
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19577  | https://doi.org/10.1038/s41598-021-99021-5

www.nature.com/scientificreports

Novel reusable hydrogel 
adsorbents for precious metal 
recycle
Thakshila N. Dharmapriya, Ding‑Yang Lee & Po‑Jung Huang*

A novel polyethylene glycol diacrylate‑allylthiourea (ATU‑PEGDA) hydrogel was simply synthesized 
through photo‑reaction. Modified thiourea simultaneously employed chelation and electrostatic force 
to selectively recycle Ag(I) and Pd(II) from electrolytic wastewater. Sorption efficiency was nearly 100% 
for Ag(I) and Pd(II), which occurred at initial pH of 1 within 300 min. The adsorption characteristics 
of ATU‑PEGDA followed Langmuir isotherm model and the maximum adsorption capacity of Ag(I) 
and Pd(II) achieved 83.33 and 152.81 mg  g−1 sorbent, respectively where Pseudo‑first order model 
demonstrate the adsorption kinetics. In the presence of other heavy metals, ATU‑PEGDA performed 
high selectivity, 0.89 and 1.31 towards Ag(I) and Pd(II). ATU‑PEGDA can be completely regenerated 
within 120 min using 0.5 M thiourea—0.001 M  HNO3 and 1 M thiourea—4 M HCl after the adsorption of 
Ag(I) and Pd(II), respectively. Thiourea‑branched structure was created after regeneration, improving 
the adsorption capacity. Compared to initial hydrogel, the adsorption capacity of Ag(I) and Pd(II) 
increased 31.83 ± 3.08% and 75.12 ± 11.02%, respectively. Over 10 consecutive adsorption–desorption 
cycles, ATU‑PEGDA performed 111.34 and 263.79 mg  g−1 sorbent in adsorption capacity of Ag(I) and 
Pd(II). Chromism of ATU‑PEGDA hydrogel was a benefit to determine adsorption saturation and 
completely desorption of Ag(I) and Pd(II). Potentially, ATU‑PEGDA can be extended to industrial 
applications.

Among various heavy metals, silver and palladium are extensively used and have special economic interest 
than many other metals in various industrial aspects such as electronics, jewelry and ornaments, chemical 
engineering and medication, etc.1–6. However, this has brought potential hazards to the environment specially 
for the aquatic systems. Wastewater containing these precious metals cause an adverse effect on human and 
animal bodies due to their toxicity. Consequently, it is necessary to develop effective methods to remove and 
recover these metals from  wastewater7–10. Traditional methods of remove and recover of these metals are sol-
vent  extraction11, ion-exchange12,13, membrane  separation14,  electrolysis15  precipitation16 ion  flotation17 reverse 
 osmosis18 and  adsorption19 etc. Among them, adsorption is an emerging method where an adsorbent is used to 
adsorb metal ions onto the adsorbent by ion exchange, electrostatic interaction, physical adsorption, or coordi-
nation  interactions20. Adsorption is considered to be one of the most efficacious way since adsorbent materials 
can be easily synthesized with high efficiency, selective for specific metal ions and in economical point of view, 
most of them are cheap and environment  friendly1,5,9. Variety of adsorbents have been developed and tested to 
adsorb metal ions form waste water including activated  carbon21, biomass  adsorbents22, inorganic  minerals23 
and chelating  resins7 etc. Among them, chelating resins are intensively focused due to their efficient adsorption 
capacity and high selectivity towards metal ions. A chelating resin essentially consists of two components as the 
functional group which form the chelate interaction with ions and the polymeric matrix which acts as the sup-
port. The functional groups in the polymers contain one or two donor atoms that protonate in a low pH medium 
resulting in complex formation with metal  ions5,9. They often contain amino, thio, carboxy, oxo, or phosphoryl as 
chelating ligands where N, S, O, and P acting as donor  atoms1,5,7. According to the Hard–Soft Acid–Base (HSAB) 
theory by Pearson; soft metal ions, for instance; Ag(I), Au(III), and Pd(II) ions show affinity towards soft bases 
with donor atoms N and  S3,5,7.

Poly(ethylene glycol) Diacrylate (PEGDA) is an extremely hydrophilic, having three-dimensional net-
work structure and colorless hydrogel. This is a polymer that is formed through certain chemical and physical 
cross-linking while density is less than that of traditional resins. As the water content increases, the volume is 
expanded and the pore size is increased of it. Because of its high hydrophilicity, non-toxicity, photodegradable, 
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and biocompatibility, it is widely used in chemical, cosmetic products and medicine including stem cell trans-
plantation, contact lenses, etc.24.

In this work, allylthiourea (ATU) modified PEGDA hydrogel was synthesized through a simple one-step 
polymerization reaction under UV radiation. ATU has functional groups with chelating properties for precious 
metal ions. This was used as an adsorbent to remove and recover Ag(I) and Pd(II) from electrolytic wastewater. 
Effect of pH value, contact time, selectivity, desorption time and regeneration, competitive ions, and finally 
application for on-site waste electrolyte on Ag(I) and Pb(II) adsorption were discussed. In addition; isotherms 
and kinetics were used to fit the experimental data. It was found that the hydrogel had efficient, faster adsorption 
capacity. After desorption and regeneration, the adsorption efficiency for Ag(I) and Pd(II) was improved while 
maintaining more than 10 times reuse proving high application value.

Results and discussion
Characterization of ATU‑PEGDA adsorbent. The FT-IR spectra of PEGDA hydrogel, ATU, and ATU-
PEGDA modified hydrogel are shown in Fig. 1. Figure 1a shows the FT-IR spectrum of ATU. The adsorption 
bands at 3438, 3228 and 3178   cm−1 are assigned to –NH2 asymmetric stretching vibration, –NH2 Symmetric 
stretching vibration and deformation of ATU respectively. Bands 1628 and 1316   cm−1 are assigned to –NH2 
deformation, 1540  cm−1, 1251  cm−1, 928  cm−1, 778  cm−1, 452  cm−1 are assigned to HC–N stretching and bending, 
CN Stretching vibration, =CH2 wag vibration, C=S vibration and N–CH deformation with –NH2 twist, respec-
tively. Figure 1b shows the FT-IR spectra of PEGDA hydrogel. It can be observed that the adsorption band at 
3454  cm−1 is due to –OH which is caused by  H2O in the air. It is due to the high hydrophilicity of the hydrogel. 
Adsorption bands at 2874  cm−1 and 1460  cm−1 are revealing the Stretching vibration and bending vibration of 
–CH. The band around 1731  cm−1 is attributed the tensile vibration of main characteristic functional group of 
PEGDA hydrogels and that is ester O=CO. Adsorption bands at 1676 and 949  cm−1 confirm the C=C bending 
vibration and 1350  cm−1, 1104  cm−1 are attributed vibration of alcohol –OH bending and tensile vibration of 
COC respectively. The FT-IR spectra of ATU-PEGDA modified hydrogel is shown in Fig. 1c. The adsorption 
band at 3447  cm−1 is caused by both water vapor in the air and the asymmetric and symmetric stretching vibra-
tions of ATU. Tensile vibration of ester O=CO and COC at 1731 and 1102  cm−1 respectively are the character-
istic peaks of PEGDA, while the characteristic signal of ATU is occurred at 1559  cm−1 that is due to the HC–N 
stretching and bending deviation of 1540  cm−1. According to the above analysis results, the characteristic signals 

Figure 1.  FT-IR spectra of (a) ATU; (b) PEGDA; and (c) PEGDA-ATU.
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of PEGDA and ATU can be found on the FT-IR spectrum of ATU-PEGDA modified hydrogel and confirm that 
hydrogel was successfully modified and synthesized.

Effect of pH on adsorption capacity. The removal efficiency of precious metal ions using an adsorbent 
is depended on the pH value of the solution  medium20. Figure 2a presented the effect of different pH of the 
solution on adsorption of Ag(I) and Pd(II). The results demonstrated that the maximum adsorption capacity of 
Ag(I) ions occurred at pH 1 and it was 69.83 mg  g−1. As the pH value of the solution increases, the adsorption 
capacity of Ag(I) ions were decreased till pH 3 and then slowly rises with the increased pH value showing a V 
shape trending. This reaction mechanism can be described as  follow4,5,7.

Chelation reactions:

Ionic interaction:

The sulfur and amine group has a chelating effect on Ag(I) as shown in Eqs. (1) and (2). At lower pH, like pH 
1, amine group in thiourea would be protonated resulting in performing positive charge as shown in Eq. (3). To 
consider the silver ion at pH 1, excessive nitrate would partially conjugate with Ag(I) and form silver anionic 
complex, Ag(NO3)2

−. As a result, the electro-attractive force is generated between thiourea and silver ion leading 
to higher adsorption capacity. The adsorption capacity of Ag(I) started decreasing as increasing the pH of solu-
tion. It indicated that the concentration of existing silver anionic complex also start decreasing because of lower 
amount of nitrate in medium. Therefore, the electro-repulsive force is generated between protonated thiourea 
and Ag(I) resulting in decreasing adsorption capacity. Once the pH of medium achieve weak acidity, chelation 
interaction would be mainly contribution of Ag(I)  adsorption25. This can be verified from the FT-IR spectrum 
(Fig. 2b) as the intensity of the adsorption band at 1384  cm−1 which was assigned to  NO3

− was decreased with 
the increased pH values. The growth and decline between the formation of Ag(I)/silver anionic complex and 
protonation/deprotonation of thiourea mainly determine the adsorption behavior at different pH of medium. 
Electro-attractive force play dominantly role to Ag(I) recovery using ATU-PEGDA compared with chelation. 
The experimental result shows the electro-attractive force and chelation both achieve minimum at pH 3. Also, 
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(
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+
2

)
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+ Ag+(aq) = (R1R2)HN . . .Ag+(s) +H+
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Figure 2.  Effect of pH on adsorption capacity. (a) Adsorption capacity of ATU-PEGDA under different pH 
of the solution toward Ag(I) and Pd(II). (b) Differences in FT-IR spectra of PEGDA-ATU hydrogel after  Ag+ 
adsorption at different pH values.
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since sulfur group does not have the protonation effect, the adsorption reaction can be carried out in a stable 
manner under different acid–base conditions (Eq. 2)5,7,8,26.

In the same conditions, ATU-PEGDA had a high adsorption capacity for Pd(II) when pH 1 and the adsorption 
capacity remained relatively constant at pH 1.5–5. However, unlike  Ag+; the  Pd2+ exists in the form of chloride 
anions  (PdCl4)2− in the solution, and this adsorption mechanism can be described as  follow5,27,28.

Chelation reactions:

Ionic reaction:

Pd(II) adsorption on the ATU-PEGDA may be due to ionic interaction between protonated amine groups and 
chloro-palladate complexes or chelation of Pd(II) and N or S donor atoms on the adsorbent or both mechanisms. 
The possible reactions are given by Eqs. (4)–(7). At low pH values, in other words in high HCl concentrations, 
the excess of chloride induces a strong competition effect that limits the adsorption effect of  PdCl4

2−5.

Adsorption kinetics and isotherm. All adsorption experiments for Ag(I) and Pd(II) using ATU-PEGDA 
occurs under their optimized conditions. Figure 3a presents contact time of Ag(I) and Pd(II) and ATU-PEGDA 
reached its equilibrium stage after 240 and 300 min, respectively. Pseudo-first-order and pseudo-second-order 
model are used to describe the adsorption kinetics of Ag(I) and Pd(II). Their fitting results were presented in 
Fig. 3b,c. The correlation coefficient  (R2) of pseudo-first-order kinetic model for adsorption were 0.99 for both 
metals and for pseudo-second order kinetic model they were 0.97 for both metals. The pseudo first-order model 
suggests that the adsorption mechanism is attributed to physical process representing reversible adsorption pro-
cess. The pseudo-first order kinetic model is primarily affected by one reactant  concentration29. For example, the 
major adsorbates are (AgNO3)

−
2  and  NO3

− when pH is 1. The concentration of nitrate was approximately 100 
times higher than silver ion. Therefore, the concentration change of nitrate is not obvious compared with silver 
ion. In this study, the adsorption kinetics would be described through pseudo-first order reaction. The adsorp-

(4)(R1R2)NH
2+Cl−

(sorb) + (PdCl4)
2−
(aq)

= (R1R2)HN . . . (PdCl3)
−
(s) +H+

(aq)
+ 2Cl2−

(aq)

(5)(R1R2)C = S(sorb) + (PdCl4)
2−
(aq) = (R1R2)C = S . . . (PdCl3)

−
(s) + Cl−

(aq)

(6)(R1R2)NH(sorb) +HCl(aq) = (R1R2)NH
+
2(sorb) + Cl−

(7)(R1R2)NH
2+Cl−

(sorb) + (PdCl4)
2−
(aq)
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−
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Figure 3.  The adsorption behavior of Ag(I) and Pd(II) using ATU-PEGDA. (a) Contact time; (b) fitting results 
of pseudo-first-order kinetic model; (c) fitting results of pseudo-second-order kinetic model; (d) fitting results 
for the Langmuir; (e) fitting results fro the Freundlich isotherm.
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tion behavior of Pd(II) using ATU-PEGDA also can be observed in its kinetic model. The excessive chloride ion 
existed at pH 1 during adsorption. As a result, pseudo-first order reaction would completely demonstrate the 
adsorption process of ATU-PEGDA toward Pd(II). Moreover, the equilibrium adsorption capacities of Ag(I) 
and Pb(II) ions calculated from the pseudo-first-order  (Qe) were 67.89 and 105.99 mg  g−1 respectively which 
were consistent with the experimental value 64.63 mg   g−1 and 111.99 mg   g−1, respectively. Furthermore, rate 
constants  (k1) of Ag(I) and Pd(II) adsorption were 0.0301 and 0.0236  min−1 respectively, which revealed that the 
ATU-PEGDA could remove the metal ions from the aqueous medium in fast, and the adsorption rate followed 
the order Ag(I) > Pd(II)20. Table S1 shows the results of pseudo-first-order and pseudo-second-order models that 
were used to evaluate the kinetic mechanism which controls the adsorption process. Qing et al. observed that 
higher adsorption rate of gold (III) compared with Ag(I) and Pd(II) using  TiO2 nanoparticles and the binding 
affinity plays an important role in  adsorption30. Mohammad Ziaul Hyder et al. also synthesized thiocarbamate 
grafted polymer and the adsorption rate of Au(III) is the fastest because of its higher binding  affinity31. Therefore, 
ATU-PEGDA might perform high binding affinity toward Ag(I) than Pd(II) resulting in higher adsorption rate 
of Ag(I). The effective diffusion coefficient was determined by Fick’s second law within homogeneous semi-
infinite  medium32. The formula was shown as below

where C(x,t), x is the distance of Ag(I) or Pd(II) travelling; t is the time in minute;  C0 is the initial concentra-
tion in ppm; C(x,t) is the concentration of Ag(I) or Pd(II) in solution at equilibrium;  De is the effective diffusion 
coefficient in  mm2  min−1 for Ag (I) or Pd(II) in ATU-PEGDA. All parameters for determining are chosen at 
equilibrium.

The effective diffusion coefficient of Ag(I) and Pd(II) are 9.64 ×  10–3 and 2.82 ×  10–3  mm2  min−1, respectively. 
This result also demonstrated that the adsorption rate of Ag(I) is faster than that of Pd(II).

Figure 3d,e) describe the fitting curves of the Langmuir and the Freundlich isotherm models while table S2 
represents the results of the Langmuir and the Freundlich isotherm model for Ag(I) and Pd(II) adsorptions. 
Langmuir isotherm model can fully describe the adsorption behavior of ATU-PEGDA toward Ag(I) and Pd(II), 
compared with Freundlich isotherm model. The Langmuir model describes that a monolayer adsorption process 
happens on a homogenous adsorbent surface and the adsorption energy of all active sites on the adsorbent is 
always  similar25. It indicated that silver ion only interacted with ATU through chelation reactions resulting in 
monolayer adsorption. The maximum adsorption capacities from Langmuir isotherm model are 83.33 mg  g−1 
sorbent and 152.91 mg  g−1 sorbent toward Ag(I) and Pd(II), respectively The ratio of ATU to PEGDA in this study 
is 6 to 1 indicating 552.97 mg of ATU would theoretically exist on PEGDA network. According to the adsorp-
tion mechanism, one thiourea would react with three Ag(I) or Pd(II) through electrostatic force and chelation 
reaction. Therefore, the maximum adsorption capacity might be 1540.36 mg Ag(I) and 1519.68 mg Pd(II) per 
gram of ATU-PEGDA adsorbent. However, the maximum adsorption capacity fitted by Langmuir model was 
quite lower than theoretical adsorption amount. The main reason is that the functionalization of PEGDA was 
processed by UV irradiation. The vinyl group in PEGDA was not only used as cross-linker but also considered 
as grafting site for modification. Therefore, the modifier, ATU would not completely conjugate with PEGDA 
resulting in obviously lower adsorption capacity compared with theoretical calculation.

In addition, selectivity is also a salient factor hence the selective adsorption of Ag(I) and Pd(II) with co-
existing ions by ATU-PEGDA were determined separately. As shown in Fig. 4, ATU-PEGDA performed high 
selectivity for Ag(I) and Pd(II) and the adsorption capacities achieved 61.61 and 118.12 mg  g−1, respectively. The 
difference of adsorption amount between Ag(I) and Pd(II) is mainly caused by their ionic types in solution. Silver 
performed two ionic types, Ag(I) and Ag(NO3)2

− complexes varied in different pH. While Pd(Cl4)− is the only 
type in aqueous solution. At acidic environment, like pH 1, the ionic exchange ability dominantly contribute the 

C(x, t) = C0erfc(
x

2
√
Det

)

Figure 4.  Selective adsorption of ATU-PEGDA for multiple metal ions under pH 1 condition at 25 °C. The 
initial concentration of each metal ion was 100 ppm.
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adsorption. Therefore, repulsive force would possibly be formed in the case of Ag(I). As a result, the adsorption 
amount of Ag(I) was lower than that of Pd(II). Remaining heavy metals only accounted for 1.6–5.7% adsorp-
tion capacity in Ag(I)/Pd(II) containing solution which were almost negligible. Adsorption selectivity of Ag(I) 
and Pd(II) was calculated using experimental data (Table S3) and values were 0.89 and 1.31 respectively which 
were higher than other metals in the solution. This result of selectivity adsorption also reflects the Hard–Soft 
Acid–Base theory (HSAB). Hard base prefer to form stably ionic bonding with hard acid. On the other hand, 
soft acid-hard base pair or hard acid-soft base pair would form unstable complexes resulting in dissociation. 
The modifier, allylthiourea (ATU) contains sulfur and amine presenting as soft base, which is easily to chelate 
with soft acid (Ag(I) and Pd(II)). The remaining metal ions, like Ni(II), Pd(II), Zn(II), and Fe(II) are classified 
as hard-acid. Consequently, ATU would not be easy to chelate with these metal ions.

Regeneration of spent ATU‑PEGDA. To select best eluent for the desorption of Ag(I) and Pd(II), spent 
ATU-PEGDA adsorbents were carried out by using various concentrations of thiourea (TU) dissolved in vari-
ous concentrations of  HNO3,  H2SO4 and HCl acids as desorption solutions. Figure 5a,b present the desorption 
rates due to the influences of different desorbing eluents on adsorbed Ag(I) and Pd(II) ions onto ATU-PEGDA 
adsorbents. The results show that, the desorption rate reached maximum in 1 M TU in  10–3 M  HNO3 which 
was 98.30 ± 0.69% for Ag(I) and 1 M TU in 4 M HCl which was 94.24 ± 0.64% for Pd(II). The desorption effi-
ciency is determined by the solubility of Ag(I) and Pd(II) in eluent. The introduction of HCl would form pre-
cipitation, like AgCl during desorption process. Therefore, the captured silver ion in ATU-PEGDA would not 
be easily released. Compared with Pd(II), Pd(II) easily chelate with chloride ion and nitrate ion resulting in 
higher desorption rate and efficiency. The pH of the eluent was set as pH 3 for Ag(I) ion and pH < 0 for Pd(II) 

Figure 5.  Desorption of ATU-PEGDA. (a) Using different eluents for silver ion; (b) using different eluents for 
palladium ion. (c) Desorption rate of spent ATU-PEGDA. The regeneration of silver ion and palladium ion were 
processed by 0.5 M TU at pH 3 and 1 M TU in 4 M HCl solution, respectively. (d) Adsorption–desorption cycle 
of ATU-PEGDA hydrogel adsorbents. (W = 5 mg, V = 10 mL, 25 °C).
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desorption. Desorption time of Ag(I) and Pd(II) were shown in Fig. 5c. The desorption efficiency was reached 
97.24 ± 0.21% after 120 min in Ag(I) adsorbed ATU-PEGDA hydrogels immersed in 1 M TU in  10–3 M  HNO3 
solution while the desorption efficiency reached 94.67 ± 1.52% after 120 min in Pd(II) adsorbed ATU-PEGDA 
hydrogels immersed in 1 M TU in 4 M HCl solution. The possible mechanism of Ag(I) and Pd(II) desorption 
might be considered as the competition of chelation and electrostatic force. In the cased on silver, ATU-PEGDA 
performed lower adsorption capacity when pH is 3. The main reason is that the protonation of amine group of 
ATU resulting in the generation of repulsive force between protonated ATU and silver ion. However, the TU 
molecules in elution can form the chelating complexes, [Ag(TU3)+] performing high stabilities. Therefore, the 
adsorbed silver ion would be released when the elution, 0.5 M TU in  10–3 M  HNO3 elution. Similar desorption 
mechanism also be observed in Pd(II) desorption. The minimum adsorption capacity occurs at pH 1, which pre-
sents the competition adsorption of excessive chloride toward  (PdCl4)2−. In addition, the TU molecules would 
form high stability Pd-chelated complexes, [Pd(Tu4)]2+. Consequently, the adsorbed Pd(II) would be extracted 
by 1 M TU in 4 M HCl elution. To summary, the mechanism of desorption of Ag(I) and Pd(II) from gel is 
constructed by the competition between chelation ability and electrostatic force. While the bonding of chelated 
complexes, like [Ag(TU3)+]and  (PdCl4)2− is stronger than electrostatic force, the adsorbed would be extracted 
from ATU-PEGDA gel adsorbents.

Under normal circumstances, the adsorption efficiency of an adsorbent is reduced in a repeated usage due to 
the damage of the material structure or the deterioration of the functional  groups25,33. However, a salient obser-
vation was obtained in this regeneration experiment that the adsorption efficiency of ATU-PEGDA adsorbents 
was increased after regeneration and can be reused more than 10 times while still maintaining high adsorption 
efficiency. Effect of regeneration cycles on adsorption efficiency of the adsorbent on Ag(I) and Pd(II) were shown 
in Fig. 5d. After completing the first regeneration cycle for Ag(I) and Pd(II) loaded adsorbents, the adsorption 
efficiency was increased by 31.83 ± 3.08% and 75.39 ± 9.12% of pristine adsorbents, respectively. These values 
were compared between the first and second regeneration cycles and it was observed that the adsorption effi-
ciency was increased till the 10th regeneration cycle. When compare the adsorption efficiencies of Ag(I) and 
Pd(II) loaded adsorbents between first and 10th regeneration cycles, it was increased by 33.83 ± 3.08% and 
72.62 ± 14.95%, respectively.

According to the Hard-Soft Acid–Base (HSAB theory by Pearson) theory; the soft metal ion Ag(I) has low 
effective ionic radii of 2.5 Å in an aqueous medium hence it has low ionic and high chelating  interactions3,5,7. 
Therefore, chelating resins with functional groups containing sulfur and nitrogen as donor atoms chelate with 
Ag(I) ions while the affinity of soft metal ions to soft bases as S >  N4,5. In the desorption reaction, thiourea in the 
desorption solution plays an important role. As shown in Fig. 6, thiourea with tautomers forms a stable complex 
with three thiourea molecules and one  Ag+ called as the trithiourea silver(I) ion {Ag[SC(NH2)2]3

+}/[Ag(TU3)+] 
and the double bond of the two thiourea molecules provided by the desorbent solution will be transferred to the 
nitrogen  group34. This was proved by FT-IR analysis that a tensile vibration band was obtained around 1616  cm−1 

Figure 6.  FTIR spectrum of (a) ATU-PEGDA. (b) Regenerated ATU-PEGDA.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19577  | https://doi.org/10.1038/s41598-021-99021-5

www.nature.com/scientificreports/

as displayed in Fig. 6 revealing C=N which proved the double bond of thiourea molecule has transferred into the 
nitrogen group. Due to the desorption experimental results, about 1.6% of  Ag+ cannot be desorbed as a result of 
the formation of [Ag(TU3)+] complex, which constructed additional TU branches in adsorbents. Consequently, 
regenerated ATU-PEGDA would perform higher adsorption capacity than pristine adsorbents. The mechanism 
was arranged in Fig. 7. Furthermore, similar adsorption behavior can also observe in regenerated ATU-PEGDA 
toward Pd(II) adsorption. The stable complex, tetrathiourea Palladium(II) ion {Pd[SC(NH2)2]4

2+}/[Pd(TU4)2+] 
was formed in ATU-PEGDA during regeneration process resulting in improving the adsorption efficiency of 
regenerated adsorbents for Pd(II) in further regeneration  cycle35.

Figure 8 shows the comparison of adsorption capacities for Ag(I) and Pd(II) using ATU-PEGDA and com-
mercialized chelating resin (Purolite S920). ATU-PEGDA performed similar adsorption behavior and adsorption 

Figure 7.  Possible adsorption mechanism of regenerated ATU-PEGDA for (a) silver ion; (b) palladium ion.
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selectivity as Purolite S920. Additionally, another observation was when ATU-PEGDA adsorbs Ag(I), the color 
of the adsorbent changed gradually from transparent to brown, and it turned into dark brown when it was 
close to the adsorption saturation. When adsorbing Pd(II), the color of the adsorbent gradually changed from 
transparent to dark red in equilibrium. This obviously color change might be due to the ligand-to-metal charge 
transfer (LMCT). The adsorption of Ag(I) and Pd(II) using ATU-PEGDA is contributed by formation [Ag(TU3)+] 
or [Pd(TU4)2+] complexes resulting in an electron migrating from thiourea-to-metal and metal-to-thiourea in 
addition to π–π*  conjugation30. As a result, the ATU-PEGDA adsorbents exhibit color change after Ag(I) and 
Pd(II) adsorption shown in video S1.

Materials and methods
Materials. Polyethylene glycol diacrylate (PEGDA, MW: 700) and photoinitiator-2,2-dimtehoxy 2-phe-
nylacetonphenone  (C16H16O3, 96%) were purchased from Sigma-Aldrich. 1-vinyl-2-pyrrolidinone obtain-
ing  (C6H9NO, 96%) from ACROS was used as a solvent of photoinitiator. The modifier, allylthiourea (ATU, 
 C4H8N2S, 98%) was obtained from Sigma-Aldrich. Metal ion, silver nitrate  (AgNO3, 99%) and palladium nitrate 
(Pd(NO3)2, 99%) were purchased from ACROS. All above-mentioned reagents were used without any further 
purification.

Synthesis of ATU‑PEGDA adsorbents. Polyethylene glycol diacrylate (PEGDA) is the main structure of 
hydrogel adsorbent and the backbone structure is modified by allylthiourea. The final product is called as ATU-
PEGDA hydrogel. The molar ratio between PEGDA to allylthiourea was controlled 1–2 into deionized water con-
taining 10% of photoinitiator and then poured into an Ecoflex mold for solidification under 365 nm UV irradia-
tion (100 W) in 3 min. All hydrogel adsorbents were cleaned with deionized (DI) water for 5 min and were dried 
at 65 °C. All adsorbents were synthesized in duplicate, and the size of the adsorbents was 2 mm × 2 mm × 2 mm.

Characterization of hydrogel adsorbent and Ag(I)/Pd(II) analysis. Fourier transform infrared (FT-
IR) spectroscopy was obtain by Thermo Nicolet Is5 to identify the structure of the synthesized adsorbent and 
adsorption mechanism. The wavenumber ranges from 400 to 4000   cm−1 were used, and the absorbance was 
recorded with 0.9   cm−1 resolution. Ag(I) and Pd(II) concentrations were determined by inductively coupled 
plasma atomic emission spectroscopy (ICP-OES, Perkin Elmer Optima 2000DV). The measured data were sam-
pled and processed using the WinLab3ICP computer program.

Ag(I) and Pd(II) adsorption and desorption experiments. To investigate the optimized conditions 
of adsorption capacity of ATU-PEGDA for Ag(I) and Pd(II) from an aqueous medium, experiments were car-
ried out using 100 ppm initial concentration of Ag(I) and Pd(II). First, 10 mL of 100 ppm Ag(I) or Pd(II) and 
50 mg of ATU-PEGDA were taken into a 20 mL vial having various pH from 1 to 6. The desired pH values were 
adjusted using 0.1 M  HNO3 or 0.1 HCl and 0.1 M NaOH solutions. Then these vials were kept on a shaker for a 
certain time with the speed of 110 rpm at room temperature with time 40, 80, 120, 160, 200, 240, and 300 min.

Following the adsorption experiment (i.e., after 300 min of incubation), desorption experiments were con-
ducted in 20 mL glass vials using a range of different extraction solutions, including various concentrations of 
thiourea (TU) dissolved in various concentrations of  HNO3,  H2SO4, and HCl acids as desorption solutions. 
Briefly, the spent adsorbents in the vials were washed with DI water twice before adding 10 mL of extraction 
solution. The mixture was incubated at room temperature with 110 rpm for 24 h. The spent adsorbents after 
desorption were washed with DI water two times. Duplicate samples were used in each set of adsorption/desorp-
tion experiments and the process was repeated 10 times.
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Figure 8.  Removal efficiency of Ag(I) and Pd(II) in waste electrolyte by hydrogel adsorbent and Purolite S920 
chelating resin at 25 °C (pH 2.43, W = 50 mg, V = 10 mg).
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During the adsorption and desorption experiments, liquid samples were collected and analyzed using Induc-
tively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Ag(I) and Pd(II) adsorption capacities of 
ATU-PEGDA adsorbent were calculated according to the following equation (Eq. 8).

where Qe = Equilibrium adsorption capacity of adsorbent (mg  g−1), Co = Initial concentration of precious metal in 
aqueous medium (mg  L−1), Ce = concentration of precious metal in aqueous medium after adsorption (mg  L−1), 
V = volume of the metal ion solution (L), W = mass of the adsorbent (g)20.

Adsorption kinetics and adsorption model. To evaluate the adsorption mechanism and to realize 
the potential rate-controlling steps of Ag(I) and Pd(II) ions on ATU-PEGDA, the pseudo-first-order and the 
pseudo-second-order kinetic models were employed. The linear forms of the pseudo-first-order and the pseudo-
second-order could be expressed as Eqs. (9) and (10), respectively.

where Qe(mg  g−1) was the equilibrium adsorption capacity of metal ion, Qt (mg  g−1) was the amount of adsorbed 
metal ion at adsorption time t (min), k1  (min−1) was rate constant of the pseudo-first-order and k2 (g  mg−1 min) 
was rate constant of the pseudo-second-order.

To interpret the adsorption experimental data, Freundlich and Langmuir models were applied. The Langmuir 
isotherm model and its linearized form can be expressed as Eqs. (11) and (12),  respectively3,20. Separation factor 
 (RL) was calculated as Eq. (13) using initial concentration and Langmuir constant, 

where  Qmax (mmol  g−1) was the maximum adsorption capacity,  Ce (mmol  L−1) was the equilibrium concentration 
of Ag(I) and Pb(II),  Qe (mg  g−1) was the equilibrium adsorption of Ag(I) and Pb(II) ions and  KL (g  mg−1) was 
the Langmuir constant. The Freundlich isotherm model and its logarithmic form can be expressed as Eqs. (14) 
and (15),  respectively3,20.

where  KF (mg  g−1) was an indicative constant related to the adsorption capacity of the adsorbent and 1/n (0–1) 
was the adsorption intensity or surface heterogeneity of the  adsorbent20,36.

Selective adsorption and wastewater test. Selective adsorption of Ag(I) and Pd(II) from acid solu-
tions with co-existing  Cu2+,  Ni2+,  Pb2+,  Zn2+ and  Fe3+ with 100 ppm concentrations were investigated using ATU-
PEGDA at pH 1. The volume of the two solutions was 10 mL and 5 mg of hydrogel was added to each. Then both 
solutions were shaken at 110 rpm for 24 h at room temperature. After that, the concentrations of Ag(I), Pd(II) 
and the coexistent metal ions were determined by ICP-OES. The adsorption capacities of each metal ion were 
calculated according to Eq. (8) and the adsorption selectivity was determined by Eq. (16)36,37.

where  Qe is the amount of metal adsorbed at equilibrium per unit weight of adsorbent (mmol  g−1);  Ce is the 
equilibrium concentration of metal ions in solution (mmol  L−1), the index i pertains to Ag or Pd and index j 
refers to the remaining metals in the solution other than i  (Cu2+,  Ni2+,  Pb2+,  Zn2+,  Fe3+).

The waste electrolytic sample was taken from the field and silver-palladium alloy ingot was obtained after 
pretreatment of electrolytic sample. After degrade the electrolyte; (excessive other metal impurities) saturated 
NaCl was added to the electrolyte to react with Ag(I) ions. Then the precipitated AgCl was separated from the 
electrolyte and the remaining metal concentrations of the electrolyte were determined by ICP-OES. Next, 10 mL 
of electrolytes were mixed with 50 mg of traditional macro porous thiourea chelating resin (brand: Model S920) 
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and ATU-PEGDA hydrogels separately. After that, both samples were shaken with 110 rpm for 24 h at room 
temperature. Finally, the supernatant of both samples were analyzed using ICP-OES for determine the remain-
ing metal ion concentrations.

Conclusion
This is the first report to develop ATU-PEGDA hydrogel-based adsorbent for selectively adsorption toward Ag(I) 
and Pd(II) from aqueous medium. ATU-PEGDA reached adsorption equilibrium in 240 min and 300 min for 
Ag(I) and Pd(II), respectively. The optimized conditions for these precious metal ions were occurred at pH 1 
and even lower acidity. Pseudo-first-order kinetic model and Langmuir adsorption isotherm can fully describe 
the adsorption behavior of ATU-PEGDA toward Ag(I) and Pd(II). Adsorption efficiencies of both metal ions 
were higher than 99.8% (< 1 ppm) and adsorption capacities of both metal ions were 83.33 mg Ag(I)/g adsor-
bents and 152.81 mg Pb(II)/g adsorbents. ATU-PEGDA adsorbents can sustainably capture Ag(I) and Pd(II) 
under several adsorption–desorption cycles without any damage. Furthermore, the regenerated ATU-PEGDA 
adsorbents exhibited superior to pristine adsorbents for capturing Ag(I) and Pd(II) because of the formation 
of thiourea-metal complexes. These complexes not only constructed additional adsorption sites in adsorbents 
but also generated ligand-to-metal charge transfer (LMCT) in coloration after adsorption. ATU-PEGDA adsor-
bents performed excellent adsorption behavior and selectivity of Ag(I) and Pd(II) occurring in extremely lower 
pH of the solution containing multiple metal ions. It is also expected that the ATU-PEGDA adsorbents can 
potentially apply in PCB wastewater for direct extraction and condensation of Ag(I) and Pd(II) without any 
pretreatments. Most commercialized thiourea-based resins are constructed by polystyrene. Therefore, it requires 
organic solvents, like dichloromethane (DCM) or dimethyl furan (DMF) to swell the polystyrene resins resulting 
in secondary pollution during functionalization. ATU-PEGDA hydrogel-based adsorbents are synthesized in 
aqueous environment indicating these adsorbents can be considered as eco-friendly products. The solidification 
of ATU-PEGDA is processed under UV irradiation in short time. Therefore, it has benefit to massive produc-
tion of ATU-PEGDA integrating with automatic system, like roll-to-roll manufacturing. In addition, PEGDA 
composes highly hydrophilic structure, like ether, in order to easily uptake and recycle previous metal ion from 
wastewater. Furthermore, this hydrophilicity also effective improve the regeneration efficiency. The excellent 
renewability of green adsorbents, ATU-PEGDA not only would effectively reduce the cost of operation but 
also would minimize the secondary pollution during manufacturing. Based on these advantages and excellent 
properties, ATU-PEGDA adsorbents can be further developed for continuous treatment of precious metal ion 
recycling using packed and/or fluidized bed reactors.
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