in31,32 indicate that PINN
shows difficulties in fitting all equation residuals and fails to guarantee a stable approximation of the solution.
This may lead to serious errors in the PINN and return incorrect predictions, especially in the near-wall domains.

DFS‑Net: a data‑free surrogate model for solving PDEs.  Following the original works of PINN, we
propose an improved deep neural network DFS-Net to tackle the aforementioned challenges.

To alleviate the problem of unstable predictions in different subdomains and obtain more accurate results,
we first introduce a weighting mechanism in DFS-Net. The key idea is to associate the weights of each training
point with its coordinates in the computational domain. Through trial and observation, we found that the center
points are more informative than the edge points. Based on this observation, we set the point weighting mecha-
nism with a function that gives more weight to these “pivotal” points. Taking a 2-D domain as an example (see
Fig. 1), for training points sampled inside the domain � , we use a piecewise function ω to give different weights
to points in different domains:

where dl is the shortest distance of the weighted point from boundaries (bc1-bc4), and dt is an empirical param-
eter controlling the scope of the weighting area.

(3)∂ lu

∂tl
(x, 0) = g(x), l = 0, . . . , k − 1, x ∈ �,

(4)F̂(x, t) ≈ F(θW ,b, x, t),

(5)Loss(θW ,b, x, t) = � F̂(x, t)− F(θW ,b, x, t) ��,

(6)W∗, b∗ = argmin
W ,b

(Loss(θW ,b, x, t),

(7)

Loss(θW ,b, x, t) =
1

Nr

Nr
∑

n=1

|
∂ku

∂tk
(xrn, t

r
n)−D [u(xrn, t

r
n)]|

2 +
1

Nb

Nb
∑

n=1

|Dbc[u(x
b
n, t

b
n)] − h(xbn, t

b
n)|

2

+
1

Ni

Ni
∑

n=1

|
∂ lu

∂tl
(xin, 0)− g(xin)|

2
,

(8)ω(p) =







1

0.5− dt
dl , if dl > 0.5− dt

1, else

, p ∈ �,

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

For the boundary data, ω is defined as a parabolic function describing weight characteristics (see Fig. 1c),
where the midpoint has a weight of 1 and the endpoints have a weight of 0.

In this way, DFS-Net is able to better balance the contribution of training points sampled from different
subdomains (e.g., interior or boundary points) and accelerate the loss convergence. Moreover, this mechanism
could also eliminate the potential singular values caused by discontinuities or sudden changes in the boundary
conditions, thus allowing us to achieve better accuracy.

We now introduce the overall pipeline of the proposed DFS-Net. Instead of employing a very deep neural
network, DFS-Net uses a lightweight structure to learn solution-related features from the space-time input.
As depicted in Fig. 2, we first introduce a linear expanding layer as a data enhancement in DFS-Net. This layer
defines a mapping from the input layer zin ∈ R2 to the output z1 ∈ R8:

where pow(·) computes the square of the (x, t) element-wise, and sin(·) and cos(·) compute the sine and cosine
of (x, t), respectively.

The affine transformation in the expanding layer can make the input (x, t) better suited for nonlinear par-
tial differential function approximation, thereby capturing the complex high-dimensional features inherent in

(9)ω(p) =

{

1− y2, p ∈ ∂�1,3,

1− x2, p ∈ ∂�2,4.

(10)zin[(x, t)] �→ z1[pow(x, t), sin(x, t), cos(x, t), (x, t)],

Figure 1.   The weighting mechanism used in the proposed DFS-Net.

Figure 2.   The overall pipeline of the proposed DFS-Net.

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

conservation laws. Our experiments show that the introduced expanding layer improves the performance of
neural network-based surrogate models compared with no expansion, albeit leading to a higher computational
cost at the beginning of the training phase.

After expansion, a series of hidden layers are employed to extract the features of interest from the expanded
spatial and temporal coordinates. In these hidden layers, the neurons of adjacent layers are fully connected, and
each hidden layer of the network receives an output from the previous layer. Inspired by33, we introduce one-
dimensional excitation blocks to further increase the approximating ability of DFS-Net. An excitation block is a
computational unit built upon a transformation between two layers. It takes the output of the last hidden layer
as the input and produces a collection of per-channel modulation weights, which can be regarded as a simple
self-gating mechanism. The affine transformation in each hidden layer is computed as:

where the subscript l denotes the index of the hidden layer, and Wl and bl are the weight matrix and bias vector
in layer l, respectively. The element-wise activation function σ is applied to the transformed vector (Wlzl−1 + bl) ,
for which a number of options can be chosen, e.g., sigmoids, rectified linear units (ReLU), and tanh functions34.
⊙ represents a point-wise multiplication operator. Wexcitation is the weight matrix provided by the excitation
block. In DFS-Net, we provide two excitation modes: (1) fixed excitation mode and (2) unfixed excitation mode.
Among them, the fixed excitation mode adaptively recalibrates the per-channel feature responses by explicitly
modeling interdependencies between the channels using a shared excitation block for each hidden layer. The
unfixed excitation mode employs different excitation blocks for different hidden layers. Both modes help DFS-
Net reweight channel attention without requiring additional supervision, where the fixed block mode induces a
relatively small computational and memory overhead.

The detailed training procedure of the data-free surrogate model DFS-Net is shown in Algorithm 1. In our
work, we consider the spatial and temporal coordinates as inputs. We first randomly select the training data from
the solution domain. One can also sample training data uniformly depending upon space (time) scales or using
other randomized designs, such as Latin hypercube sampling strategy and a truncated Gaussian distribution23.
Then, we adopt the weighting mechanism to compute weights for each set of preselected training data, aimed at
alleviating the prediction inaccuracy in the near-wall domains.

In step 3, we construct the loss function corresponding to the underlying PDE system. The loss function is
used to constrain the DFS-Net, such that the conservation laws, boundary conditions, and initial conditions
are satisfied at each iteration of subsequent training. The loss function Loss(θW ,b, x, t) of DFS-Net for solving
PDEs is defined as follows:

where LossNr , LossNb
 and LossNi represent the loss terms corresponding to the residual of the governing equation,

the boundary condition, and the initial condition, respectively. Nr , Nb and Ni denote the number of preselected
point samples for different loss terms. ωn is the weight of the n-th point calculated by the weighting mechanism.
�1 and �2 are penalty coefficients introduced by the learning rate annealing method, which work as a dynamic

(11)zl = σ(Wlzl−1 + bl)⊙Wexcitation,

(12)

Loss(θW ,b, x, t) = LossNr + �1 LossNb
+ �2 LossNi ,

LossNr =
1

Nr

Nr
∑

n=1

ωn · |
∂ku

∂tk
(xrn, t

r
n)−D [u(xrn, t

r
n)]|

2
, LossNb

=
1

Nb

Nr
∑

n=1

ωn · |Dbc[u(x
b
n, t

b
n)] − h(xbn, t

b
n)|

2
,

LossNi =
1

Ni

Ni
∑

n=1

ωn · |
∂ lu

∂tl
(xin, 0)− g(xin)|

2
,

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

penalty strategy to overcome the imbalance contribution of the governing equation term and the boundary/
initial condition terms in Loss(θW ,b, x, t) . The balanced interplay between different terms can help DFS-Net
better learn the rule-based algorithm from the PDE systems and accelerate convergence during training. In our
experiments, �1 and �2 are initialized by 10 and are updated every 10 gradient descent steps.

After constructing the network structure (Step 4) and initializing the network parameters (Step 5), we feed
the preselected data into DFS-Net for feedforward training. The input signals are passed between all hidden
layers (with activation functions) and converted into high-level features. During the backpropagation process,
the loss function concludes the partial derivatives of the layer outputs with respect to the variables. The network
variables (weights, biases, and � ) are optimized via non-convex optimization algorithms (e.g., stochastic gradi-
ent descent or quasi-Newton) to minimize Loss(θW ,b, x, t) . The optimization process stops after converging to a
local optimum. Thereafter, the well-trained DFS-Net with a set of (sub)optimal network parameters can be used
as a black box to rapidly compute the prediction solution for any given input vector (coordinates), such as the
velocity, temperature, or pressure field. Since this feedforward prediction procedure only involves a few matrix
multiplications, the computational cost for the prediction can be neglected compared to that of a traditional
numerical simulation.

Training.  The activation functions play an important role in neural network training. They perform a non-
linear transformation to the output of each hidden layer, making it possible for neurons to approximate complex
patterns. The swish activation function is a widely used nonlinear mapping function for deep neural networks,
which is defined as:

Previous studies show that swish is less prone to the vanishing and exploding gradient problem35. In DFS-
Net, we use the swish function with β = 10 for activation in each hidden layer, except for the last layer, where a
linear activation function is used.

For the non-convex optimization algorithm, we combine the Adam and L-BFGS-B optimizers36 to minimize
the loss function. We first apply the Adam optimizer for stochastic gradient descent training and then employ
the L-BFGS-B optimizer to finetune the results. During the Adam-based training, the optimizer randomly sam-
ples a subset of data (called a mini-batch) from the training set to calculate the direction of the gradient at each
iteration. In our work, the initial learning rate is 1× 10−4 and decays 0.9 every 1000 epochs (iterations). The
mini-batch size is 128, and the number of training epochs is 1× 104 for Adam-based training. L-BFGS-B is a
limited-memory quasi-Newton optimizer for bound-constrained optimization. It is known to work very well at
escaping from local optima during network training and requires little tuning. For L-BFGS-B training, the input
training set is 1280 points that are randomly sampled from the solution domain. We set the stopping criterion
of L-BFGS-B to sys.float_info.min , which is the minimum float value in Python37.

For all test cases, we trained the DFS-Net on Intel Intel(R) Xeon(R) Gold 6150 CPUs. The partial differential
operators in governing equations are computed using “tf.gradients()” based on the chain rule and automatic
differentiation in TensorFlow 1.15.038,39. During training, the random seeds for TensorFlow and Numpy37 are
set to 666 to ensure the reproducibility of the experimental results.

Results and discussion
In this section, we study and compare the performance of DFS-Net with some other widely used DNN-based
surrogate models for PDE solving, including PINN23, PINN with the learning rate annealing algorithm25, DGM26,
and GP-PINN25. To evaluate the prediction accuracy of different models, we use the relative L2-error criterion,
which is defined as:

where uref denotes the reference solution given by the analytical solution or high-fidelity DNS numerical results,
and upred denotes the predicted solution obtained by surrogate models.

Helmholtz equation.  In the first test case, we use the two-dimensional Helmholtz equation as a bench-
mark to investigate the function approximation capability of the proposed methodology. This equation is one
of the fundamental PDEs arising in various fields, such as acoustics, electromagnetism, and elastic mechanics40.
The two-dimensional Helmholtz equation we used is given by:

where � denotes the Laplace operator, � ∈ [0, 1] × [0, 1] , and q(x, y) is a source term given by:

To obtain the predicted solution of Eqs. (15 and 16), we formulate the following loss function to guide the
subsequent training:

(13)f (x) = x · sigmoid(βx),

(14)L2 − error =
�uref − upred�2

�uref �2
,

(15)�u(x, y)+ k2u(x, y) = q(x, y), (x, y) ∈ �,

(16)u(x, y) = h(x, y), (x, y) ∈ ∂�,

(17)
q(x, y) =− (α1π)

2 sin (α1πx) sin
(

α2πy
)

− (α2π)
2 sin (α1πx) sin

(

α2πy
)

+ k2 sin (α1πx) sin
(

α2πy
)

,

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

Note that the governing equation and boundary condition are embedded in the loss terms as constraints.
h(x, y) is computed by the analytical solution (k = 1) given by:

In this case, we construct a three-hidden-layer DFS-Net with 50 neural units per layer to find the optimal
network parameters for which the suitably defined loss function (Eq. 18) is minimized. We conduct experi-
ments on two different equation settings: (1) α1 = 1 and α2 = 4 and (2) α1 = 2 and α2 = 3 . Figure 3 depicts the
convergence of DFS-Net on these two Helmholtz benchmarks. From the variation curves of the loss value, we
can observe that applying a two-step optimization (Adam and L-BFGS-B) is robust for the DFS-Net. During the
Adam training phase, the value of the loss terms ( LossNr and LossNb

 ) decreases as the learning rate decays with
the increase in the epoch. For the L-BFGS-B phase, DFS-Net rapidly converges after 3417 epochs (for α1 = 1
and α2 = 4 ) and 2251 epochs (for α1 = 2 and α2 = 3 ), respectively.

In Fig. 4, we compare the predicted solution upred with the reference solution uref and report the point-wise
absolute error between them. It is evident that the DFS-Net based approximation does a good job at fitting the
governing equation and boundary conditions on Helmholtz benchmarks. In particular, the introduced point
weighting mechanism and excitation blocks in DFS-Net effectively alleviate the problem of unstable predictions
by PINNs. Compared with the absolute error of PINN and GP-PINN depicted in Fig. 4b and d, we can clearly
see the advantage of the proposed DFS-Net, that is, the prediction solution is more accurate, especially in sub-
domains near the boundaries.

In Table 1, we compare the DFS-Nets (fixed excitation mode DFS-Netfix and unfixed excitation mode DFS-
Netunfix ) against the other surrogate models. To ensure fairness in the comparison of different models, we set the
number of hidden layers of all models to 3× 50 and use the same hyperparameter settings. The experimental
results show that DFS-Nets outperform the existing neural network-based solvers. When α1 = 1,α2 = 4 , DFS-
Netfix achieves an average L2-error of 3.27e−03 in this case, while DFS-Netunfix yields 1.48e−03. The prediction
errors of DFS-Net are approximately two orders of magnitude lower than those of PINN and DGM and one
order of magnitude lower than those of PINN-anneal. Similar results can be seen in Table 2, where α1 = 2 and
α2 = 3 . We can see that the proposed DFS-Nets are able to better extract the solution-related features inherent
in conservation laws compared to other models, and DFS-Netunfix achieves the best performance of 2.95e−03
on this benchmark.

The training time column of Table 1 records the time overhead required to complete each training epoch. It
is clear that the proposed model achieves a good trade−off between accuracy and efficiency. DFS-Netfix with a
shared excitation block takes approximately 10 ms for one Adam epoch and 22 ms for one L-BFGS-B epoch, while
DFS-Netunfix with unfixed excitation blocks leads to a relatively higher computational cost. The total training
time required for DFS-Net to achieve the best prediction is 188.19 s and 150.64 s for two different modes, while
the total time for PINN, PINN-anneal and GP-PINN are 184.0, 216.4, and 491.2, respectively.

Klein–Gordon equation.  Here, we use DFS-Net to simulate the time−dependent Klein–Gordon equation.
This equation is a second-order nonlinear PDE closely related to many scientific fields, such as quantum, solid-
state, and condensed matter physics41. The initial boundary value problem of the one−dimensional Klein–Gor-
don equation is given by:

(18)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |�u(x, y)+ k2u(x, y)− q(x, y)|2 +
1

Nb

Nb
∑

n=1

ωn · |u(x, y)− h(x, y)|2.

(19)uref = sin (α1πx) sin
(

α2πy
)

.

Figure 3.   The convergence of DFS-Net (on the log scale) on the Helmholtz equation. The Adam optimizer is
used before the vertical dashed line, and the L-BFGS-B optimizer is used afterwards.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

(20)∂2u(x, t)

∂t2
−

∂2u(x, t)

∂x2
+ u(x, t)3 = q(x, t), (x, t) ∈ �× [0,T],

(21)u(x, t) = h(x, t), (x, t) ∈ ∂�× [0,T],

Figure 4.   Performance of different surrogate models on the Helmholtz benchmarks.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

where the computation domain � ∈ [0, 1] and T = 1 . The boundary conditions h(x, t), initial conditions
( g1(x), g2(x) ), and forcing term q(x, t) are extracted from the analytical solution given by:

A composite loss function that includes the governing equation term, boundary condition term, and initial
condition term for this benchmark is formulated as follows:

The DFS-Net used in this case consists of five hidden layers with 50 neural units in each layer. During the
DFS-Net training process, we seek to find the minimum loss value by tuning the network parameters. For this
purpose, we use the chain rule to back-propagate derivatives from the output layer to the inputs and update the
weights, biases, and � . After offline training, this DNN-based surrogate model is expected to provide a rapid
online prediction of observables with a set of optimal parameters θ.

In Fig. 5a, we present the comparison results of the reference solution and the predicted solution given by
DFS-Net. We also summarize the pointwise absolute error of different surrogate models on the Klein–Gordon
equation in Fig. 5b. As expected, DFS-Net presents good agreement with the reference solution and achieves the
smallest pointwise absolute error in the solution domain of this problem.

Table 3 provides a more detailed evaluation of the L2-error for different models. As shown in Table 3, both
modes of DFS-Net are able to yield solutions with a high accuracy. The network with unfixed excitation blocks
(DFS-Netunfix ) achieves the best performance of 1.45e−03 at the end of 13775 epochs (10000 epochs of Adam-
based training and 3775 epochs of L-BFGS-B-based training). We can also observe that by introducing the
learning rate annealing method, the DNN-based surrogate models can obtain more robust prediction results
(corresponding to model PINN-anneal, GP-PINN, and DFS-Nets). In contrast, PINN and DGM fail to yield the
desired prediction accuracy, leaning to L2-errors of 1.38e−01 and 2.09e−01, respectively.

(22)u(x, 0) = g1(x), x ∈ �, t = 0,

(23)
∂u(x, 0)

∂t
= g2(x), x ∈ �, t = 0,

(24)u(x, t) = x cos(5π t)+ (xt)3.

(25)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |
∂2u(x, t)

∂t2
−

∂2u(x, t)

∂x2
+ u(x, t)3 − q(x, t)|2 +

1

Nb

Nb
∑

n=1

ωn · |u(x, t)− h(x, t)|2

+
1

Ni

Ni
∑

n=1

ωn · |u(x, 0)− g1(x)|
2 +

1

Ni

Ni
∑

n=1

ωn · |
∂u(x, 0)

∂t
− g2(x)|

2
.

Table 1.   Comparison of the relative L2-error of different neural network-based surrogate models on the
Helmholtz equation ( α1 = 1,α2 = 4). a All models consists of three hidden layers with 50 neurons in each
layer. b The training time for each Adam epoch. c  The training time of DFS-Netfix for each L-BFGS-B epoch is
22.01 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 23.88 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 7.14e−01 44.12

PINN 2.27e−01 4.60

PINN-anneal 1.83e−02 5.41

GP-PINN 5.59e−03 12.28

DFS-Netfix 3.27e−03 10.11c

DFS-Netunfix 1.48e−03 10.66d

Table 2.   Comparison of the relative L2-error of different neural network-based surrogate models on the
Helmholtz equation ( α1 = 2,α2 = 3). a All models consists of three hidden layers with 50 neurons in each
layer. b  The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is
22.00 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 23.86 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 6.21e−01 43.82

PINN 1.37e−01 4.57

PINN-anneal 2.95e−02 5.34

GP-PINN 3.48e−03 12.12

DFS-Netfix 3.14e−03 10.08c

DFS-Netunfix 2.95e−03 10.68d

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

In this case, we also investigate the effect of different architectures, i.e., the number of hidden layers and the
number of neurons per layer, on the relative L2-error of the predicted solution. Figure 6a shows the performance
when the number of model layers varies from 1 to 10. As we can see, a single−layer architecture tends to return
incorrect predictions. By increasing the number of layers, the improved surrogate model yields a better accuracy.
However, we can also observe that excessive layers will lead to overfitting of the model, resulting in suboptimal
results. Similar results can be obtained in Fig. 6b, which analyzes the performance for a varying number of
neurons. It can be seen that the increase in the number of neurons may not guarantee the desired performance,
and the model works best when the number of neurons per layer is 50 to 70.

Lid‑driven cavity flow.  In the last case, we employ a canonical benchmark problem, the steady-state flow
in a two-dimensional lid-driven cavity (see Fig. 7), to analyze the performance of the DNN-based surrogate
models. The flow system is governed by the Navier–Stokes equation42,43, which can be written as:

(26)u(x, y) · ∇u(x, y)+∇p(x, y)−
1

Re
�u(x, y) = 0 (x, y) ∈ �,

(27)∇ · u(x, y) = 0 (x, y) ∈ �,

Figure 5.   Performance of different surrogate models on the Klein–Gordon equation.

Table 3.   Comparison of the relative L2-error of different neural network-based surrogate models on the
Klein–Gordon equation. a  The training time for each Adam epoch. b  The training time of DFS-Netfix for each
L-BFGS-B epoch is 41.14 ms. c  The training time of DFS-Netunfix for each L-BFGS-B epoch is 44.44 ms.

Surrogate model Accuracy ( L2-error) Training time (ms)a

DGM 2.09e−01 50.74

PINN 1.38e−01 6.01

PINN-anneal 8.71e−03 7.19

GP-PINN 2.57e−03 21.88

DFS-Netfix 2.29e−03 17.73b

DFS-Netunfix 1.45e−03 19.36c

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

where u(x, y) is a velocity vector field, p(x, y) is a scalar pressure field, Re is the Reynolds number of the flow,
� ∈ [0, 1] × [0, 1] , Ŵ1 denotes the top boundary of the two-dimensional square cavity, and Ŵ0 denotes the other
three sides.

In our experiments, we perform a neural network-based simulation using the vorticity–velocity (VV) formu-
lation of the Navier–Stokes equations42. In this formulation, the velocity components u, v are obtained by taking
derivatives of the scalar potential function ψ(x, y) with respect to the x and y coordinates:

As a result, the continuity equation ∇ · u(x, y) = 0 for incompressible fluids is automatically satisfied. Moreo-
ver, since only steady-state solutions are considered for this proof of concept, the constraint of temporal terms
can be neglected. The corresponding loss function for this benchmark is defined as:

where h1(x, y) = (1, 0) for (x, y) ∈ Ŵ1 , and h0(x, y) = (0, 0) for (x, y) ∈ Ŵ0 . The first and second derivative terms
of ψ , u, v, and p with respect to the spatial coordinates (x, t) are computed using automatic differentiation.

In this case, we conduct experiments at Reynolds numbers Re = 100, 300, 600 to comprehensively study the
prediction performance of neural network-based surrogate models. The DFS-Net we used again contains three
hidden layers. To better infer the PDE solutions, we gradually increase the number of neurons in each hidden

(28)u(x, y) = (1, 0) (x, y) ∈ Ŵ1,

(29)u(x, y) = (0, 0) (x, y) ∈ Ŵ0,

(30)u =
∂ψ(x, y)

∂y
, v = −

∂ψ(x, y)

∂x
.

(31)

Loss(θW ,b, x, y) =
1

Nr

Nr
∑

n=1

ωn · |u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
−

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

|2

+
1

Nr

Nr
∑

n=1

ωn · |u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
−

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

|2

+
1

Nb

Nb
∑

n=1

ωn · |u− h1(x, y)|
2 +

1

Nb

Nb
∑

n=1

ωn · |v − h0(x, y)|
2
,

Figure 6.   Performances of different architectural designs obtained by varying the number of hidden layers and
the number of neurons per layer.

Figure 7.   Lid-driven cavity flow.

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

layer as the Reynolds number increases: 50 neurons per layer at Re = 100 , 128 at Re = 300 , and 256 at Re = 600 .
For each Re, we implement two modes of DFS-Net for training by means of the point weighting mechanism
and excitation blocks. The models take the expanded spatial coordinates as inputs and output the pressure and
vorticity fields. To validate the prediction accuracy of the trained models, we solve the Navier–Stokes equations
to generate the reference solution using the open-source CFD solver OpenFOAM44.

For different Reynolds numbers, DFS-Nets show a rapid convergence and reach their local optimum after
approximately 20,000 epochs. The reference and predicted distributions of velocity are shown in Fig. 8. It is
observed that DFS-Net can accurately capture the intricate nonlinear behavior of the Navier–Stokes equations
and agrees well with the CFD solutions.

It is worth noting that in this case, the velocity of u changes sharply from 0 to 1 at the junction of Ŵ1 and Ŵ0
[e.g., points (0,1) and (1,1)] according to the definition of the boundary velocity. These sharp discontinuities
can lead to instability during neural network training in the near-wall regions. To emphasize the ability of the
proposed model to handle nonlinearity in different subdomains, we plot and compare the point-wise absolute
error obtained by PINN, GP-PINN, and DFS-Net in Fig. 9. It is observed that PINN fails to provide satisfactory
prediction results for the underlying NS equations with different Re settings. At a Reynolds number of 100, PINN
suffers a large error near the right boundary, yielding a prediction error of 3.47e−01. As the Reynolds number
increases, the errors are more severe: 6.25e−01 at Re = 300 and 7.76e−01 at Re = 600.

When Re = 100 , GP-PINN can mitigate the prediction errors caused by sharp discontinuities. However, the
incorrect prediction in the near-wall subdomains is still obvious (see Fig. 9). In contrast, the proposed DFS-Net
appears to be more robust as the Reynolds number increases. The visualization results show that DFS-Net has a
better ability to approximate complicated functions than other models and obtains a stable prediction accuracy
in all three Re cases. This proves that the combined use of the weighting mechanism and the excitation blocks in
DFS-Net has a positive effect on the velocity prediction of near-wall regions. The weighting mechanism assigns
different weights to the sample points, thus eliminating any potential discontinuities (the loss weight of the
discontinuous points is 0). Meanwhile, the introduced excitation blocks work as a tool to bias the allocation of
available processing resources towards the most informative components of the expanded channels and cor-
respondingly increase the weights of these solution-related features. As a result, they speed up the convergence
of DFS-Net and allow us to achieve better accuracy.

To further analyze the performance of our method, we compare the L2-error given by DFS-Nets against the
other four widely used surrogate models. The experimental results are summarized in Tables 4, 5 and 6. When
Re = 100 , DFS-Netfix and DFS-Netunfix perform better than the other comparative models, and the resulting
prediction error is measured at 1.34e−02 and 2.91e−02 in the relative L2-error, respectively. These two models
improve the prediction accuracy of PINN and PINN-anneal by a factor of 5-25, although more training time
is required. Compared with DGM and GP-PINN, the proposed models are more accurate and more efficient.
Benefiting from the lightweight structure of DFS-Nets, the total training time of DFS-Netfix is 1610.1 s, while
that of DFS-Netunfix is 1730.3 s. The prediction overhead for each sample is approximately 0.5 ms.

When Re = 300 and 600, DFS-Net uniformly leads to the most accurate results we have obtained for this
benchmark. Compared with the widely used models, the prediction error of the two DFS-Nets can be largely
reduced by nearly an order of magnitude, yielding L2-errors ranging from 3.31–3.80% at Re =300 and 7.25–8.50%
at Re =600. We also conducted experiments for higher Re settings to verify the performance of the proposed
methodology. However, problems with higher Reynolds numbers tend to have more stringent requirements on
the depth (width) of the underlying network, which can lead to very large training overheads (e.g., more than
100k epochs of training are required to ensure a L2-error of less than 10% at a Reynolds number of 1000). The
excessive training overhead weakens the practicability of neural network-based methods and is therefore not
discussed in this paper.

The tuning of hyperparameters is an essential ingredient and important process of deep learning methods.
Here, we evaluate the effect of two basic training hyperparameters, namely, the learning rate and batch size, at
Re = 600 . During Adam-based training, the learning rate is a key hyperparameter used to control the step size
of the gradient descent. An overly large learning rate might overshoot and prevent convergence, while at small
step size may get stuck in a local minima, thus providing suboptimal solutions. A comparison of the L2-error
for different learning rates is shown in Fig. 10a. We can see that in this test case, the range of 1.0e−02 to 1.0e−03
yields a good convergence. Figure 10b depicts the performance when DFS-Net is trained on different batch sizes.
Due to the memory limitations of the underlying system, we only test the results for batch sizes smaller than
512. The experimental results show that a relatively large batch size is required in order to achieve the desired
accuracy, and that the minimum error is achieved when the batch size is 256.

Overall, we performed a comprehensive study on the robustness of the proposed DFS-Net model using three
PDE benchmarks (Helmholtz equation, Klein–Gordon equation, and Navier–Stokes equation). To keep the
training and prediction costs low, we did not consider very deep architectures throughout all test cases. Instead,
we employed a fixed neural architecture (less than 256 neural units per layer) to evaluate the L2-error against the
reference solution, as well as the time cost required to complete each simulation. The experimental results dem-
onstrate that DFS-Net is able to alleviate the problem of unstable predictions of existing neural network-based
surrogate models and infer a solution of the underlying partial differential equations with a remarkable accuracy.

Conclusion
Deep neural networks provide an efficient substitute for inferring PDE solutions because of their universal
approximation capabilities in the high-dimensional parameter space. In this paper, we designed an improved
neural network-based surrogate model, DFS-Net, for PDE solving. The proposed model employs a series of
attention-based neural units to approximate the nonlinear mapping relations between the coordinate inputs and

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

predictions. Moreover, we introduced a weighting mechanism in DFS-Net to enhance its ability to encode the
underlying physical laws that govern a given PDE system. After suitable training, DFS-Net allows us to construct
a computationally efficient and fully differentiable surrogate, where the quantities of interest can be immediately
obtained by evaluating the trained network with any given input point without meshing.

To verify the robustness of DFS-Net, we conducted a collection of numerical studies on different surrogate
models in terms of their learning efficiency and prediction accuracy. The experiments demonstrated that DFS-Net
is able to yield a good trade-off between accuracy and efficiency. It outperforms the widely used surrogate models

Figure 8.   Lid-driven cavity flow: comparison of the reference solution with the predicted solution given by
DFS-Net.

14

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

and achieves the best prediction performance on different numerical benchmarks, including the Helmholtz,
Klein–Gordon, and Navier–Stokes equations.

Designing a suitable deep neural network for the PDE system is challenging, despite there are many architec-
tural and parametric possibilities to consider. In future work, we will focus on studying the implicitly encoded
features in the current DFS-Net and calibrating the model to more complex tasks. As deep learning technology
is continuing to grow rapidly in terms of both methodological and algorithmic developments, we believe that

Figure 9.   Performance of different surrogate models on the lid-driven cavity flow benchmarks.

Table 4.   Comparison of the relative L2-error of different neural network-based surrogate models on the lid-
driven cavity flow benchmark ( Re = 100). a All models consists of three hidden layers with 50 neurons in each
layer. b The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is
103.16 ms. d  The training time of DFS-Netunfix for each L-BFGS-B epoch is 110.38 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 6.69e−02 275.39

PINN 3.47e−01 13.33

PINN-anneal 1.42e−01 15.44

GP-PINN 4.01e−02 66.07

DFS-Netfix 2.91e−02 58.68c

DFS-Netunfix 1.34e−02 63.53d

15

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

this new class of universal function approximators has high potential for data-efficient prediction, control, and
optimization across a wide range of physical applications.

Received: 10 July 2021; Accepted: 20 September 2021

References
	 1.	 Chen, X. et al. TAMM: A new topology-aware mapping method for parallel applications on the Tianhe-2A supercomputer. In

Algorithms and Architectures for Parallel Processing (eds Vaidya, J. & Li, J.) 242–256 (Springer, 2018).
	 2.	 Jagtap, A. D., Kharazmi, E. & Karniadakis, G. E. Conservative physics-informed neural networks on discrete domains for conser-

vation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113025. https://​doi.​org/​10.​
1016/j.​cma.​2020.​113028 (2020).

	 3.	 Pang, G. & Karniadakis, G. E. Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus
Neural Network 323–343 (Springer, 2020).

	 4.	 Anderson, J. D. & Wendt, J. Computational Fluid Dynamics Vol. 206 (Springer, 1995).
	 5.	 Mishra, S. A machine learning framework for data driven acceleration of computations of differential equations. Math. Eng. 14,

118–146 (2019).

Table 5.   Comparison of the relative L2-error of different neural network-based surrogate models on the lid-
driven cavity flow benchmark ( Re = 300). a All models consists of three hidden layers with 128 neurons in each
layer. b The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is
280.56 ms. d The training time of DFS-Netunfix for each L-BFGS-B epoch is 297.83 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 5.96e−01 309.31

PINN 6.28e−01 15.11

PINN-anneal 6.17e−01 17.46

GP-PINN 4.47e−01 74.65

DFS-Netfix 3.80e−02 66.63c

DFS-Netunfix 3.31e−02 71.80d

Table 6.   Comparison of the relative L2-error of different neural network-based surrogate models on the lid-
driven cavity flow benchmark ( Re = 600). a All models consists of three hidden layers with 256 neurons in each
layer. b The training time for each Adam epoch. c The training time of DFS-Netfix for each L-BFGS-B epoch is
364.33 ms. d The training time of DFS-Netunfix for each L-BFGS-B epoch is 395.17 ms.

Surrogate modela Accuracy ( L2-error) Training time (ms)b

DGM 5.74e−01 410.30

PINN 7.76e−01 19.53

PINN-anneal 6.99e−01 23.14

GP-PINN 5.92e−01 96.25

DFS-Netfix 8.50e−02 88.09c

DFS-Netunfix 7.25e−02 92.83d

Figure 10.   A comparison of the L2-error for different learning rates and batch sizes.

https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1016/j.cma.2020.113028

16

Vol:.(1234567890)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

	 6.	 Sun, L., Gao, H., Pan, S. & Wang, J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without
simulation data. Comput. Methods Appl. Mech. Eng. 361, 112732. https://​doi.​org/​10.​1016/j.​cma.​2019.​112732 (2020).

	 7.	 Brink, A. R., Najera-Flores, D. A. & Martinez, C. The neural network collocation method for solving partial differential equations.
Neural Comput. Appl.https://​doi.​org/​10.​1016/j.​jcp.​2021.​110364 (2020).

	 8.	 Dwivedi, V. & Srinivasan, B. Physics informed extreme learning machine (PIELM): A rapid method for the numerical solution of
partial differential equations. Neurocomputing 391, 96–118. https://​doi.​org/​10.​1016/j.​neucom.​2019.​12.​099 (2020).

	 9.	 Chen, X. et al. Developing a new mesh quality evaluation method based on convolutional neural network. Eng. Appl. Comput.
Fluid Mech. 14, 391–400 (2020).

	10.	 Chen, X., Liu, J., Gong, C., Pang, Y. & Chen, B. An airfoil mesh quality criterion using deep neural networks. in 12th International
Conference on Advanced Computational Intelligence, 536–541 (2020).

	11.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Machine learning of linear differential equations using Gaussian processes. J. Comput.
Phys. 348, 683–693. https://​doi.​org/​10.​1016/j.​jcp.​2017.​07.​050 (2017).

	12.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Numerical Gaussian processes for time-dependent and nonlinear partial differential
equations. SIAM J. Sci. Comput. 40, A172–A198. https://​doi.​org/​10.​1137/​17M11​20762 (2018).

	13.	 Tartakovsky, A., Barajas-Solano, D. & He, Q. Physics-informed machine learning with conditional Karhunen–Loève expansions.
J. Comput. Phys. 426, 109904. https://​doi.​org/​10.​1016/j.​jcp.​2020.​109904 (2021).

	14.	 Ahalpara, D. P. Sniffer technique for numerical solution of Korteweg–de Vries equation using genetic algorithm. J. Appl. Math.
Phys. 3, 814–820 (2015).

	15.	 Wang, J.-X., Wu, J.-L. & Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling
discrepancies based on DNS data. Phys. Rev. Fluids 2, 034603. https://​doi.​org/​10.​1103/​PhysR​evFlu​ids.2.​034603 (2017).

	16.	 Yang, L., Zhang, D. & Karniadakis, G. E. Physics-informed generative adversarial networks for stochastic differential equations.
SIAM J. Sci. Comput. 42, A292–A317. https://​doi.​org/​10.​1137/​18M12​25409 (2020).

	17.	 Li, J. & Chen, Y. Solving second-order nonlinear evolution partial differential equations using deep learning. Eng. Appl. Comput.
Fluid Mech. 72, 105005 (2020).

	18.	 Li, Y. & Mei, F. Deep learning-based method coupled with small sample learning for solving partial differential equations. Multimed.
Tools Appl. 1, 1–10 (2020).

	19.	 Pawar, S., San, O., Aksoylu, B., Rasheed, A. & Kvamsdal, T. Physics guided machine learning using simplified theories. Phys. Fluids
33, 011701. https://​doi.​org/​10.​1063/5.​00389​29 (2021).

	20.	 Xu, H., Zhang, D. & Zeng, J. Deep-learning of parametric partial differential equations from sparse and noisy data. Phys. Fluids
33, 037132. https://​doi.​org/​10.​1063/5.​00428​68 (2021).

	21.	 Chen, T. & Hong, C. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and
its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911–917 (1995).

	22.	 Lu, L., Jin, P. & Karniadakis, G. E. DeepONet: Learning nonlinear operators for identifying differential equations based on the
universal approximation theorem of operators (2020). 1910.03193.

	23.	 Raissi, M., Perdikaris, P. & Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://​doi.​org/​10.​1016/j.​
jcp.​2018.​10.​045 (2019).

	24.	 Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.
Science 367, 1026–1030. https://​doi.​org/​10.​1126/​scien​ce.​aaw47​41 (2020).

	25.	 Wang, S., Teng, Y. & Perdikaris, P. Understanding and mitigating gradient pathologies in physics-informed. Neural Netw. 2001,
04536 (2020).

	26.	 Sirignano, J. & Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375,
1339–1364. https://​doi.​org/​10.​1016/j.​jcp.​2018.​08.​029 (2018).

	27.	 Reinbold, P. A. K. & Grigoriev, R. O. Data-driven discovery of partial differential equation models with latent variables. Phys. Rev.
E 100, 022219. https://​doi.​org/​10.​1103/​PhysR​evE.​100.​022219 (2019).

	28.	 Zhang, Y., Zhu, X. & Gao, J. Parameter estimation of acoustic wave equations using hidden physics models. IEEE Trans. Geosci.
Remote Sens. 58, 4629–4639. https://​doi.​org/​10.​1109/​TGRS.​2020.​29648​50 (2020).

	29.	 Wandel, N., Weinmann, M. & Klein, R. Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in
three dimensions. Phys. Fluids 33, 047117. https://​doi.​org/​10.​1063/5.​00474​28 (2021).

	30.	 De Florio, M., Schiassi, E., Ganapol, B. D. & Furfaro, R. Physics-informed neural networks for rarefied-gas dynamics: Thermal
creep flow in the Bhatnagar–Gross0–Krook approximation. Phys. Fluids 33, 047110. https://​doi.​org/​10.​1063/5.​00461​81 (2021).

	31.	 Kharazmi, E., Zhang, Z. & Karniadakis, G. E. hp-VPINNs: Variational physics-informed neural networks with domain decomposi-
tion. Comput. Methods Appl. Mech. Eng. 374, 113547. https://​doi.​org/​10.​1016/j.​cma.​2020.​113547 (2021).

	32.	 Fang, Z. A high-efficient hybrid physics-informed neural networks based on convolutional neural network. IEEE Trans. Neural
Netw. Learn. Syst. 99, 1–13. https://​doi.​org/​10.​1109/​TNNLS.​2021.​30708​78 (2021).

	33.	 Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018).

	34.	 Jagtap, A. D., Kawaguchi, K. & Karniadakis, G. E. Adaptive activation functions accelerate convergence in deep and physics-
informed neural networks. J. Comput. Phys. 404, 109136. https://​doi.​org/​10.​1016/j.​jcp.​2019.​109136 (2020).

	35.	 Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. 1710.05941 (2017).
	36.	 Morales, J. & Nocedal, J. Remark on algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimiza-

tion. ACM Trans. Math. Softw. 38, 7. https://​doi.​org/​10.​1145/​20496​62.​20496​69 (2011).
	37.	 van der Walt, S., Colbert, S. C. & Varoquaux, G. The numpy array: A structure for efficient numerical computation. Comput. Sci.

Eng. 13, 22–30. https://​doi.​org/​10.​1109/​MCSE.​2011.​37 (2011).
	38.	 Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. Automatic differentiation in machine learning: A survey. J. Mach.

Learn. Res. 18, 5595–5637 (2017).
	39.	 Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), 265–283 (USENIX Association, 2016).
	40.	 Babuska, I., Ihlenburg, F., Paik, E. & Sauter, S. A generalized finite element method for solving the Helmholtz equation in two

dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128, 50. https://​doi.​org/​10.​1016/​0045-​7825(95)​00890-X
(1995).

	41.	 Li, Q. Numerical solution of nonlinear Klein–Gordon equation using lattice Boltzmann method. Appl. Math. 02, 1479–1485.
https://​doi.​org/​10.​4236/​am.​2011.​212210 (2011).

	42.	 Jin, X., Cai, S., Li, H. & Karniadakis, G. E. NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incom-
pressible Navier–Stokes equations. J. Comput. Phys. 426, 109951. https://​doi.​org/​10.​1016/j.​jcp.​2020.​109951 (2021).

	43.	 Arthurs, C. J. & King, A. P. Active training of physics-informed neural networks to aggregate and interpolate parametric solutions
to the Navier–Stokes equations. J. Comput. Phys. 1, 110364. https://​doi.​org/​10.​1016/j.​jcp.​2021.​110364 (2021).

	44.	 Jasak, H., Jemcov, A. & Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. In International Workshop on
Coupled Methods in Numerical Dynamics 1–20, (2007).

https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.neucom.2019.12.099
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1137/17M1120762
https://doi.org/10.1016/j.jcp.2020.109904
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1137/18M1225409
https://doi.org/10.1063/5.0038929
https://doi.org/10.1063/5.0042868
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1103/PhysRevE.100.022219
https://doi.org/10.1109/TGRS.2020.2964850
https://doi.org/10.1063/5.0047428
https://doi.org/10.1063/5.0046181
https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/10.1109/TNNLS.2021.3070878
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1145/2049662.2049669
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/0045-7825(95)00890-X
https://doi.org/10.4236/am.2011.212210
https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2021.110364

17

Vol.:(0123456789)

Scientific Reports | (2021) 11:19507 | https://doi.org/10.1038/s41598-021-99037-x

www.nature.com/scientificreports/

Acknowledgements
This research work was supported in part by the National Key Research and Development Program of China
(2017YFB0202104), the National Numerical Windtunnel project (NNW2019ZT5-A10), the National Key
Research and Development Program of China (2018YFB0204301).

Author contributions
X.C. designed the research. R.C. and Q.W. processed the data. X.C. and R.X. conducted the experiments. J.L.
helped organize the manuscript. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An improved data-free surrogate model for solving partial differential equations using deep neural networks
	Methodology
	Problem setup.
	Deep neural network and physics-informed training.
	DFS-Net: a data-free surrogate model for solving PDEs.
	Training.

	Results and discussion
	Helmholtz equation.
	Klein–Gordon equation.
	Lid-driven cavity flow.

	Conclusion
	References
	Acknowledgements

