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Improving the thermal 
structure predictions 
in the Yellow Sea by conducting 
targeted observations 
in the CNOP‑identified sensitive 
areas
Kun Liu1,3, Wuhong Guo1,2,3, Lianglong Da1,2*, Jingyi Liu1,2, Huiqin Hu1 & Baolong Cui1,2

Targeted observation is an appealing procedure for improving model predictions. However, studies 
on oceanic targeted observations have been largely based on modeling efforts, and there is a need for 
field validating operations. Here, we report the results of a field targeted observation that is designed 
based on the sensitive areas identified by the Conditional Nonlinear Optimal Perturbation approach 
to improve the 7th day thermal structure prediction in the Yellow Sea. By introducing the technique 
of cycle data assimilation and the new concept of time‑varying sensitive areas, an observing strategy 
is designed and validated by a set of Observing System Simulation Experiments. Then, the impact of 
targeted observations was investigated by a choreographed field campaign in the summer of 2019. 
The results of the in‑field Observing System Experiments show that, compared to conventional local 
data assimilation, conducting targeted observations in the sensitive areas can yield more benefit at 
the verification time. Furthermore, dynamic analysis demonstrates that the refinement of vertical 
thermal structures is mainly caused by the changes in the upstream horizontal temperature advection 
driven by the Yellow Sea Cold Water Mass circulation. This study highlights the effectiveness of 
targeted observations on reducing the forecast uncertainty in the ocean.

The predictability of oceanic processes is limited since the ocean is an extremely chaotic dynamic  system1, the 
uncertainty of ocean forecasting can be reduced through assimilating observation  data2. Unlike observations on 
land, field-deployed oceanic observations are scarce and expensive. Thus, maximizings the individual impact of 
these limited measurements is a meaningful pursuit. Targeted observation is believed to be a suitable strategy 
for solving this  problem3–6.

Interest in the field of oceanic targeted observation has accelerated over the past dozen years, and the effec-
tiveness of oceanic targeted observation has been confirmed by a number of  studies7–13. However, most of the 
relevant studies have been largely based on modeling efforts, and experiments in the field are necessary regarding 
both method validation and the cost-effectiveness evaluation.

A limited number of oceanic targeted observations in real scenarios have been reported in the  literature14–16. 
Curtin and  Bellingham14 implemented the Autonomous Ocean Sampling Network (AOSN) field program in the 
Monterey Bay and demonstrated that proper sampling is critical for both understanding and predicting ocean 
fields. To predict the local ocean circulation and potential pathways of spilled oil, Shay et al.15 carried out oceano-
graphic surveys based on the positions of exploded oil rig and the loop currents in the Gulf of Mexico. They 
found that the root-mean-square errors (RMSEs) of the simulated results were reduced by approximately 30% 
when the additional measurements were assimilated into the hindcast model. Guided by the optimal designed 
glider trajectory, which sets the trace of the error covariance matrix as  criteria17, Mourre and  Alvarez16 found 
that the data assimilation performance of the adaptive-sampling-driven glider data was better than that of the 
independent glider data in the same region, with a RMSEs reduction of 18%.
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However, none of the abovementioned in-field oceanic targeted observations were designed based on iden-
tified “sensitive areas”. Given a certain research subject, sensitive areas are the specific localized areas that are 
expected to contribute most in reducing prediction uncertainties in the target region. In a study of storm tracking 
prediction, Montani et al.18 demonstrated that short-range prediction refinement can be significantly increased 
if the observations are deployed in sensitive areas. In the Atlantic observing-system research and predictability 
experiment (THORPEX),  Majumdar5 concluded that targeting and assimilating observations in the sensitive 
areas are effective in improving forecasts. Targeted observation studies in the atmospheric field started earlier 
and are more mature than those in the ocean, field targeted observation based on sensitive areas has already 
been  conducted5. To our knowledge, however, tests of targeted observations guided by identified sensitive areas 
in real at-sea scenarios are still lacking.

In August 2019, an exploratory field experiment is conducted on the northwest continental slope of the Yellow 
Sea (YS; Fig. 1), aiming at improving the thermal structure predictions by oceanic targeted observations based 
on identified sensitive areas. It is expected that assimilating observations in the identified sensitive areas will be 
more effective than assimilating observations in other areas. Temperature is selected as the target variable because 
it is a key variable in controlling density fields, the vertical thermal structure can modulate the sound speed 
profile and has a crucial impact on the acoustic  propagation19. The selected target region locate near the margin 
of the Yellow Sea Cold Water Mass (YSCWM)20. Under the comprehensive impact of the thermodynamic and 
dynamic oceanic processes and topography, the thermal structures in this region feature significant spatial and 
temporal variations, and their forecast uncertainty is generally  large21,22. One main goal of this exploratory study 
is to simulate the future customized-rapid-prediction-supporting scenarios, thus here we focus on improving 
the short range (7 day) thermal structure prediction after conducting rapid targeted observation. In the present 
paper, we report the identification procedure of sensitive areas and design of observation strategies and validate 
the effectiveness of targeted observations.

The article is organized as follows: the observation data, model configuration, the Conditional Nonlinear 
Optimal Perturbation (CNOP) approach and the assimilation technique are briefly described in section Methods. 
In section Results, given a specified target region, the sensitive areas for thermal structure prediction are identi-
fied and validated. The physical mechanism behind are discussed. Then, the observation strategies are designed 
and quantitatively assessed by conducting a series of Observing System Simulation Experiments (OSSEs). The 
improvements in the thermal structure prediction due to the targeted observation through Observing System 
Experiments (OSEs) is also presented. The results are summarized in the last section.

Figure 1.  Plan view of the locations of the five temperature profile buoy stations (red stars), thirty-six XBT 
stations (triangles), and twenty-one shipboard CTD stations (circles). The differences in the deployment times 
of the XBT and shipboard CTD observations are distinguished by different colors. The red box indicates the 
location of the target region. The topography is indicated by shading. The bottom-right insert shows the model 
area, in which the write box indicates the position of the study area and the red lines indicate the section 
locations used for vertical thermal structure validation. Figures are plotted using MATLAB R2017a (http:// www. 
mathw orks. com/) with M_Map v1.4 (a mapping package, http:// www. eos. ubc. ca/ ~rich/ map. html).

http://www.mathworks.com/
http://www.mathworks.com/
http://www.eos.ubc.ca/~rich/map.html


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19518  | https://doi.org/10.1038/s41598-021-98994-7

www.nature.com/scientificreports/

Methods
Observation data. A dedicated ocean survey with two synergetic ships is carried out in August 2019 to 
obtain the targeted observation data in the YS. In the target region (red box in Fig. 1), five buoys are placed 
during 17–27 August for forecast validation. The buoys are composed of temperature loggers (SBE56), pressure–
temperature loggers (SBE39 and  RBRduo3) and pressure–temperature–conductivity loggers  (RBRconcerto3), 
which can obtain the temperature profiles of nearly the total water volume in approximately 2 m vertical bins. 
Both ends of the buoys are equipped with pressure sensor instruments to determine the depths of the tempera-
ture loggers between them. The sensors collected a sample every 10 min. During 18–20 August, 21 temperature 
profiles are obtained in the target region by the shipboard CTD (circle stations in Fig. 1). Meanwhile, tempera-
ture profiles are collected in the identified sensitive areas by the eXpendable BathyThermographs (XBT) by the 
other ship. Temperature profiles at each XBT station are detected four times a day (16:30–19:30, 22:30–1:30, 
4:30–7:30, 10:30–13:30) along the predesigned routes (triangle stations in Fig. 1) to obtain the daily averaged 
values, which are used in the cycle data assimilation on 18, 19, and 20 August 2019. All times in the study are 
referenced to the Chinese Standard Time (UTC + 8).

Numerical model configuration. To investigate the utility of targeted observation in improving the 
prediction of thermal structures in the shallow YS, the Regional Ocean Modeling System (ROMS) was used 
to solve the three-dimensional Reynolds-averaged hydrostatic Navier–Stokes equation with the Boussinesq 
 approximation23. The ROMS utilizes a nonlinear terrain-following vertical coordinate and has been proven to be 
suitable for regional ocean modeling by a large number of  studies24–27. The K-profile parameterization scheme 
is used to calculate the vertical eddy viscosity and  diffusivity28. Harmonic horizontal mixing is employed with 
constant horizontal eddy viscosity and diffusivity of 10  m2  s−1 and 15  m2  s−1, respectively. The bottom stress is 
parameterized following a quadratic formula with a constant bottom drag coefficient set to 2.5 ×  10–3.

The model region covers the China Seas north of 30°N (Fig. 1, 30–41.3° N, 117–127° E) with 1/24° horizontal 
resolution, and there are 32 vertical levels that are unevenly distributed with closer spacing within the range of 
thermocline. The model topography is subsampled from ETOPO2 (https:// ngdc. noaa. gov/ mgg/ global/ etopo2), 
and the minimum water depth is set to 10 m. The model initial temperature and salinity are obtained from the 
multiyear averaged (1998–2018) HYCOM + NCODA reanalysis  data29 (https:// www. hycom. org/ datas erver) in 
January. The initial current velocities and sea surface height are set to zero.

First, a climatology run is carried out from the cold start. At the open boundaries, the model is driven by 
the multiyear averaged monthly HYCOM + NCODA reanalysis data and tidal forcing of eight major tidal con-
stituents  (M2,  S2,  K1,  O1,  N2,  K2,  P1, and  Q1). The tidal forcing is included at the open boundaries by the Flather 
 condition30 with the tidal elevation and barotropic velocity obtained from the global inverse barotropic tidal 
model TPXO7.231. On the surface, the wind stress, surface heat flux and water exchange are calculated from the 
multiyear averaged (1998–2018) monthly ECMWF ERA-Interim reanalysis data (https:// apps. ecmwf. int/ datas 
ets/ data/ inter im- full- moda/ levty pe= sfc/). The climatology run is integrated for 25 years for spin-up.

Thereafter, a hindcast run is conducted from January 2014 to August 2019, starting from the results of the 
climatology run. Twelve-hourly surface forcing from the ECMWF reanalysis data and daily boundary forcing 
from the HYCOM + NCODA reanalysis data are applied to drive the hindcast run. The hindcast run is also 
forced by tidal forcing (eight major constituents) from TPXO7.2. In this paper, the daily-averaged temperature 
profiles are used for analysis.

CNOP approach for sensitive area identification. Identification of the sensitive areas is a crucial step 
in targeted  observations5,27. Sensitive areas for targeted observation can be identified by the Conditional Nonlin-
ear Optimal Perturbations (CNOP) approach proposed by Mu et al.32. Utilizing the CNOP approach, the optimal 
initial errors that cause the largest nonlinear forecast uncertainty can be calculated, and their spatial patterns 
help to locate the sensitive areas. To date, CNOP-identified sensitive areas have been proven to be quite effec-
tive in a number of oceanic applications, such as the prediction of the  ENSO33, upstream Kuroshio  transport27, 
Kuroshio intrusion into the  SCS24, Kuroshio large  meander12 and the ocean state in the SCS western boundary 
current  region10.

In this section, the CNOP approach is briefly  reviewed32,34. Let Mt be the nonlinear propagator that propagates 
the value X0 at initial time t0 to Xt = Mt(X0) at the end of the forecast time. When adding the initial perturbation 
�x0 to the initial state, the impact of an initial perturbation �xt at a later time t  can be expressed as

Following the definition proposed by Mu et al.32, the CNOP can be obtained by solving the following non-
linear constraint maximization problem:

where J(�x0) is the objective function that estimates the nonlinear evolution of the perturbed model during time 
t  . ‖.‖ denotes the norm of the vector. �x0,σ is the CNOP‐type initial perturbation, which will induces the largest 
prediction error at the prediction time t  . ��x0� ≤ σ is the constraint condition defined by the selected norm ‖.‖.

Generally, CNOP computation relies on the adjoint technique to calculate the gradient of the objective func-
tion. However, directly calculating CNOP in a complicated model requires a considerable amount of coding and 
is computationally  expensive24,27,35. Alternatively, in this study, we use an Empirical Orthogonal Function (EOF) 
based algorithm proposed by Wang and  Tan35 to approximate the CNOP without using the adjoint technique 
(hereafter referred to as the EOF-CNOP algorithm). Wang and  Tan35 tested the EOF-CNOP algorithm in a 

(1)�xt = Mt(X0 +�x0)−Mt(X0),

(2)J(�x0,σ ) = max
��x0�≤σ

J(�x0) = max
��x0�≤σ

�Mt(X0 +�x0)−Mt(X0)�,

https://ngdc.noaa.gov/mgg/global/etopo2
https://www.hycom.org/dataserver
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
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typhoon case, they found that the sensitive areas identified by this approximation algorithm are similar to the 
real CNOP results but require much less computational resources. The calculation process of the EOF-CNOP 
algorithm is described as follows: First, a set of initial perturbations is added to the initial state to obtain the 
corresponding prediction increment ensemble by numerical integration. Then, the orthogonal basis of the ini-
tial perturbation ensemble is calculated by EOF decomposition. Finally, a statistical relationship is established 
between the initial perturbations and the associated prediction increment; thus, the gradient of the objective 
function can be obtained, and the CNOP can be computed.

In practice, the specific form of the objective function and the initial constraint are defined according to the 
object of study. In the context of the thermal structure of interest in this study, the objective function is defined 
as the change in the volume-integrated temperature caused by the initial errors in the specified target region, 
such that

where �Tt indicates the temperature anomaly at the future time t  caused by the initial errors and V  denotes the 
three-dimensional water volume in the selected target region.

Following the formula of Li et al.10, the initial constraint is defined as

where �T0 indicates the initial temperature perturbation, D denotes the whole model domain, and Tstd indi-
cates the regionally averaged temperature standard deviation in the model domain, which is calculated from 
the World Ocean Atlas 2018 (WOA18, https:// www. nodc. noaa. gov/ OC5/ woa18/) in August and was found to 
be 0.25 °C in this study. After completing all these steps, the sequential quadratic  programming36 algorithm is 
employed to compute the CNOP.

Optimal interpolation data assimilation method. The Optimal Interpolation (OI) technique is used 
to assimilate the targeted observation data to reduce uncertainties in the initial fields, which can be formulated as

where xa and xb indicate the analysis field and background field, respectively. yobs denotes the observation vec-
tor, and H is the observation operator, which maps from model space into observational space. K is the Kalman 
gain matrix, which is calculated based on H , the model background field error covariation matrix B , and the 
observational error covariation matrix R . R is diagonal since all the observational errors are assumed uncor-
related in space. That is,

where σo is determined by the observations accuracies, δij is the Kronecker delta, δij = 1 when i = j , and δij = 0 
when i  = j . The model background field error covariation matrix B at different vertical layers is assumed to be 
independent. Similar to the estimation used by Zhang et al.13, Bij is written as follows:

where σm is determined by the initial model errors, dij is the distance between two model grid points i and j . 
Referring to the method of Cao et al.37, by analyzing the distribution of the correlation coefficient with distance, 
the correlation length Lc and the influence radius Ro were set to 60 km and 120 km, respectively. In this paper, 
profile data was first assimilated separately at each single depth level with constant vertical interval of 1 m and 
then the assimilated field is interpolated vertically to the model levels.

Results
Model validation. To validate the simulations, the modeled monthly averaged (August) sea surface tem-
perature in the simulation area in the last climatology year is extracted and compared with MODIS data (Fig. 2a, 
b). Against the background high sea surface temperature in summer, several surface cold patches can be clearly 
identified along the coast of Shandong Peninsula and Korean Peninsula, indicating the occurrence of upwelling 
(Figs. 1, 2a). The positions of the modeled surface cold patches are generally consistent with satellite observa-
tions (Fig. 2a, b). The cotidal chart of  M2 tide (Fig. 2c) and the anticlockwise YSCWM circulation in the middle 
YS are also successfully  reproduced22. In addition, the simulated monthly averaged (August) temperature along 
the 35°N section (see location in Fig. 1) is also extracted and compared with previous observations obtained 
from the Atlas of Ocean Data in the China  Seas38. In summer, the water is well mixed in very shallow regions 
near the coast and is strongly stratified in the central basin. The simulated vertical distribution of isothermals is 
generally consistent with observations (Fig. 2d, e). Below the thermocline, the YSCWM that formed during the 

(3)J =





�

V

�Ttdxdydz





2

,

(4)��x0�
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∫

D

(
�T0
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)2dxdydz ≤ σ 2,

(5)

{
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,
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previous winter can be clearly identified. In general, the simulated vertical structure shows good agreement with 
historical observations. However, there is still room for improvement in the accuracy of the simulated thermal 
structure, especially the continental slope region.

Identification and validation of CNOP‑based sensitive area. To provide guidance for the targeted 
observation field campaign, a vital step is the identification of the sensitive areas. In this study, identification of 
the sensitive areas from the real-time predicted ocean state is not attempted, as this would entail the establish-
ment of a reliable local prediction model with forcing from a larger-scale prediction model as a prerequisite. In 
fact, the locations of the identified sensitive areas in this study are generally consistent in space in the hindcast 
and climatology years (see Supplementary Fig. S-1). The sensitive area in the last climatology year is first identi-
fied. Considering the ships’ voyage schedule, the initial prediction time is set to 00:00 on 20 August (hereinafter 
the targeting time), and the daily averaged temperature profiles between 00:00 26 and 00:00 27 August (herein-
after the verification time) in the target region are used for the forecast validation.

Following Wang and  Tan35, to identify the sensitive area, an ensemble of 20 initial perturbations and a nature 
run without perturbation is ran for the last climatology year. For this study of thermal structure prediction, initial 
perturbations are added to the temperature, which is achieved by taking the discrepancy of the daily averaged 
HYCOM + NCODA temperature on 20 August between every two adjacent years during 1998–2018. All the initial 
temperature perturbations are scaled so that their standard deviation is 0.25 °C. Then, the CNOP are calculated 
by employing a vertically integrated temperature scheme based on the total 21 sets of initial ensemble conditions 
and the corresponding 7th day forecast samples. We confine the CNOP-identified sensitive area as the region 
where the vertically integrated CNOP-type errors are larger than a certain value τ . τ is determined to obtain a 
sensitive area of the same size as the target region.

The spatial distribution of the calculated CNOP for the last climatology year is shown in Fig. 3a, the CNOP are 
normalized according to their maximum value. The identified sensitive area mainly locates outside of the target 
region in the northeast, with only a small fraction of the area overlapping. Similar results have been obtained for 
other climatology years (results shown in an earlier paper by Hu et al.39), confirming the stability of this method.

To validate the effectiveness of the CNOP-based sensitive area, a series of experiments are implemented based 
on the simulated results of the last climatology year. The original ocean state is denoted by the nature run EXP0, 

Figure 2.  Temperature validation between the monthly-mean climatology (Aug) simulations and observations. 
(a,b) Comparison of the sea surface temperature between the model results and MODIS data. The red box 
indicates the location of the target region. The simulated current field at the depth of 10 m is also shown in (a). 
(c)  M2 barotropic cotidal chart with amplitude (colors) and cophase (white lines) lines. (d,e) Comparison of the 
along section (35°N) temperature between the model results and the observations redrawn from the Atlas of 
Ocean Data in the China Seas. Figures are plotted using MATLAB R2017a (http:// www. mathw orks. com/) with 
M_Map v1.4 (a mapping package, http:// www. eos. ubc. ca/ ~rich/ map. html).

http://www.mathworks.com/
http://www.eos.ubc.ca/~rich/map.html
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which is considered as the synthetic observation. Realistic observation errors were not additionally considered in 
order to isolate the impacts of synthetic  observations13. Then, the control experiments (EXP_perturb) are created 
by superimposing 20 sets of random temperature perturbations with a normal distribution N(0, 0.3) °C to EXP0 
at 00:00, 1 August. The perturbation magnitude is set to 0.3 °C to get an approximately 0.25 °C perturbation 
magnitude in target region at the targeting time. In addition to the nature run and the control run, two sets of 
experiments (EXP_replace_tar and EXP_replace_sen) are conducted through replacing the synthetic observa-
tions in different regions at the targeting time. It should be noted that, data assimilation technique is not used 
yet in these two sets of experiments. The regionally averaged temperature profile RMSEs in the target region at 
the verification time between the nature run EXP0 and other experiments are used to evaluate the effectiveness 
of the CNOP-based sensitive area.

The temporal evolutions of the mean temperature profile RMSEs based on the 20 sets of replace experiments 
are shown in Fig. 3b. For the control experiment (EXP_perturb), the regionally averaged RMSEs in the target 
region are approximately 0.25 °C at the targeting time and attenuate to approximately 0.19 °C at the verification 
time (the black line in Fig. 3b). In the EXP_replace_tar, which represents the conventional observation strategy, 
the initial RMSEs are zero in the target region (the green line in Fig. 3b). During the 7 days integration, effec-
tiveness of the forecast refinement continuously decreases from the targeting time. In the EXP_replace_sen, the 
initial RMSEs are also reduced at the targeting time (the blue line in Fig. 3b) because of the overlapping between 
the CNOP-based sensitive area and the target region. However, at the verification time, the forecast errors in the 
EXP_replace_sen are smaller than that in both EXP_perturb and EXP_replace_tar. These results support the 
effectiveness of the CNOP-based sensitive area.

To better understand how the local forecast errors are efficiently reduced by conducting targeted observa-
tions in the remote sensitive area, it is worth exploring the underlying dynamics. The physical processes affecting 
the water temperature in the target region are investigated quantitively using the model temperature equation

where T  is temperature, �v is velocity, and Ah and Av are the horizontal and vertical diffusivity coefficients, 
respectively. The temperature change in the water is mainly induced by horizontal temperature advection, ver-
tical temperature advection, horizontal temperature diffusion and vertical temperature diffusion. The ocean 
temperature is also affected by the change in surface heating. However, in this study, we only conducted targeted 
observations inside the water volume, thus, only the impact of advection and diffusion processes are discussed.

Based on the 20 sets of replace experiments, the temporal evolution of the mean vertically-integrated and 
regionally-averaged temperature biases in the target region induced by different processes is shown in Fig. 4. 
The total temperature biases magnitude for EXP_replace_tar versus EXP0 are larger than that for EXP_perturb 
versus EXP0 and EXP_replace_sen versus EXP0 (Fig. 4), this indicate that the temperature field change very 
dramatically and the forecasting effectiveness is difficult to maintain in EXP_replace_tar (Fig. 3b). It is clear 
that the horizontal advection accounts for the majority of the temperature biases during the prediction time. 
Considering that the temperature field in the targeted region are continuously improved in EXP_perturb and 
EXP_replace_sen (Fig. 3b), it can be inferred that the horizontal advection process makes a dominated positive 
contribution. In contrast, in the EXP_replace_tar, the temperature RMSEs in the target region grow continuously 
since the targeting time (Fig. 3b), the horizontal advection process makes the major negative effect. The contri-
bution of vertical advection, horizontal diffusion and vertical diffusion to temperature biases is relatively small. 
From historical studies, in the summer YS most of the water volume is dominated by a basin-scale cyclonic gyre 

(8)
∂T

∂t
= −∇ · (�vT)+∇h(Ah∇hT)+

∂

∂z
(Av

∂T

∂z
),

Figure 3.  (a) Location of the identified sensitive area for the last climatology year (blue color). The CNOP are 
normalized according to their maximum value. The gray box indicates the location of the target region and 
the green dots denote the grid points in the target region. The 20–60 m isobaths are also shown. (b) Temporal 
evolution of the mean temperature profile RMSEs in the target region during the prediction time based on the 
20 sets of replace experiments. Figures are plotted using MATLAB R2017a (http:// www. mathw orks. com/).

http://www.mathworks.com/


7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19518  | https://doi.org/10.1038/s41598-021-98994-7

www.nature.com/scientificreports/

(approximately 0.2 Sv) as the baroclinic response of the  YSCWM22,40,41. The identified sensitive area is located 
northeastward of the target region, which is consistent with the local flow direction of the YSCWM circulation 
(southwestward). By replacing data in the sensitive area, the information is subsequently advectively carried 
downstream to the target region by the YSCWM circulation.

One strong advantage of the CNOP method is taking the nonlinearity into account in the optimization 
problem. Figure 5 gives the difference in the simulated current fields between an EXP_replace_sen case and 
EXP0 during the prediction time. By replacing temperature data in the CNOP-based sensitive area, the current 
fields are also changed. The temperature variation induced current change is a nonlinear process. Thus, in this 
study, the nonlinear horizontal temperature advection is believed to be the major mechanism dominating the 
temperature refinement in the target region.

Observation strategy and benefit assessment with Observing System Simulation Experi‑
ments. Before actually starting the field campaign, a targeted observation strategy that includes the ship 
route and the deployment locations should be designed. Moreover, the data assimilation technique (we use OI 
data assimilation here) should be utilized to maximize the benefit of the limited observation resources. On the 
basis that the locations of the identified sensitive areas are generally consistent in space in the hindcast and cli-
matology years (see Supplementary Fig. S-1), the CNOP-identified sensitive area from the last climatology run 
is used to guide the observation strategy design.

To maximize the observation coverage in the sensitive area with limited observation resources, a Z-shaped 
observation strategy with 12 stations is designed based on the identified sensitive area (Fig. 6a, see detailed 
observation stations design steps in the supplemental material). It is worth noting that, this observation strategy 
is designed based on several subjective assumptions and may not be the best solution. Observation optimiza-
tion strategies for guiding targeting observations are urgently needed but are beyond the scope of this paper 
and will be investigated in future studies. Except for the westernmost station, all the designed observation 
stations are out of the target region. To evaluate the performance of the designed observation stations and the 
assimilation system, a series of OSSEs are conducted based on the nature run EXP0 and the control experiment 
EXP_perturb with the largest prediction errors (Fig. 6). Two assimilation experiments (EXP_assimilate_sen 
and EXP_assimilate_tar) are conducted through assimilating the synthetic observations at the targeting time. 
Stations for EXP_assimilate_sen are located in the sensitive area along the designed Z-shape route (the blue 
triangle stations in Fig. 6d). Stations in EXP_assimilate_tar are the mirror stations of EXP_assimilate_sen, their 
center located in the center of the target region (the blue circle stations in Fig. 6d). The temporal evolutions of 
the temperature profile RMSEs during the prediction time in the OSSEs are shown in Fig. 7 (the red solid and 
dashed lines). Results in the assimilation experiments (EXP_assimilate_tar and EXP_assimilate_sen) are similar 
to that in the replace experiments (EXP_replace_tar and EXP_replace_sen), assimilating data in the sensitive 
area is more useful than that in the target region. This supports the effectiveness of our observation strategy and 
data assimilation system.

Figure 4.  Temporal evolution of the mean vertically-integrated and regionally-averaged temperature biases 
during the prediction time based on the 20 sets of replace experiments induced by different processes in the 
target region for (a) EXP_perturb versus EXP0, (b) EXP_replace_sen vs. EXP0, and (c) EXP_replace_tar versus 
EXP0. Figures are plotted using MATLAB R2017a (http:// www. mathw orks. com/).
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To further reduce the forecast errors, the possibilities for improving the initial state is explored by utilizing 
the intermittent cycling assimilation technique with 3 days observations. It is realized that the locations of the 
identified sensitive areas may be different with changing prediction periods. Following the same procedure, the 
sensitive areas which are 8 days and 9 days before the verification time are identified and shown in Fig. 6b,c. 
Centrals of the identified sensitive areas (yellow crosses in Fig. 6a–c, which are the mean positions of all the 
grid points in the sensitive areas) move northeastward and the shapes of the sensitive areas become oblate with 
increasing prediction time. The distance of the identified sensitive area from the target region is associated with 
the involved prediction time, this result is consistent with previous dynamic analysis. New deployment locations 
based on the identified 8-days and 9-days sensitive areas are designed following the same rule (Fig. 6b,c). All the 
stations based on the 8-days and 9-days sensitive areas are outside of the target region.

The impact of the cycling data assimilation based on the time-varying observation stations is evaluated by 
conducting two extra experiments, EXP_assimilate_sen_varied and EXP_assimilate_tar_varied. The assimilation 
interval and the total assimilation time are set to 1 day and 3 days, respectively. In EXP_assimilate_sen_varied, 
data are cycle assimilated three times (00:00, 18, 19, 20 August) at the stations of the 7-days, 8-days and 9-days 
sensitive areas (the triangle stations in Fig. 6d), respectively. The stations in the EXP_assimilate_tar_varied are 
mirror stations to that in the EXP_assimilate_sen_varied (the circle stations in Fig. 6d), with their daily averaged 
positions all locate in the center of the target region. At the targeting time (20 August, day 0 in Fig. 7), RMSEs 
in the EXP_assimilate_sen_varied (EXP_assimilate_tar_varied) are less than that of EXP_assimilate_sen (EXP_
assimilate_tar), indicating the refinement of the initial field. After 7 days integration, EXP_assimilate_sen_varied 
performs the best among all the OSSEs in reducing the forecast error at the verification time.

To further confirm the validity of the observation strategy in the subsequent field operation, additional OSSEs 
based on the simulated results of the hindcast years 2016–2018 (Table 1) are also conducted. In every hindcast 
year, the hindcast control experiments are first created following the same procedures as those in EXP_perturb. 
Then, similar to EXP_assimilate_sen_varied and EXP_assimilate_tar_varied, the benefit of the targeted obser-
vation is tested through assimilating the synthetic observations at the time-varying stations in the sensitive 
areas and the target region, respectively. After 7 days integration, in every hindcast year, assimilating data in the 
sensitive areas based on the above determined observation strategy can yield more profit than the conventional 
local data assimilation (Table 1). All the results mentioned above support the implementation of the targeted 
observation campaign in the summer 2019 in the YS.

Forecast improvements and effectiveness evaluation with Observing System Experi‑
ments. The benefit of oceanic targeted observations has been tested in some previous studies through a 

Figure 5.  Difference in the daily averaged currents field at the depth of 10 m between an EXP_replace_sen case 
and EXP0 at days 1, 3, 5, and 7, respectively. The red box indicates the location of the target region. Figures are 
plotted using MATLAB R2017a (http:// www. mathw orks. com/) with M_Map v1.4 (a mapping package, http:// 
www. eos. ubc. ca/ ~rich/ map. html).
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series of  OSSEs10,12,13. However, the effect of oceanic targeted observations guided by the sensitive areas has never 
been tested in OSEs utilizing real data in actual operation. Generally, in the context of standard OSEs designed 
for atmospheric targeted observation, the experiment assimilating all the available observations is regarded as 
the control experiment, and the impact of the selected observations is assessed by removing subsets of the meas-
urements or by adding extra measurements and comparing the results with the control  experiment42. In the 
oceanic region of this study, the historical observations that we can obtained are sparse, so the non-assimilation 
experiment EXP2019 is set as the control experiment. The effectiveness of targeted observations is validated by 
comparing the forecast improvement of assimilating observations in different regions (Table 2).

In EXP2019_sen, observations obtained in the sensitive area are daily averaged and assimilated in the model. 
Given that the repeated cruises undergo inevitable spatial uncertainty, after performing data quality control, the 

Three-times cycle assimilation in the target region based on 

the time-varying stations

Three-times cycle assimilation in the sensitive area based on 

the time-varying stations

Targeting time (day 0)

18Aug. 1 19 20

Prediction time

Aug. 26

Verification time (day 7)

EXP0

EXP_perturb

EXP_assimilate_sen

EXP_assimilate_tar

EXP_assimilate_sen_varied

EXP_assimilate_tar_varied

One-time assimilation in the sensitive area

One-time assimilation in the target region

Adding random 

Perturbations in the 

model domain

7 days before the verification time8 days9 days

Figure 6.  Schematic diagram of the Observing System Simulation Experiments based on the last climatology 
run. All the assimilation experiments use the results of the nature run as synthetic observations. The assimilated 
data station locations and the corresponding assimilation times are plotted by the same colors. (a–c) Z-shape 
observation stations (black triangles) designed based on the time-varying sensitive areas (background colors). 
The red ellipses are fitted to represent the most of the sensitive areas, which are used in the stations design. The 
gray box indicates the location of the target region. (d) The triangle stations denote the targeted observation 
(TO) stations, their locations are the same as those in (a–c), the circle stations indicate the corresponding 
mirror stations inside the target region. The different deployment times of the observations are distinguished 
by different colors. Figures are plotted using MATLAB R2017a (http:// www. mathw orks. com/) and Microsoft 
PowerPoint 2016 (https:// office. live. com/ start/ Power Point. aspx).
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temperature profiles obtained by both the XBT and the simultaneous buoys are interpolated to the predesigned 
station locations (the triangle stations in Fig. 6d). Generally, the target region is regarded as the most representa-
tive nonsensitive area, thus, in addition to EXP2019_sen, two extra experiments that assimilate approximately 
equal amounts of measurements inside the target region are conducted. In the EXP2019_tar_org, a total of 37 
originally observed temperature profiles in the target region are assimilated (the circle, star and triangle stations 
inside the target region in Fig. 1). In the EXP2019_tar_interp, 36 interpolated data in a set of synthetic mirror sta-
tions in the target region are assimilated (the circle stations in Fig. 6d), the station locations are exactly the same 
with that in EXP_assimilate_tar_varied. The temperature profiles for data assimilation in the EXP2019_tar_interp 
are obtained by interpolating all the observations available on that day to the mirror stations. It should be noted 
that, to take full advantage of the limited observations, the shipboard CTD temperature profiles used in the 
OSEs are only one-time measurements instead of daily averaged values, which is a flaw of the designed OSEs.

Figure 8a–e show the RMSEs of daily averaged temperature profiles at five buoys between the OSEs and the 
observations on the first forecast day. The temperature RMSEs are only calculated at depths where observations 
are available. Without data assimilation, the RMSEs between the modeled temperature profiles and the observa-
tions are approximately 1.93–3.09 °C (an average value of 2.46 °C), indicating that the simulation generally repro-
duced the main vertical thermal structures in the target region. In EXP2019_tar_org and EXP2019_tar_interp, 
the forecast improvements are nearly the same despite the difference in the spatial locations and numbers of the 
temperature profiles used in the cycle data assimilation (Table 2), the RMSEs are greatly reduced to approximately 
0.27–1.27 °C (an average value of 0.69 °C) by assimilating local data. In contrast, the RMSEs are only slightly 
reduced in EXP2019_sen, because most of the assimilated data stations are out of the target region. There is one 
exception in station W3, where the RMSEs are all greatly reduced among the three assimilation experiments. 
One possible reason is that station W3 is very close to the identified sensitive area.

Figure 7.  Temporal evolution of the temperature profile RMSEs in the target region during the prediction time 
among the Observing System Simulation Experiments. Figures are plotted using MATLAB R2017a (http:// www. 
mathw orks. com/).

Table 1.  Assessment of the designed observing strategy in the hindcast years of 2016–2018 (RMSEs 
improvement in percentage).

Experiments

Year (%)

2016 2017 2018

EXP_assimilate_tar_varied − 32.0 20.3 59.7

EXP_assimilate_sen_varied 43.9 48.2 70.1

Table 2.  Design of Observing System Experiments.

Experiments Data assimilation Number of the assimilated data Comment

EXP2019 No 0 Control run

EXP2019_sen Yes 36 Cycle assimilate the XBT data at the designed stations in the sensitive area

EXP2019_tar_org Yes 37 Cycle assimilate the original observations in the target region (15 profiles in 18 and 19 August, 
respectively, and 7 profiles in 20 August)

EXP2019_tar_interp Yes 36 Cycle assimilate the interpolated data at the synthetic stations in the target region
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After 7 days integration since conducting data assimilation, the forecast improvement change remarkably 
among the OSEs (Fig. 8f–j). The benefit of local data assimilation (EXP2019_tar_org and EXP2019_tar_interp) 
remains but becomes very weak. However, in EXP2019_sen, there is a marked improvement in the vertical ther-
mal structure predictions at the verification time (average RMSEs decrease from 2.02 to 0.88 °C, compared to the 
EXP2019). Figure 9 gives the temporal evolution of the vertically-averaged temperature profile RMSEs during the 
prediction period. Among the five buoy stations, the forecasting improvement is generally continuously decrease 
after conventional local data assimilation (EXP2019_tar_org and EXP2019_tar_interp). Assimilating data in the 
identified sensitive areas perform mediocre at the initial time, however, it yield more profit at the verification 
time. The results of these OSEs support our initial assumption that conducting data assimilation in the CNOP-
identified sensitive area is more effective in forecast improvement at the verification time than in other areas 
including the target region itself. It should be noted that, the quantitative benefit of targeted observation in the 
CNOP-identified sensitive area could differ from model to model and may also depend on the initial simulation 
accuracy and the selected data assimilation scheme.

Summary
Targeted observation is believed to be a cost-effective way to decrease forecast uncertainty through the assimi-
lation of additional measurements into the initial state. This study first extends the scope of oceanic targeted 
observations to the vertical thermal structure predictions, and validate the effectiveness of targeted observation 
utilizing real data in actual operation. Given a selected target region and a fixed prediction period of 7 days, the 
sensitive areas are identified utilizing the CNOP method and a newly defined objective function. The majority 
of the sensitive areas are located outside of the target region in the northeast. Through conducting a series of 
experiments, the initial state of the CNOP-based sensitive area is proven to have the most impact on the 7th day 
thermal structure prediction in the target region. A term-by-term analysis of the model temperature equation 
indicates that, after conducting targeted observation in the upstream sensitive area, the physical signals are 
subsequently carried downstream to the target region by the nonlinear horizontal temperature advection of the 
YSCWM circulation.

Guided by the CNOP-identified sensitive area, an observation strategy is designed with the technique of 
cycle data assimilation and the new concept of the time-varying sensitive area. A series of OSSEs are conducted 
to assess the observation performance. A choreographed field campaign is then applied in the summer of 2019 
in the YS to evaluate the capabilities of targeted observations. The results of OSEs show that reducing the initial 
errors in the sensitive area can lead to a greater improvement at the verification time than that in the target region.

In this study, we skip the step of establishing a real-time prediction model, on the basis that the locations of 
the identified sensitive areas in the hindcast and climatology runs are generally consistent. Although this kind 
of spatial consistency was also found in the optimal precursor study of the Kuroshio intrusion into the SCS 
(Liang et al.24; personal communication), it will not always be applicable if the focused phenomenon or study 
area changes. Thus, future work should be guided based on a reliable local prediction system. Furthermore, the 

Figure 8.  The RMSEs of daily averaged temperature profiles at five buoys between the four Observing System 
Experiments and the observations on the first (a–e) and 7th (f–j) day of prediction, respectively. Figures are 
plotted using MATLAB R2017a (http:// www. mathw orks. com/).
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optimal deployment network could be investigated and the sensitive area identification could be extended to 
three-dimensions. A more advanced data assimilation technique is also preferred to better exploit the targeted 
data.
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