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Convergent cross sorting 
for estimating dynamic coupling
Leo Breston 1*, Eric J. Leonardis 2, Laleh K. Quinn 2, Michael Tolston 3,  
Janet Wiles 4 & Andrea A. Chiba 1,2

Natural systems exhibit diverse behavior generated by complex interactions between their 
constituent parts. To characterize these interactions, we introduce Convergent Cross Sorting (CCS), 
a novel algorithm based on convergent cross mapping (CCM) for estimating dynamic coupling from 
time series data. CCS extends CCM by using the relative ranking of distances within state-space 
reconstructions to improve the prior methods’ performance at identifying the existence, relative 
strength, and directionality of coupling across a wide range of signal and noise characteristics. In 
particular, relative to CCM, CCS has a large performance advantage when analyzing very short time 
series data and data from continuous dynamical systems with synchronous behavior. This advantage 
allows CCS to better uncover the temporal and directional relationships within systems that undergo 
frequent and short-lived switches in dynamics, such as neural systems. In this paper, we validate 
CCS on simulated data and demonstrate its applicability to electrophysiological recordings from 
interacting brain regions.

Determining the causal relationships between the components of a system is a ubiquitous challenge across the 
sciences. To this end, many methods have been developed to estimate these interactions from their observed 
time series. Each method’s domain of applicability is determined by its definition of causality, and its assumptions 
about the underlying system. Convergent Cross Mapping (CCM) is an approach, based on state space reconstruc-
tion (SSR) (also referred to as phase space reconstruction), which is best suited for complex, nonlinear systems, 
such as those found in neuroscience, ecology, and the social  sciences1–9. These systems’ myriad feedback loops 
and deterministic components cause the information about their variables to become inseparably  mixed1. This 
presents a challenge to methods based on stochastic processes, such as Granger Causality (GC), because they 
define causation as the ability of one process to provide additional predictive information about  another10. These 
assumptions may not be as suitable for deterministic systems because every coupled variable carries information 
about the others, meaning that variables cannot be fully removed from the system for analysis, which violates 
the assumptions of  GC1.

In contrast, CCM tests for causal coupling by measuring the correspondence between the SSRs produced 
from time series of two different variables. If there is a smooth mapping between them, then both variables are 
likely part of the same dynamical system and thus deterministically coupled. CCM has been successfully applied 
to a diverse range of systems, including fisheries, online social networks, and  fMRI1,11,12.

Despite its success, CCM has several practical problems that have been noted in the literature: It requires a 
large number of samples to converge, it struggles in cases containing strongly coupled variables or synchrony, 
and its performance degrades with  noise5,7,8,13. Subsequent work has tried to address some of these problems. 
For instance, Ye et al. introduced lagged CCM estimates to improve performance on strongly coupled variables, 
while Ma et al. introduced Cross Map Smoothness to reduce the required time series  length2,8. Though these 
approaches were successful, they only address individual failure modes.

To improve CCM’s performance on issues related to coupling strength, noise, and sample size, we propose a 
new implementation known as Convergent Cross Sorting (CCS). CCS measures the correspondence between 
reconstructed manifolds by comparing the relative ranking of the pairwise distances between samples. This 
approach affords multiple advantages including selectively sampling the most informative distances and normal-
izing for geometric transformations that distort absolute distance but preserve relative order.

In this paper we validate CCS’s ability to identify the existence, directionality, and relative strength of coupling 
relationships for a wide range of simulated signal and noise characteristics. We also highlight the importance 
of using CCS on well-characterized systems with known structural connectivity informed by the functional 
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dynamics reported in prior literature. As an exemplar, we demonstrated the multiple uses of CCS as applied to 
neural recordings from known anatomical circuits to examine dynamic network states during complex behaviors.

Results
Theoretical validation. Simulated data. To validate CCS, we compared its performance to CCM on 
simulated data sets for which the true coupling parameters were known. To cover a wide range of potential 
signal properties, we considered three types of model systems: Van der Pol oscillators (VDP), Logistic Maps 
(LM) and Autoregressive Models (AR) (Fig. 1A, SI Simulated Data). VDPs are deterministic, continuous, and 
approximately periodic, LMs are deterministic, discrete, and chaotic, and ARs are linear and stochastic. ARs 
were included to test the SSR methods’ performance when applied to processes which violate their underlying 
assumption of nonlinearity and have a high degree of dynamic stochasticity.

Additionally, to test the methods’ robustness to noise, we corrupted the signals with both measurement noise, 
ε , and dynamical noise, ǫ . (Fig. 1B, SI Simulated Data) Measurement noise was simulated by adding gaussian 
noise to the final output time series, while dynamical noise was injected into the system’s ongoing dynamics. 
To normalize the units for measurement noise we used the Signal to Noise ratio ( SNR ) of the magnitude of the 
uncorrupted time series to the magnitude of the added noise.

Detection accuracy. Figure 2 compares the accuracy of CCS and CCM at identifying the causal relationships 
in networks of three variables (Fig. 1C) for varying time series length, L , coupling strength, K , SNR , and ǫ . Each 
method’s accuracy was quantified using the Area Under the Curve (AUC) of the Receiver Operating Charac-
teristic (ROC). This is a measure of how well an ideal classifier could separate the coupled versus non-coupled 
time series and corresponds to the probability that a method will score a randomly chosen coupled relationship 
higher than a non-coupled one.

CCS broadly outperformed CCM on the deterministic systems (VDPs and LMs). It had the largest advantage 
on VDPs, maintaining an approximately 0.1 higher AUC than CCM for trials with L > 100 and K > .04 . CCS 
also had better accuracy for ǫ < .78 , at which point the system became too noisy for either method to perform 
much above chance. While both methods, were degraded by measurement noise, CCS had slightly better accu-
racy for SNR > 30dB.

For LMs, CCS and CCM both had excellent accuracy under noise free conditions, however, CCS had much 
higher accuracy on short trials with L < 100 . At L = 50 , CCS had an AUC of .78 compared to CCM’s .64. CCS 
also had better accuracy in the case of high dynamical noise with an AUC of .75 at the highest ǫ value.

Relative bidirectional coupling strength. Beyond identifying the existence of causal coupling, it is also desir-
able to know the relative magnitude of the interactions between bidirectionally coupled variables, such as those 
shown in Fig. 1D. This case is widely applicable to many complex natural systems that have ubiquitous feedback 
loops. Figure 3A shows the CCS and CCM scores for the coupling from x → y as a function of the generating 
parameters, Kx→y and Ky→x . Ideal performance would look like a graded increase from left to right and no vari-
ation from top to bottom. This would represent a monotonic response to coupling strength without any depend-
ence on the drive in the opposite direction.

To quantify how well these scores reflect the true, relative coupling strength, we found the Spear-
man correlation between the difference in estimated strength and the difference in generating coefficients, 
ρ = corr

(

score
(

x → y
)

− score
(

y → x
)

,Kx→y − Ky→x

)

 . Since the differences are signed, ρ captures each 

Figure 1.  Simulated Data. (A) Time series from the three classes of model used for validation: (i) Van der 
Pol Oscillators, (ii) Logistic Maps, (iii) Autoregressive Models. (B) Trace of a VDP with measurement noise 
(top) and (Bottom) dynamic noise. (C) Types of causal networks used to generate trials for assessing detection 
accuracy. Three variable networks afford the ability to test a method’s performance in the presence of third 
party confounds such as the common driver of two uncoupled variables in (Top Left). All other three variable 
topologies had to be omitted because they contain transitive causal relationships which leads to ambiguous 
pairwise results. In each network the coupling strength, K , of both edges is the same. (D) Two variable networks 
used to test the response to coupling parameters. Kx→y and Ky→x can vary independently.
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method’s accuracy in estimating both the magnitude and direction of the difference in coupling parameters. 
Furthermore, since the Spearman correlation is a rank statistic, it is strictly testing for the monotonicity of the 
relationship.

Figure 3B shows the ρ of CCS and CCM as function of system type, L , SNR , and ǫ . CCS has much better accu-
racy for every condition other than very low noise LMs. CCM actually has a negative correlation for VDPs with 
L < 200 and SNR < 20dB and LMs with SNR < 20dB , which means that its score systematically misidentified 
the direction of the coupling. This incorrect bias can be seen clearly in the top right quadrant of Fig. 3A where 
higher Ky→x decreases score

(

x → y
)

 for constant Kx→y above moderate values.
The first column in the bottom left quadrant of Fig. 3A shows that CCM outperforms CCS on low noise LMs 

because CCS saturates at weak coupling strengths. The second two columns demonstrate how small amounts of 
noise significantly improve the CCS correlation by preventing this saturation.

Unidirectional coupling. Figure  3C shows how well the methods differentiated between bidirectional and 
strong unidirectional coupling. The graphs contain the CCS and CCM scores for x → y and y → x as a func-
tion of Ky→x while holding Kx→y = 0 . Both methods performed very well on LMs. They accurately identified 
the direction of coupling, and their scores for x → y remained close to zero even at high values of Ky→x . Each 
method had small tradeoffs: The CCM estimate for x → y had a slightly larger dependency on Ky→x , increasing 
from ≈ 0 to ≈ .2 , and the CCS estimate had a higher variance. The VDPs presented a more difficult challenge 
because they are much more susceptible to synchrony. Both methods’ scores for x → y had a strong dependency 
on Ky→x . However, only the CCS scores were statistically distinguishable. The mean of its score for y → x was 
significantly greater than that of x → y for trials with Ky→x > .1.

Applications. Neural recordings. To demonstrate the effectiveness of CCS at revealing directional relation-
ships in noisy real-world data, it was applied to estimate dynamic coupling in time series data collected from 
the olfactory bulb (OB), hippocampus (Ca), and amygdala (Amg) during social interaction and self-grooming 
behavior of laboratory rats. The social behavior of interest is the olfactory investigation of another conspecific 
(Fig. 4A). Self-grooming behavior promotes hygiene maintenance and involves tactile self-soothing, as well as 
olfactory self-investigation (See Behavioral Video Coding in SI). Oscillatory activity was measured by examining 
local field potentials (LFPs) (Fig. 4B) occurring at different anatomical points in a neural circuit proposed to be 

Figure 2.  The ROC AUC of CCS and CCM for detecting causal coupling in networks of three variables as a 
function of signal type, time series length, coupling strength, measurement noise, and dynamical noise. For 
each condition, the area under the curve (AUC) was calculated using 200 trials of three variable networks. (See 
Supplementary Area Under the Curve 3 Variable for more information on the accuracy quantification and 
Table S1 and Choice of Embedding Parameters for detailed methods) The shaded boundaries represent the 95% 
confidence intervals of the AUCs. For an additional comparison with Granger Causality see Supplementary Fig 
S1.
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important for social memory  processing14 (See Surgical Procedure and Neural Recordings in SI). This network 
has previously been shown to elicit increased coupling during social  behavior15. The application of CCS to this si-
multaneous multi-region LFP data allows for the examination of the coupling strength and direction of coupling 
between these reciprocally connected brain structures during complex behavioral changes. These relationships 
are determined by the system’s anatomical and functional connectivity.

Structural connectivity. The amygdala shares reciprocal connectivity with the main olfactory  bulb17. The amyg-
dala and hippocampus share strong bidirectional  connectivity18. Amygdalar activity can also play a key role in 
influencing hippocampal activity through amygdalo-entorhinal  networks19. The hippocampus and the olfactory 
bulb also share connectivity in both  directions20.

Functional connectivity. The olfactory bulb LFP contains rich information not only about smell but also the 
autonomic nervous system, by generating respiratory rhythms that follow inhalation and exhalation  cycles21,22. 
Hippocampal theta, one of the most well characterized oscillations in the brain, is associated with spatial map-
ping and  memory23. Respiration-coupled activity has also been found in  hippocampus24–26. The OB and hip-
pocampal LFP exhibit coupling during odor  discrimination20. The amygdala LFP has been associated with the 
formation of emotional memories, and exhibits coupling with  hippocampus27.

Average network state. Figure 5B shows the average CCS scores for each behavior. The coupling was strongest 
between CA and Amg for every condition, which is consistent with the regions’ degree of anatomical connectiv-
ity. Grooming exhibited the highest overall coupling, containing the maximum score for every edge in the net-
work. Sniffing saw the largest asymmetry in the reciprocal coupling between regions. During sniffing the drive 

Figure 3.  A comparison of CCS and CCM’s ability to determine the relative strength and directionality of 
coupling. (A) CCS and CCM scores for the drive from x → y as a function of the Kx→y and Ky→x , signal type, 
L , SNR, and ǫ . L = 400 , SNR = ∞ , and ǫ = 0 , unless otherwise specified. (B) The Spearman correlation between 
the true difference in coupling strength, (Kx→y − Ky→x) and the estimated one, score

(

x → y
)

− score
(

y → x
)

 . 
(C) CCS and CCM score

(

x → y
)

 and score(y → x) as a function of Ky→x where Kx→y = 0 (i.e., unidirectional 
coupling). The asterisks show the points at which the means of the two distributions of scores were significantly 
different. The shaded regions in (B) and (C) represent 95% confidence intervals.
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from CA to OB and Amg to OB was 27% and 40% higher, respectively, than the coupling in the reverse direction. 
In the other two behaviors, the reciprocal coupling differs by no more than 16%.

In general, the results (in Fig. 5B) follow previously established patterns of connectivity. For example, as 
expected, CCS demonstrated that the hippocampus and amygdala share more connectivity in general than 
with the distant olfactory  bulb17,18. These results suggest that the amygdala and olfactory bulb share increased 
coupling during social investigation relative to baseline, and that the amygdala and hippocampus both show 
a larger influence over the MOB than in the feedforward direction. During the grooming behavior, all regions 
showed increased coupling relative to baseline, with more balanced bidirectional coupling between regions than 
the social sniffing behavior.

Temporal dynamics of network states. For higher temporal resolution, we computed 6-dimensional CCS scores 
using a moving window on each 1 s epoch. (Fig. 5A, C). Figure 5D shows a scatterplot of the first two principal 
components of these scores, colored according to behavioral type. The plot doesn’t show obvious clustering 
according to behavior, meaning that at that time scale the different behaviors are composed of varying distribu-
tions of similar network states.

To understand the temporal dynamics of the network, we analyzed each epoch’s trajectory through the 
6-dimensional coupling space. To make comparisons more tractable, we quantized the space using five k-means 
clusters which assigned every CCS score to one of five network states (Fig. 5E)28.

Figure 5F shows the most common sequences of network states during the epochs from each type of behav-
ior. Since the epochs were extracted from larger events, and from video with a lower sampling rate than the 
neural data, the phase of the sequences is not informative and cyclic permutations should be considered the 
same. The three behaviors differed in both the specific highly represented patterns, and the general distribution 
of sequences. Baseline tended to oscillate from high to moderate coupling, grooming remained in a consistent 
highly coupled state, and sniffing oscillated between low and high coupling. Baseline also had the flattest distri-
bution of sequences. The top ten most frequent sequences in that condition comprised between 4.1 and 2.6% of 
the epochs, while the most frequent sequence in grooming and sniffing comprised between 6.6 and to 2.2% and 
8.6% to 2.9%, respectively. This result makes sense since baseline is the least restrictive of the behavioral condi-
tions which means it should have the most diverse temporal patterns. Taken together, the results in Fig. 5D and 
F show that the dynamics of the network during the three behaviors are composed of similar bases of states but 
differ in their distribution of sequences.

Figure 4.  Neural experimental setup. (A) Two rats were placed in separate Plexiglas enclosures, while an 
implanted rat on the outside was free to roam the field and sniff through the holes in those enclosures. The 
implanted rats were presented with both a novel and a familiar rat. The implanted rat freely roams the field and 
investigates either the novel or familiar rat. Rats were removed from the field 2 min and 30 s after the onset of a 
trial. Trials were counterbalanced to control for place preferences, so novel and familiar rats were presented on 
alternating sides of the field with each trial (See SI for more info on Social Interaction Task and Animals and 
Housing). (B) Rats were surgically implanted with electrodes for electrophysiological recordings in the main 
olfactory bulb (OB), hippocampus (CA) and medial amygdala (Amg) (See SI for more details on Surgery and 
Neural Recordings). Figure adapted from scidraw.io under Creative Commons 4.0  license16.
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Methods
Convergent cross sorting. All SSR methods leverage Takens’ theorem to reconstruct the higher dimen-
sional attractor of the dynamical system which generated an observed time series. This attractor is the manifold 
of points, M , visited by the system as it evolves through state space (Fig. 6A). State space is a Euclidean space 
with axes corresponding to the state variables, 

{

x, y, z . . .
}

 , of the system. Takens’ theorem shows that one can 
produce a topology preserving embedding of M using delayed values of just one of its variables as surrogate 
coordinates. This means that there is a homeomorphism, or a smooth, invertible mapping, between the system’s 
trajectory in the coordinates 

{

x, y, z . . .
}

 and {x(t), x(t + τ), x(t + 2τ), . . . } (Fig. 6B, C)29. Furthermore, since 
homeomorphisms are transitive, the reconstructions created from each variable will all be homeomorphic to one 
another. SSR methods rely on this transitivity by testing if there is a smooth mapping, ∼ , between the manifolds, 
Mx and My , reconstructed from two different variables, x and y . If Mx ∼ My , then x and y are likely components 
of the same dynamical system. In the case of unidirectional coupling, the driving variable is a component of the 
driven dynamical system but not vice versa. Therefore, there will only be a mapping from the driven variable to 
the undriven  one1,30.

The primary challenge in determining if there is a smooth mapping between reconstructed manifolds is that 
their topologies are unknown. SSRs represent geometric point clouds whose topologies must be inferred from 
the distances between their points. It follows that a test for a smooth mapping must measure the correspondence 
between the relative location of time points in each reconstruction. That is, if time points are relatively close (as 
compared to all other points) in one reconstruction then, if there is a smooth map, they should also be close in 
the other. Complicating this process is that many real-world variables that could benefit from SSRs tend to be 

Figure 5.  Application of CCS to multi-region neural recordings in rats. (A) Example LFP trace from a 1 s 
epoch. The blue, red, and green lines represent the signals from the Main Olfactory Bulb (OB), Hippocampus 
(Ca) and Amygdala (Amg), respectively. The time points, T1, T2, and T3 are the centers of 400 ms windows 
shown by the shaded regions of the plot. (B) Average 1 s CCS scores between the three regions during 
baseline, grooming, and sniffing behavioral epochs (See Supplementary Table S1 and Choice of Embedding 
Parameters for method details). The error values represent the SEM of each score. All of the scores have a 
significance < 10−5 . (C) Illustration of how the CCS scores can be represented by a 6-dimensional vector. (D) 
The distribution of 400 ms CCS scores colored by type of behavior and plotted using the first two principal 
components. (E) The distribution of 400 ms CCS scores colored according to k-means cluster using five means. 
The inserted graphs show the network diagram corresponding to the centroid of the cluster indicated in the 
bottom left corner. The values in these diagrams have been corrected for the normalization and whitening 
transformations used for the PCA. Edges with negative values have been omitted. (F) Tables with rows showing 
the most frequent temporal sequences of CCS states during epochs from each of the behavioral conditions. 
The first three columns are the moving CCS estimates labeled and colored according to their cluster from (E). 
The 4th column is the percentage of epochs with that sequence. The error value is the standard error of the 
percentage. The 5th column is the negative log of the probability that the nth most frequent pattern would have 
a frequency as extreme as the one observed.
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noisy and sparsely sampled, which makes any resultant reconstruction only weakly representative of the true 
topology of the attractor.

CCM tests for this correspondence using the nearest neighbors (NN) of contemporary time points in each 
manifold (Fig. 7A)1,8. The NN implementation suffers from several practical problems. First, it requires a large 
number of points for the manifold to be densely sampled enough for the neighbors to be meaningful. Second, 
it fails to accurately estimate the interactions between strongly coupled or synchronous variables because their 
neighborhoods diverge at longer distances than those being  considered8,13. This problem extends more gener-
ally to all oscillatory signals whose nearest neighbors tend to be points close in time. Finally, its estimates are 
degraded by noise, and are unreliable for stochastic  systems13.

CCS overcomes these challenges by taking a more global perspective. Instead of just using local neighbor-
hoods, it tests for a correspondence between the ranks of the pairwise distances between all the time points in 
each reconstruction (Fig. 7B–F, SI Convergent Cross Sorting). The primary advantage of this approach is that it 
creates a mechanism for only sampling the connections that are most informative of the topology of the space. 
By limiting the scope of the comparison to some lowest fraction of distances, CCS selectively considers the most 
densely covered portions of the manifold. This not only confers the direct benefit of eliminating the errors caused 
by outlying points but allows CCS to include far more pairwise distances than a KNN method because it doesn’t 
risk including more erroneous points. This means CCS can integrate more information from sparsely sampled 
manifolds which improves its performance on short and noisy data. It also enables CCS to test for the long-range 
divergences that are necessary for differentiating between strongly driven systems and bidirectional causation. 
Additionally, using ranks, instead of raw distances, normalizes for geometric transformations that distort absolute 
distance but preserve relative order. This has been shown to be a more reliable indicator of manifold  structure5.

Software. All analysis was performed using MATLAB R2020b available at https:// www. mathw orks. com/ 
produ cts/ new_ produ cts/ relea se202 0b. html31. The MATLAB implementation of the CCS algorithm can be found 
at https:// github. com/ lbres ton/ CCS. Additionally, we used a vectorized version of the CCM algorithm available 
at www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 52964- conve rgent- cross- mappi ng32.

Ethics approval. All animal experiments were approved by the UCSD IRB. The experiments and mainte-
nance procedures were performed in accordance with NIH and IACUC regulations. Surgeries were performed 
in accordance with UCSD IACUC animal welfare standards. Additionally, the study was carried out in compli-
ance with the ARRIVE guidelines.

Discussion
Non-linear dynamical systems analyses provide a vehicle for measuring coordinated activity across a variety of 
networks, whether they be social, behavioral, neural, or ecological. Rooting the analyses of these systems in SSR 
methods expands the possibilities for uncovering dynamic relationships, revealing structure that goes beyond 
coupling strength to address directionality. This paper compares the performance of the new CCS algorithm 
with CCM on simulated data from multiple model systems (VDP, LM and AR) where coupling parameters are 
known. In addition to the simulation results, we provide an exemplar application of CCS to systems neuroscience 
using an animal model informed by brain connectomics.

On the simulated data, CCS had higher accuracy than CCM for almost all test conditions. CCS saw its largest 
advantages on VDPs and short time series Logistic Maps. These results mean that CCS is particularly relevant 
to systems in which network states change very quickly, requiring high temporal resolution, and those that have 

Figure 6.  Illustration of Takens’ theorem. (A) A Lorenz attractor with time points colored according to 
proximity. (B) Time series of the x coordinate. (C) Delay reconstruction from lagged x coordinates. The 
timepoints have the same colors as those in (A). Notice how the delay reconstruction preserves the relative 
locations of the time points despite being transformed and warped. This demonstrates the homeomorphism 
between the two manifolds.

https://www.mathworks.com/products/new_products/release2020b.html
https://www.mathworks.com/products/new_products/release2020b.html
https://github.com/lbreston/CCS
http://www.mathworks.com/matlabcentral/fileexchange/52964-convergent-cross-mapping
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smooth oscillatory components. CCS also retained much better accuracy on the stochastic ARs for which CCM 
fell below chance. Additionally, CCS was better at capturing the relative strength of bidirectional coupling for 
all but the lowest noise LMs. This may allow it to better capture the state of many real-world complex systems in 
which all the variables are coupled to some degree.

As an exemplar application to complex data, CCS was used to estimate bidirectional coupling between neural 
populations in the olfactory bulb, hippocampus and amygdala during social and self-grooming behavior. This 

Figure 7.  (A) An illustration of the CCM method. xt is point in MX . The blue triangular markers represent 
its D + 1 nearest neighbors where D is the embedding dimension. The arrows show the mapping of each 
neighbor in MX to its location in MY . yt∗|xt is the estimate of the point yt from exponentially weighted 
average cross mapped neighbors from xt . CCM

(

y → x
)

= corr
(

yt
∗, yt

)

 (B–F) An illustration of the CCS 
method. (B) Pairwise distances between the same four timepoints in MX and MY colored according to which 
time points they span. (C) The magnitude of the distances in both manifolds. (D) The rank of each distance 
in MX , RX , plotted against its rank in MY,RY . The black dashed line represents perfect correspondence. The 
blue and red lines show the error between ranks, ERR = RX-RY , as a function of RY and RX , respectively. 
ERR

(

x → y
)

= ERR(RY ) and ERR
(

y → x
)

= ERR(RX) because they measure how well ranks in the 
manifold of the driven variable predict ranks in the manifold of the driver. (E) ERR2 as a function of rank for 
a bidirectionally coupled logistic map. The ranks have been normalized between 0 and 1. The dashed green 
line represents the null expected ERR2 for uncorrelated ranks. (F) The cumulative average of the normalized 
error, 

[

NERR2
]

, as a function of rank, for the system shown in (E). NERR2 = (null − ERR2)/null . 
[

NERR2
]

 is 
thresholded at a maximum rank and fit to an exponential curve. The CCS scores are given by the y-intercepts 
of the fitted curves. Extrapolating from the best fit curve improves the estimate of the local correspondence by 
leveraging information from larger scales to overcome the high variance in NERR2 observed at very low ranks.
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application reinforced previous findings from the neurophysiology literature and provided further insight into 
the temporal dynamics of coupling strength and direction between brain regions during social interaction.

These regions switch rapidly from weak to strong oscillatory coupling. Whereas these oscillations typically 
maintain nested timescales, CCS was able to determine the strength and directionality of these interactions 
during social and self-grooming behavior. Grooming leads to a greater influence of autonomic input compared 
to social investigation, leading to stronger and more balanced coupling. These findings suggest that grooming is 
not only tactile and motor behavior, but also engages olfactory and autonomic processing.

The observed coupling dynamics changed across time and differed according to behavioral circumstances, 
where social behavior increased coupling lead by structures involved in affective appraisal and social memory. 
The pheromonal and olfactory stimuli encountered during social sniffing behaviors is highly salient compared to 
the other conditions tested, so this likely engages interaction with amygdala. The hippocampus also had increased 
influence on the olfactory bulb during social behavior as well, and this is likely associated with processes that 
underlie social memory formation. The results showed that there was increased influence in a primary sensory 
region from the amygdala, this may be due to the amygdala having a key role in saliency  detection33. These find-
ings further support the idea that amygdala, hippocampus and olfactory bulb are part of a memory network that 
elicits increased coupling in response to social  stimuli14,15.

The experimental results demonstrate that CCS is a promising tool for uncovering dynamical relationships 
within systems that exhibit weak-to-strong coupling, rapidly changing network states, and/or oscillatory com-
ponents. These systems include many types of physio-behavioral coupling both within and between individuals, 
and in larger groups or  teams34–36.

CCS’s improved performance on dynamical and measurement noise, as well as coupled stochastic autoregres-
sion, suggest that it is useful for examining systems that are largely deterministic but contain some stochastic 
elements, such as commodity futures yoked to climate fluctuations.

CCS’s robust performance on a wide range of signals makes it a powerful tool for data analysis. It advances 
the state of the art by extending existing SSR methods to short, noisy, and oscillatory signals, greatly increasing 
the types of problems to which it applies. Furthermore, it is able to better distinguish relative coupling in bidi-
rectionally coupled systems which improves its ability to reveal the coupling dynamics of real-world complex 
systems. We are releasing the method publicly such that other researchers can use CCS to investigate coupling 
within a diversity of nonlinear dynamical systems.
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