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Critical behavior of density‑driven 
and shear‑driven 
reversible–irreversible transitions 
in cyclically sheared vortices
S. Maegochi*, K. Ienaga & S. Okuma*

Random assemblies of particles subjected to cyclic shear undergo a reversible–irreversible transition 
(RIT) with increasing a shear amplitude d or particle density n, while the latter type of RIT has not been 
verified experimentally. Here, we measure the time‑dependent velocity of cyclically sheared vortices 
and observe the critical behavior of RIT driven by vortex density B as well as d. At the critical point 
of each RIT, B

c
 and d

c
 , the relaxation time τ to reach the steady state shows a power‑law divergence. 

The critical exponent for B‑driven RIT is in agreement with that for d‑driven RIT and both types of 
RIT fall into the same universality class as the absorbing transition in the two‑dimensional directed‑
percolation universality class. As d is decreased to the average intervortex spacing in the reversible 
regime, τ(d) shows a significant drop, indicating a transition or crossover from a loop‑reversible state 
with vortex‑vortex collisions to a collisionless point‑reversible state. In either regime, τ(d) exhibits a 
power‑law divergence at the same d

c
 with nearly the same exponent.

Nonequilibrium phase transitions have been studied intensively in these  decades1–3. A typical example is a 
reversible–irreversible transition (RIT), which is observed in many-particle systems under cyclic  shear4–10. When 
random assemblies of particles are cyclically sheared with a shear amplitude d, collisions between the particles 
cause the system to self-organize into a relatively ordered configuration where less collisions occur. This phenom-
enon is called the random  organization5,7,11–14. For small d, the system reaches a reversible steady state where all 
particles return to their initial position after each shear cycle, whereas above a threshold value dc , the particles 
finally settle into an irreversible state where the particle motion is diffusive and the reversibility is lost. At dc , the 
relaxation time τ to reach the steady state diverges as a power  law5,7,10 whose exponent ν is very close to the value 
expected for a directed percolation (DP) universality class of an absorbing phase  transition1,2.

Figure  1 shows a schematic phase diagram of RIT drawn based on colloidal  experiments4,15 and 
 simulations16–19, in which the phase boundary of RIT represented by the solid line is crossed vertically as shown 
by an upward arrow. This diagram indicates that RIT also occurs by increasing a particle density n at fixed d as 
shown by a rightward arrow. This raises an interesting question of whether the RIT driven by n (density-driven 
RIT) is in the same universality class as the RIT driven by d (shear-driven RIT). Within the linear approximation, 
the critical behavior characterized by the critical exponents would be independent of the driving parameter. In 
fact, numerical studies employing different computational models have reported similar values of critical expo-
nents both for the shear-driven  RIT5,20 and the density-driven  RIT21,22.

We consider, however, that this is not trivial in actual systems. Some experiments studying critical phenom-
ena of various phase  transitions23,24 have reported that the critical exponents of the transition depend on the 
control parameters that drive the transition. To our knowledge, the critical behavior of the density-driven RIT 
has not yet been studied experimentally. This is probably because in systems such as colloidal  suspensions5,25 
and  emulsions26,27 where RIT has been intensively studied, it is difficult to conduct measurements in which the 
particle density n is changed in a controllable manner.

In this work, we study the critical behavior of the density-driven RIT in a superconducting vortex system, 
where the vortices behave as two-dimensional (2D) monodisperse many particles with repulsive interaction. 
We use an amorphous (a-)MoxGe1−x film with weak random pinning that gives rise to random local shear. The 
density of vortices n(∝ B) can be controlled precisely by an applied magnetic field B. In the same vortex system, 
we have recently observed the critical behavior of the shear-driven  RIT10, which allows a direct comparison of 
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the critical behaviors between the two types of RIT. We measure the transient voltage V(t) induced by cyclically 
sheared vortex motion in various B at fixed d and observe a monotonic increase in the amplitude |V(t)| and a 
relaxation toward a steady-state voltage V∞ , indicative of the random organization. The relaxation time τ(B) to 
reach the steady state exhibits a power-law divergence at a threshold field Bc , indicating the density-driven RIT. 
Two kinds of critical exponents extracted from |V(t)| are, within error bars, in agreement with the values obtained 
from the shear-driven RIT and with the theoretical ones expected for the absorbing transition, demonstrating 
that both types of RIT belong to the same universality class as 2D DP.

We have also found that as d is decreased in the reversible regime ( d < dc ) for the shear-driven  RIT10, τ(d) 
shows a sharp, significant reduction at a shear amplitude dc1 which is close to the average intervortex spacing a0 . 
This finding, together with the prediction from recent  simulations16–19, indicates a transition or crossover from a 
loop-reversible state with vortex-vortex collisions to a collisionless point-reversible state, as schematically shown 
by the dashed line in Fig. 1. In either regime, τ(d) exhibits a power-law divergence at the same critical point of 
RIT with the same exponent.

Results
We used a 330-nm thick strip-shaped film of a-MoxGe1−x with weak pinning, which was the same sample as used 
in our previous work for the shear-driven  RIT10. Detailed information about the sample is described in “Methods” 
section. The field B was applied perpendicular to the film surface at 4.1 K and the vortices generated by B were 
driven by applying a current. The vortex motion with the average velocity v induces the voltage V = vBl , which 
was measured by using voltage probes spaced l = 1.2 mm apart.

For shearing experiments in the strip-shaped superconductor, a random pinning potential due to quenched 
disorder plays an important role. When the vortices periodically driven by an ac current pass close to the pinned 
vortices or unoccupied pinning centers, they feel a repulsive or an attractive force, respectively. The magnitude 
of each force decreases with increasing the distance from pinning centers, thus giving rise to the random local 
shear around the pinning  centers6,10,28,29.

In our previous work for the shear-driven  RIT10, the experiment was conducted at 3.5 T, where the depinning 
current shows a small peak just prior to melting of the vortex lattice. In the so-called peak-effect  regime30–36, the 
effective pinning that the moving vortices feel is so strong that random organization due to local shear around 
the pinning centers is very pronounced. In this work for the density-driven RIT, B was changed from 2.0 to 4.2 
T in the peak-effect regime and the corresponding mean intervortex spacing a0 ≈

√
�0/B ranged from 35 to 24 

nm, where �0 is the flux quantum. The size of the vortex core is estimated to be ≈ 1× 10 nm.
For the experiment on RIT, a disordered initial vortex configuration is required to realize the random organi-

zation. Therefore, we drive the vortices for a long time with d = 3µ m, which is much larger than dc ≈ 45  nm10. 
This protocol leads to the randomization of the vortex configuration owing to the diffusivity in the irreversible 
state. Then, the vortices are subjected to the ac drive of constant d = 60 nm: for detail, see “Methods” section. 
Our experiments using such procedures correspond to the critical-quench experiments in other systems show-
ing the DP  criticality1,2,37,38.
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Figure 1.  Schematic phase diagram of RIT in the n and d plane. The solid line marks RIT. The reversible state 
is located in the low-n and small-d region, while the irreversible state lies in the high-n and large-d region. The 
upward and rightward arrows represent the shear-driven and density-driven RIT, respectively. The dashed line 
shows the boundary between the collisionless point-reversible state and the loop-reversible state with particle 
collisions. Inset: The dotted and closed circles, respectively, indicate the particle positions at the beginning 
and end of a driving cycle. Blue and orange circles denote the reversible and irreversible particles, respectively. 
Representative particle trajectories are schematically illustrated by arrows starting from particles.
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Shown in Fig. 2a,b are the representative voltage responses |V(t)|/V∞ of the system to the ac drive with 
d = 60 nm for different B = 2.0, 3.0, 3.2 T and B = 4.2, 3.8, 3.4 T from top to bottom, respectively, where |V(t)| 
is normalized by V∞(≡ |V(t → ∞)|) in the steady state and t corresponds to the number of cycles. For clar-
ity, vertical lines of the individual ac voltage pulses are removed from the graphs and only the amplitude of the 
pulse, |V(t)|, is shown. To clearly see the difference between several voltage curves, the large voltage region, 
|V(t)|/V∞ > 0.8, is enlarged and shown. It is commonly observed that |V(t)|/V∞ increases monotonically 
toward the steady-state value of unity. This behavior is explained in terms of the random organization: Initially, 
a vortex flow is a disordered flow, where the vortices cannot move easily due to frequent collisions and hence 
|V(t)| is small at t ∼ 0 . With an increase in the number of shear cycles, the collided vortices rearrange into more 
organized and mobile configurations. Thus, |V(t)| increases monotonically toward V∞ , where the system arrives 
at a less disordered state in which the vortices are easier to move than in the initial state.

The |V(t)|/V∞ curves in Fig. 2a indicate that the relaxation is longer for higher B, while those in Fig. 2b 
show the longer τ for lower B. This indicates that τ(B) takes a maximum value around B = 3.2–3.4 T. We extract 
τ using the following function presented  in5,39:

where V0 and V∞ are the initial and steady-state voltages, respectively, and τ is the characteristic time at which 
the relaxation crosses over from a power-law decay with an exponent a to an exponential decay, as seen in 
Fig. 2c,d. Hence, a is relevant very close to the transition where τ → ∞ . We first determine the exponent a from 
Fig. 2c,d, where we replot all the data shown in Fig. 2a,b as (V∞ − |V(t)|)/(V∞ − V0) versus t on a double 
logarithmic scale, respectively. The replotted data near RIT, namely for B = 3.2 and 3.4 T, exhibit a power-law 
decay over a wide range of t, as indicated by dashed lines with a slope of −0.45 . Thus, we obtain the exponent 
a = 0.45± 0.05 independently of another fitting parameter τ . It is known that a is the critical exponent of the 
DP  class1,2. The theory of DP predicts that the time dependence of the order parameter, i.e., the fraction of active 
(irreversible) particles, in the case of RIT, obeys the power law with the exponent a at the critical point. The value 
a = 0.45± 0.05 obtained here is in agreement with the theoretical value a ≈ 0.45 for the 2D DP universality 
 class1,2. We have also obtained a similar value a = 0.40± 0.05 for the shear-driven  RIT10.
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Figure 2.  Random organization of cyclically sheared vortices around RIT. (a,b) The time evolution of the 
voltage responses |V(t)|/V∞ for the disordered initial configuration subjected to the ac drive with the fixed 
shear amplitude of d = 60 nm for various fields: (a) B = 2.0, 3.0, and 3.2 T, and (b) B = 4.2, 3.8, and 3.4 T from 
top to bottom. For clarity, vertical lines of the individual ac voltage pulses are removed from the graphs and only 
the amplitude of the pulse is shown. Horizontal dashed lines mark the steady-state value |V(t)|/V∞ = 1 . (c,d) 
Replots of the data shown in (a,b) as (V∞ − |V(t)|)/(V∞ − V0) versus t on a double logarithmic scale: (c) B = 
3.2, 3.0, and 2.0 T, and (d) B = 3.4, 3.8, and 4.2 T from top to bottom. Dashed lines in (c,d) denote the slope of 
−a = −0.45 expected for the DP theory in  2D1,2. Solid lines in (a–d) indicate the fits to Eq. (1).



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19280  | https://doi.org/10.1038/s41598-021-98959-w

www.nature.com/scientificreports/

The solid lines in Fig. 2a–d show the results of the fits to Eq. (1) using a = 0.45 . In Fig. 3, τ extracted from 
the fits is plotted as a function of B. Closed and open circles represent the data for B ≤ 3.2 T and B ≥ 3.4 T, 
respectively. We find a critical divergence of τ at Bc = 3.26 T, as marked by a vertical dashed line, indicating the 
density-driven RIT. A corresponding intervortex spacing at Bc is a0c ≈ 27 nm. The inset of Fig. 3 shows the log-
log plot of τ versus |B− Bc| for all the data taken, including the data shown in the main panel, where symbols 
are the same as in the main panel. The red lines both in the main panel and the inset represent the power-law fits 
by τ ∝ |B− Bc|−ν , where the best fits are obtained with ν = 1.32± 0.10 . This value is again close to the value 
obtained for the shear-driven RIT, ν = 1.38± 0.0810, and the predicted one, ν = 1.295± 0.006 , for the 2D DP 
 class1,2. These results clearly show that the critical behavior of RIT is independent of the parameters, B and d, 
that drive the transition and that RIT falls into the same universality class as the absorbing phase  transition1,2,40,41 
in 2D DP models.

Discussion
To our knowledge, this work is the first experimental demonstration of the density-driven RIT with critical 
behaviors, while the shear-driven RIT has been reported in different many-particle systems. To compare the 
critical behaviors of τ observed in different systems, in Fig. 4, we display the log-log plots of τ versus the dimen-
sionless driving parameters near the shear-driven RIT reported in colloidal  suspensions5, soft  glasses42, and 
dislocations in small  crystals43, along with our data near the density-driven and shear-driven RIT. The quantities, 
|B− Bc|/Bc , |d − dc|/dc , |γ − γc|/γc , and |σ − σc|/σc , for the horizontal axis represent the normalized distance 
from the critical point, where γ indicates the strain amplitude for colloidal suspensions and soft glasses, and σ 
represents the stress for dislocations. Closed and open symbols denote the data in the reversible and irreversible 
states, respectively. Colored solid lines show the power-law fits of τ with ν indicated in the figure. Black solid and 
dashed lines represent slopes of ν = 1.295 and 1.110, respectively, which are predicted by the DP theory in 2D 
and 3D. As mentioned above, our data for the density-driven and shear-driven RIT fall on the red and blue solid 
lines, respectively, which give nearly the same slopes of ν = 1.32± 0.10 and ν = 1.38± 0.0810. They are, within 
error bars, in agreement with ν = 1.295± 0.006 predicted by the 2D DP  theory1,2, consistent with the fact that 
our vortex system is a 2D system. On the other hand, in the colloidal suspensions and dislocations, ν = 1.1± 0.35 
and ν = 1.143 have been reported, respectively, which are smaller than ν = 1.295 predicted for the 2D DP theory, 
but close to ν = 1.110 for the 3D DP  theory1,2. This result is reasonable, because the colloidal suspensions and 
dislocations are 3D experimental systems. Meanwhile, simulation of cyclically driven dislocations in the 2D 
system has found the exponent ν = 1.37511, consistent with 2D DP, where the dislocations always organize into 
a reversible state both above and below the transition. The soft glass seems to be an exception since ν is 1.1± 0.3
42 despite the 2D system. The authors of Ref.42 argue that RIT observed in the soft glasses may belong to another 
universality class known as the conserved DP  class2,44,45, which predicts ν = 1.225± 0.029 in 2D.
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Figure 3.  The critical divergence of the relaxation time τ(B) at the density-driven RIT. The closed and open 
symbols represent τ for B ≤ 3.2 T and B ≥ 3.4 T, respectively, showing a power-law divergence at Bc = 3.26 
T from both sides, as marked by a vertical dashed line, where Bc indicates the density-driven RIT. Inset: log τ 
versus log |B− Bc| , where the symbols correspond to those in the main panel. Error bars correspond to the 
fitting errors resulting from the uncertainty in determining a. The red lines both in the main panel and inset are 
the power-law fits by τ ∝ |B− Bc|−ν with ν = 1.32± 0.10 . The value of ν = 1.32± 0.10 is, within errors, in 
agreement with the theoretical value of ν = 1.295± 0.006 expected for the DP universality class in  2D1,2.
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It is also seen from Fig. 4 that for all the systems the relative width of the critical region spans the broad range 
up to at least 0.3, which is much larger than that of typical equilibrium critical  phenomena46,47. The independ-
ence of the critical exponents on the driving parameters, B and d, observed in this work is somewhat surprising 
considering that the critical region is so large, which is clearly beyond the linear approximation.

Let us next focus on the data of τ(d) on the reversible side of the shear-driven RIT in our vortex system, which 
are plotted with closed blue squares in Fig. 4. We have noticed in Ref.10 that, when d is decreased down to around 
25 nm(≡ dc1 ), which is close to the intervortex spacing a0 ≈ 26 nm at 3.5 T, in the reversible regime, τ(d) shows a 
downward deviation from the power-law relation τ ∝ (dc − d)−ν with dc = 45.2 nm. This is marked by a dotted 
line in the main panel of Fig. 4. Here, we perform a detailed analysis of the data in the reversible regime, includ-
ing additional data taken for d < dc1 , which are shown in the inset of Fig. 4 as a locally enlarged graph. First, 
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Figure 4.  The critical behavior of τ in different systems. The log-log plots of τ versus the dimensionless driving 
parameters near the shear-driven RIT reported in colloidal suspensions (green diamonds)5, soft glasses (yellow 
upright triangles)42, and dislocations in small crystals (magenta inverted triangles)43, along with our data near 
the density-driven (red circles) and shear-driven (blue squares) RIT. The quantities, |B− Bc|/Bc , |d − dc|/dc , 
|γ − γc|/γc , and |σ − σc|/σc , for the horizontal axis represent the normalized distance from the critical point, 
where γ indicates the strain amplitude for colloidal suspensions and soft glasses, and σ represents the stress for 
dislocations. Closed and open symbols denote the data in the reversible and irreversible states, respectively. 
Colored solid lines represent the power-law fits with critical exponents ν shown in the figure. We extract the 
following critical values: Bc = 3.26 T and dc = 45.2  nm10, γc = 1.715, γc = 0.2542, and σc = 390  MPa43. Black 
solid and dashed lines represent slopes of ν = 1.295 and 1.110, respectively, which are predicted by the DP 
theory in 2D and  3D1,2. The blue dotted line is a guide to the eye. The sharp, significant drop of τ (closed blue 
squares) at dc1(= 25 nm) indicates the transition or the crossover from the loop-reversible to point-reversible 
state in the reversible phase for the vortex system. Inset: log τ versus log (|d − dc|/dc) for the small d region in 
the reversible phase of the shear-driven RIT for the vortex system is enlarged and shown. The symbols and lines 
are the same as those in the main panel. The solid blue line represents the power-law fit by τ ∝ |d − dc|−ν with 
ν = 1.30± 0.18 in the point-reversible regime (d < dc1) . Error bars correspond to the fitting errors resulting 
from the uncertainty in determining a.
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note the trivial fact that the upper limit of |d − dc|/dc in the reversible phase is 1, which is given when d = 0 . 
We find that, after showing the sharp, significant downward deviation at dc1 , τ(d) for d < dc1 again follows the 
power-law function (the lowest blue line) that diverges at the common critical point dc with a critical exponent 
ν = 1.30± 0.18 , which are, within error bars, in agreement with ν = 1.38± 0.08 obtained for dc1 < d < dc and 
ν = 1.295± 0.006 expected for the 2D DP class. This result indicates that there are two types of the reversible 
states for d > dc1 and d < dc1 , and that their critical behaviors with the same critical point dc and exponent ν 
are identical to each other.

Recent molecular dynamics simulations predict two distinct reversible regimes referred to as point-reversible 
and loop-reversible  states16–18. In the point-reversible state, particles self-organize into the arrangement in which 
they do not collide with each other. On the other hand, particles in the loop-reversible state experience multiple 
collisions even in the steady state but show the reversible behavior where non-affine loop trajectories are formed. 
The loop-reversible state has been proposed to lie between the point-reversible and the irreversible states. The 
loop-reversible behavior was not discussed by the original random organization  model5, but later verified in a 
cyclically-sheared 2D soft-jammed  material48.

We consider that these two reversible states are realized in our vortex system. The threshold particle num-
bers Nc at the shear-driven and the density-driven RIT, as defined as Nc ≡ dc/a0 and Nc ≡ d/a0c , are 45 nm/26 
nm = 1.7 and 60 nm/27 nm = 2.2, respectively, which are around 2. This means that RIT in our vortex system 
occurs when the vortices move about twice the intervortex distance. In the reversible regime near the RIT 
( dc1 < d < dc ), therefore, the vortex-vortex collisions survive even in the steady state, indicative of the loop-
reversible state. On the other hand, for d below dc1(≈ a0) , the collisions between the vortices are less frequent, 
so that the random-organization process is less effective, resulting in the significant reduction of τ . Thus, this 
region ( d < dc1 ) in the steady state corresponds to the point-reversible state. The similar drop in τ at the low 
strain amplitude has been found by computer  simulation18. Figure S11 of Ref.18 indicates the transition or the 
crossover from the loop-reversible to point-reversible states, which occurs with a decrease in the strain amplitude.

As depicted with closed red circles in Fig. 4, in the density-driven experiment, we do not observe the down-
ward deviation of τ(B) at low B that shows the point-reversible state. This is simply because the field B we can 
use in this experiment is limited to the regime of the peak effect, B = 2− 4.2 T, where pinning is effective. 
Specifically, the shear amplitude d = 60 nm used here is always larger than a0 = 24−35 nm, corresponding to 
B = 4.2− 2 T. In order to study the point-reversible regime, we need low enough B (< 0.65 T) that satisfies the 
condition of a0(B) > d (= 60 nm). However, it is difficult to measure the clear relaxation signal of |V(t)| in the 
low-B regime where pinning is not effective. Alternatively, when we used d smaller than 60 nm, we could not 
study the irreversible regime due to the lower limit of a0 (≥ 24 nm), i.e., B ≤ 4.2 T, in this work.

We expect that both the point-reversible and loop-reversible states, and the transition or the crossover 
between them observed in the vortex system will be also observed in other many-particle systems. It has been 
observed in a dilute particle system of colloidal  suspensions4,5 that the collisionless point-reversible state covers a 
wide range of the reversible regime. In the dilute system the loop-reversible state may possibly exist in the vicinity 
of the critical point. On the other hand, it has been found in a relatively dense particle system of soft  glasses42 that 
the most part of the reversible regime corresponds to the loop-reversible state and the point-reversible state is 
expected to appear far away from RIT. The loop-reversible state in soft glasses contains many local plastic events, 
and their spatial correlations have been found to grow on approaching the yielding transition (or RIT)42,49,50.

To summarize, we study the critical behavior of RIT driven by the vortex density B, as well as the shear ampli-
tude d, in the 2D vortex system. The fraction of active (colliding) vortices estimated from V∞ − |V(t)| exhibits 
a power-law time dependence with an exponent of a at the critical points of both types of RIT, Bc and dc . The 
relaxation times, τ(B) and τ(d) , for the system to reach either the reversible or irreversible state show a power-law 
divergence at Bc and dc , respectively, with an exponent of ν . We find that a = 0.45± 0.05 and ν = 1.32± 0.10 
obtained for the density-driven RIT are, within error bars, in agreement with a = 0.40± 0.05 and ν = 1.38± 0.08 
obtained for the shear-driven  RIT10. The results show that independent of the driving parameters, B and d, both 
types of RIT fall into the same universality class as the absorbing transition in 2D DP, which predicts a ≈ 0.45 
and ν = 1.295± 0.0061,2. This is somewhat surprising considering that the critical region is so large, clearly going 
beyond the linear approximation.

As d is decreased in the reversible regime ( d < dc ) for the shear-driven RIT, τ(d) shows a sharp, significant 
drop at dc1 ≈ a0 , reflecting the suppression of vortex-vortex collisions and of random organization. This result 
indicates the transition or the crossover from the loop-reversible state with vortex-vortex collisions in the regime 
dc1 < d < dc to the collisionless point-reversible state in the regime d < dc1 , as proposed by recent numerical 
 simulations16–18. In either regime, τ(d) exhibits a power-law divergence at the same dc with nearly the same 
exponent: ν = 1.38 and 1.30 for the loop-reversible and point-reversible states, respectively.

We expect that this work will stimulate further research on other absorbing phase  transitions51–55 and phe-
nomena related to RIT in various many-particle systems, including dilute  colloids5,25,56,  emulsions26,27, soft 
 glasses42, jammed  materials57,58, amorphous  solids8,59, and  skyrmions20. It is also of interest to study whether the 
critical behavior of the nonequilibrium transitions is independent of the driving parameters, specifically, the same 
critical behavior is observed in different nonequilibrium transitions, such as the depinning  transition3,39,60–63 and 
the clogging  transition64, with the driving parameter being the particle density.

Methods
Sample and experimental setup. The strip-shaped film of a-MoxGe1−x ( x ≈ 0.77 ) with the thickness of 
330 nm was fabricated by radio-frequency sputtering deposition onto a Si substrate mounted on a water cooled 
copper stage that rotated at 240  rpm10. The superconducting transition temperature Tc at which the resistivity 
falls to zero was 6.3 K at B = 0 T. The vortices were induced by applying B perpendicular to the film surface. The 
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size of the vortex core and the range of repulsive vortex-vortex interaction characterized by the superconduct-
ing coherence length and London penetration depth are estimated to be ≈ 1× 10 and ≈ 102 nm,  respectively65. 
By applying the current, the vortices move in the direction parallel to the film width of 0.3 mm. The voltage V 
induced by vortex motion was measured by a standard four-probe method using voltage probes separated at l = 
1.2 mm. The film was directly immersed into the liquid 4 He and all the experiments were conducted at 4.1 K. The 
vortex density (1/a0)2(=

√
3B/2�0) was varied from (1/35)2 nm−2 to (1/24)2 nm−2 by changing B from 2.0 to 

4.2 T, where a0 = (2�0/
√
3B)1/2 is the average intervortex spacing.

Measurements. The initial vortex configuration was prepared by shearing the vortices for a long time, 
typically more than 4000 cycles, with shear amplitude of d = 3µm sufficiently larger than the critical shear 
amplitude dc ≈ 45 nm obtained in Ref.10. This protocol randomizes the configuration of vortices due to the dif-
fusivity in the irreversible state. The frequency f of the ac square current Iac for initialization was 4 kHz and the 
amplitude of Iac was adjusted to generate the desired value of the steady-state voltage V∞(≡ |V(t → ∞)|) that 
yields d = V∞/2flB = 3µm for each B studied here. The time-evolution of the voltage V(t) immediately after 
applying Iac to the initial configuration was measured using an oscilloscope (Rohde and Schwarz RTO2024) 
with resolution of 10 MHz. The amplitude of Iac for random organization was adjusted to generate V∞ satisfying 
d = 60 nm, while f was fixed at 200 kHz. According to the relation d = v/2f  , this condition of constant d with 
fixed f gives the same average velocity v of vortices for different B, which allows us to neglect the influence of the 
velocity on  RIT66.

Data availability
The data that support the findings of this study are available from the corresponding author upon a reasonable 
request.
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