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Convolutional neural network 
for human cancer types prediction 
by integrating protein interaction 
networks and omics data
Yi‑Hsuan Chuang1,4, Sing‑Han Huang1,4, Tzu‑Mao Hung1, Xiang‑Yu Lin1, Jung‑Yu Lee1, 
Wen‑Sen Lai2,3 & Jinn‑Moon Yang1*

Many studies have proven the power of gene expression profile in cancer identification, however, 
the explosive growth of genomics data increasing needs of tools for cancer diagnosis and prognosis 
in high accuracy and short times. Here, we collected 6136 human samples from 11 cancer types, and 
integrated their gene expression profiles and protein–protein interaction (PPI) network to generate 
2D images with spectral clustering method. To predict normal samples and 11 cancer tumor types, 
the images of these 6136 human cancer network were separated into training and validation dataset 
to develop convolutional neural network (CNN). Our model showed 97.4% and 95.4% accuracies in 
identification of normal versus tumors and 11 cancer types, respectively. We also provided the results 
that tumors located in neighboring tissues or in the same cell types, would induce machine make error 
classification due to the similar gene expression profiles. Furthermore, we observed some patients 
may exhibit better prognosis if their tumors often misjudged into normal samples. As far as we know, 
we are the first to generate thousands of cancer networks to predict and classify multiple cancer types 
with CNN architecture. We believe that our model not only can be applied to cancer diagnosis and 
prognosis, but also promote the discovery of multiple cancer biomarkers.

Cancer is the second leading cause of death with more than 9.5 million patients yearly  worldwide1. The high 
mortality rate is due to late-stage diagnosis and tumor heterogeneity, which hampers the optimal decision of 
patient care and  treatment2,3. Some studies have indicated that cancer diagnosis, therapy strategies and prog-
nosis evaluation relied on medical images, such as histopathology image, computed tomography (CT), tumor 
nodal metastasis and tumor extranodal extension. These images were identified and classified subjectively by 
inter-observer, whereas the agreements are moderate and disturbing (kappa coefficient = 0.4–0.7)4–6. To provide 
suitable treatment and increase survival for patients, recent researches started to apply deep learning techniques 
on biomedical applications. For example, the convolutional neural network (CNN) techniques were used to 
identify the metastasis indicators, cancer cell types and molecular subtypes by using medical images and omics 
data, providing critical information for next therapeutic  management4,7–11.

As the increasing biological data were released and available, many studies have exhibited the powers of omics 
data in discovering biomarkers and classifications for cancers. Some studies indicated that different cancer types 
would regulate distinct genes and pathways, which might affect treatment efficacy and clinical  outcome12,13. 
Several machine learning (ML) and deep learning (DL) approaches were utilized to determine cancer types by 
using microRNA expression data of 4046 samples from 12 cancer types. They showed the promising results that 
ML methods were able to identify the diversity of pan-cancer by microRNA  profiles14. Junyi et al. developed a 
self-normalizing neural network (SNN) and utilized Monte Carlo Feature Selection (MCFS) to distinguish four 
cancers by using DNA copy number variant (CNV) of 2084 patients, and obtained the higher accuracy than 
the ones of random forest  classifier15. Milad et al. implemented three CNN models and collected RNA-Seq gene 
expression profiles from > 10,000 samples of 33 cancer types for training the  models10. Their results showed the 
accuracies (94–95%) for classification of 33 cancer types and normal samples. They also discovered the tissue 
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origin would affect the cancer type prediction, and provided the solutions to reduce the influences by combin-
ing tumor and normal samples. Furthermore, the computational models utilizing protein–protein interactions 
(PPIs) would predict specific biological functions in different cancer  types16. Recently, Teppei et al. combined 
two kinds of biological data, the gene expression profile and human PPI network, to generate 2D representation 
as the input of the spectral-CNN  model17. They obtained the prediction accuracy (81%) for classification of lung 
tumors and normal samples.

In this study, we aimed to develop a CNN model to identify and classify normal tissues and tumor samples 
of multiple cancer types. Primarily, we integrated PPI network and gene expression profile of 11 cancer types, 
to generate 6136 network images in 2D representation by using spectral clustering (i.e., Laplacian matrix). 
Where 1228 network images were used for training and testing in CNN model; and the other 4908 images, gene 
expression clustering and survival data were used for validation. Our results indicate that our CNN model has 
high accuracies (97.4% and 95.4%) for identification and classification of normal tissues and 11 cancer tumors.

Materials and methods
The overview of our method for predicting and classifying normal tissues and tumors of 11 cancer types is pre-
sented in Fig. 1. First, we collected PPIs and clinical gene expression data, and generate 6136 network images 
in 2D space by using spectral clustering. Then, a CNN model was constructed and used to discriminate normal 
tissues, tumors and cancer types from the network images. The accuracy (ACC) was calculated to determine 
the powers for prediction and classification for 11 cancer types. Finally, the confusion matrix and survival data 
were performed to explain model abilities. (The source codes and data sets were uploaded on the Github, https:// 
github. com/ bioxg em/ CNN_ model. git).

Datasets. To study cancer classification, we collected level 3 RNA-Seq data and clinical data of 11 cancer 
types from The Cancer Genome Atlas (TCGA)18,19. The number samples are more than 30 tumor and 30 normal 
samples for each cancer type (Table 1). In total, the gene expression profiles of 20,531 genes from 5528 tumors 
and 608 normal tissues were collected for identification of cancer network signatures.

The human PPIs were collected from five public databases (i.e.,  BioGRID20,  DIP21,  IntAct22,  MINT23 and 
 MIPS24), including 16,433 human proteins and 181,868 PPIs. To combine RNA-Seq and PPIs data, we assigned 
proteins with gene expression using gene name and gene ID, and finally acquired 14,230 proteins and 152,519 
PPIs for further analysis.

Identification of differentially expressed genes and corresponding PPI network. We first iden-
tified differentially expressed genes (DEGs) between tumors and corresponding normal tissues for 11 cancer 
types by computing gene expression fold change and modified t-statistic (limma package v.3.38.3). Finally, 
12,024 genes were considered as DEGs with |fold change| ≥ 2 and adjust p value < 0.01 in at least one cancer 
type. By these DEGs, we selected a maximum-subnetwork with 6261 DEGs with 28,439 PPIs and combined the 

Figure 1.  Schematic of integrating protein interaction networks and genomic profiling into convolutional 
neural network for multi-cancer classification. RNA-Seq data and clinical data of 6136 samples with 11 cancer 
types are collected from The Cancer Genome Atlas (TCGA) database, and 181,868 protein–protein interactions 
(PPIs) of 16,433 human proteins from five public databases. Then, Laplacian approach was utilized to map PPI 
network into 2D space and combined with the gene expression, to generate 608 normal and 5528 tumor sample 
images for convolutional neural network (CNN) model and validation dataset.

https://github.com/bioxgem/CNN_model.git
https://github.com/bioxgem/CNN_model.git


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20691  | https://doi.org/10.1038/s41598-021-98814-y

www.nature.com/scientificreports/

gene expression profiles of 5528 tumors and 608 normal tissues. These cancer networks will be processed with 
dimensionality reduction utilizing spectral clustering, for cancer prediction and classification in CNN model.

Spectral clustering and 2D representation for cancer‑related network. CNN techniques have 
widely used to recognize medical images. However, cancer networks with interactions, nodes (proteins) and 
gene expression perturbation (heatmap) are more complex than images. Therefore, we used a spectral cluster-
ing approach, Laplacian (L) matrix to reduce dimensionality of complex cancer networks and applied on CNN 
techniques. The cancer network can be transformed into the adjacency (A) and diagonal (D) matrices to gain 
Laplacian (L) matrix as  follows17,25,26:

For example, in symmetric Laplacian (L) matrix (Fig. 2A), the matrix cells were assigned value “− 1” when 
the two proteins had interaction, otherwise the cells were assigned value “0”; whereas the cells in diagonal were 
assigned value of node degree (the number of edges connected to the node in the network). Next, we obtained 
the eigenvalue and eigenvector of Laplacian matrix using linear transformation. To retain the network topology 
and connectivity, we utilized the smallest and second smallest non-negative and non-zero eigenvalues with their 
corresponding eigenvectors to map the cancer network (6261 DEGs and 28,439 interactions) into 2D spaces with 
100 × 100 cells (Fig. 2B)27,28. After the dimensionality reduction for PPI network, the 1849 unique nodes were 
displayed in 2D representation and assigned with gene expression value of clinical samples (if numerous genes 
overlapped into a single node, then their gene expression was averaged and assigned to the node). In total, we 
generated 6136 images of cancer networks for CNN model to predict tumors, normal tissues and cancer types.

Convolutional neural network. Our CNN architecture is displayed in Fig. 3. We first selected 1228 2D 
images including 307 normal tissues and 921 tumors from 11 cancer types (Fig. 3A). These 1228 images with 
100 × 100 cells were separated into 75% training and 25% testing datasets, and processed with three successive 
convolutional layers (64 kernel matrices with sizes of 5 × 5, 3 × 3 and 3 × 3) and pooling layers (max-pooling and 
size of 2 × 2). In total, 64 feature maps of size 11 × 11 were extracted (Fig. 3B), and would be flattened in fully-
connected layers (size of 11 × 11 × 64) and calculated in the next hidden layers (Fig. 3C). Our CNN architecture 
included three hidden layers with 1000, 800, and 60 neurons with rectified linear unit (ReLU) activation func-
tion (Fig. 3D). Finally, the 12 predicting results (i.e., normal tissues and 11 cancer types) were displayed in output 
layers (Fig. 3E).

We utilized accuracy as an indicator for training and validating the CNN models, the accuracy is defined as:

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

Results
Cancer‑related networks. To generate cancer-related network, we first collected gene expression data of 
608 normal tissues and 5528 tumors of 11 cancer types from TCGA database (Table 1). Next, we acquired a 
universal PPI network with 6261 genes with 28,439 interactions, and mapped this network into 2D space by 
utilizing the spectral clustering approach. After combining the gene expression profiles, the 6136 individual 
images of cancer-related networks of 11 cancer types were generated and used as training, testing and validation 
datasets in CNN models.

Prediction and classification of normal tissues and tumors of 11 cancer types. In total 6136 
images of cancer-related networks, we first randomly selected 307 normal tissue images and 921 tumor images 

(1)L = D − A

(2)Accuracy =
TP + TN

TP + TN + FP + FN

Table 1.  Expression datasets of RNA-seq and clinical data in 11 cancers.

Cancer abbreviation Cancer type No. of total normal sample No. of total tumor sample

BRCA Breast invasive carcinoma 113 1095

COAD Colon adenocarcinoma 41 285

HNSC Head and neck squamous cell carcinoma 44 520

KIRC Kidney renal clear cell carcinoma 72 533

KIRP Kidney renal papillary cell carcinoma 32 290

LIHC Liver hepatocellular carcinoma 50 371

LUAD Lung adenocarcinoma 59 515

LUSC Lung squamous cell carcinoma 51 502

PRAD Prostate adenocarcinoma 52 497

STAD Stomach adenocarcinoma 35 415

THCA Thyroid carcinoma 59 505
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(25% and 75%, respectively). For example, 57 of 608 normal tissues were provided from breast invasive carci-
noma (BRCA), thus we picked the amount of 171 BRCA tumors in random by using Python function “random.
shuffle”; and so on, we obtained the corresponding sample size of tumors for each cancer type. Of the 1228 
images, 921 (75%) tumor images and 307 (25%) normal images were used as training sets, whereas the remain 
4908 sample images were used as validation in CNN model. After training 100 epochs with a stable prediction 
result (Fig. 4A), the training and validation (independent 4908 samples) accuracies were 97.4% and 95.4% for 
identification of normal tissues versus tumors, and the ones were 95.4% and 95.1% for classification of normal 
tissues versus 11 cancer tumors.

The confusion matrix of 4908 validation images was provided in Fig. 4B, which showed 4684 correct clas-
sifications (in diagonal cells) and 224 erroneous identifications (non-diagonal cells). For example, 914 BRCA 
tumors were correctly identified, and 6 and 4 tumors were classified incorrectly into normal tissues and other 
cancer tumors, respectively. We also discovered some interesting results that the different cancer tumors between 
neighboring tissues or tumors with the same cell types, were more likely to make incorrect classifications for each 
other. For instance, in all 224 erroneous identifications (non-diagonal cells), the misjudgments were 56% for 
LUAD tumors classified into LUSC. For LUSC, the misjudgments were classified into LUAD (50%) and HNSC 
(39.1%). The similar results were observed for kidney renal clear cell carcinoma (KIRC) and kidney renal papil-
lary cell carcinoma (KIRP).

We use Python SciPy  package29 (i.e., scipy.cluster.hierarchy) to cluster the gene expression profiling of normal 
tissues and 11 cancer tumors (Fig. 4C), and proposed several observations for the incorrect classifications for our 
CNN model. The tumors of neighboring tissues (i.e., KIRC vs. KIRP and LUSC vs. LUAD of purple boxes (1) and 
(2)) and the same cell types (i.e., adenocarcinoma, purples boxes (3); and (4)) would be clustered together and 
display similar gene expression profiles. These tumors with tissue-specific and cell-type-specific often generated 
similar network images to confuse the CNN model. We also generated the clustering of gene expression using 
4908 validation samples and obtained the similar results (Supplementary Figure S1). These observations were 
critical and supported some studies’ conclusions for difficulties of clinical diagnosis, prognosis and treatment 
between LUSC to LUAD and  HNSC30–33. In summary, our CNN model displayed the 89–99% precision for clas-
sification of 11 cancer tumors, which exhibited the potentials in medical applications.

The random validation sets for verification of model performance. To verify our findings and 
CNN model, we randomly generated 50 training sets and validation sets from 6136 samples. Every training 
sets contained 307 normal samples and 921 tumor samples (sample size 25% and 75%, respectively), and the 

Figure 2.  The Laplacian matrix of cancer network and 2D space representation. (A) The network with 17 
nodes with the interaction information and its Laplacian matrix (adjacency and diagonal matrix). The value of 
a diagonal cell is the degree of this node, whereas “− 1” indicates the interaction is existing between two nodes, 
such as cells between node 7 to node 8 and 15 were assigned value “− 1” in first row; otherwise, the cells are 
assigned value “0” if no interaction between two nodes. (B) The smallest and second smallest non-negative and 
non-zero eigenvalues with their corresponding eigenvectors were used as x–y axis to map PPI network to 2D 
space.
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remaining 301 normal samples and 4607 tumor samples were considered as validation sets. there were 944 
tumor samples misjudged into error cancer types, and calculated the frequency of error identification in 50 
repeated experiments. For example, there was a lung adenocarcinomas (LUAD) patient, TCGA-44-5643, who 
was selected as validation sample 40 times, but always misjudged into lung squamous cell carcinomas (LUSC), 
then its frequency of error identification was 100% (40/40). The accuracy values of 50 distinct repeated experi-
ments were displayed in Figure S2. The prediction accuracy of median, minimum, maximum and variance for 
50 times repeated experiments are 95.55%, 94.8%, 96.2% and 1.05E−05, respectively. We believe our CNN model 
is stable and able to identify normal and 11 cancer tumor samples. The detailed accuracy value and confusion 
matrix of 50 repeated experiments were reported in the Supplementary File 1.

Frequency of error identification is associated with the similarity of gene expression between 
cancer types. Based on the prediction results of 11 cancers (Fig. 4B,C), the tissue-specific and cell-type-
specific may influence CNN model on identification of 11 cancer tumor samples. To confirm the assumptions, 
we performed the hierarchical clustering of gene expression in 515 lung adenocarcinomas (LUAD), 502 lung 
squamous cell carcinomas (LUSC) and 520 head and neck squamous cell carcinomas (HNSC) by using Pearson’s 
r, to study the gene expression correlations of distinct cancer tumors in adjacent tissues and same cell-types. 
The clustering was generated by online tool, Morpheus (https:// softw are. broad insti tute. org/ morph eus) and dis-
played in Fig. 5A, the tumor samples in the same cancer type would be clustered together generally; however, in 
the 50 times repeated experiments, the misjudged samples which obtained higher frequencies of error identifica-
tion (purple color) were often interspersed within other cancer type, that because of their gene expression profile 
were considered more similar to tumors of predicted classes than truth classes.

The scatter plots (Fig. 5B–E) exhibited the gene expression correlations between each of misjudged sample 
to every tumor in truth class cancers and to every tumor in predicted class cancers. There was a LUAD sample 
of patient TCGA-44-5643, for instance, was appeared 40 times in 50 random sets, but always be identified into 
LUSC incorrectly (frequency of error identification = 100%; Fig. 5B); we then used the gene expression profile of 
6261 DEGs to calculate and average the correlations (i.e., Pearson’s r) between this sample (i.e., LUAD tumor of 
TCGA-44-5643) to every LUAD samples and to every LUSC samples. In this example, the means of correlations 
to LUAD and LUSC were 0.809 and 0.877, respectively, that indicated the gene expression profile of this LUAD 
sample was more similar to LUSC tumors than LUAD tumors. The same conclusions were observed in the LUSC 
and HNSC cancer types, because the misjudged tumors presented higher similarity of gene expression profiles 
to predicted class cancers compared to the truth class cancers. (Fig. 5C–E), and this situation would occur more 
frequently for the samples which contained ≥ 50% error identification (orange dots). Additional analysis of mis-
judged tumors in KIRC and KIRP, and COAD and STAD also arrived same results (Figs. S3 and S4).

Figure 3.  The CNN architecture of multiple cancer classification. (A) 1228 2D representation images with 
100 × 100 cells were used as input data. Every image was processed with (B) three successive convolutional layers 
and pooling layers for feature learning. The obtained feature maps were (C) flatten to (D) train and (E) predict 
in fully-connected layers, hidden layers and output layers for normal tissues, tumors and 11 cancer types.

https://software.broadinstitute.org/morpheus
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Figure 4.  The prediction results of tumors/normal samples and confusion matrix for 11 cancers. The prediction 
accuracies of (A) normal tissues and tumors (left), as well as normal tissues and 11 cancer types (right). The 
x-axis is 100 training/testing times (epochs); and the y-axis presents accuracy of training/testing. (B) The 
confusion matrix is generated from 4908 independent images. The y-axis is true classes (ground truth) of 
validation samples and x-axis is prediction classes of CNN model. The diagonal cells are the sample counts of 
correct prediction/classification. (C) The hierarchical clustering of 1228 samples by using Pearson’s r of gene 
expression.
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The association of misjudgments between tumors and normal samples and survival 
time. Another interesting result is that, of all misjudgments in the 50 repeated experiments, the thyroid 
carcinoma (THCA), prostate adenocarcinoma (PRAD) and liver hepatocellular carcinoma (LIHC), and breast 
invasive carcinoma (BRCA) displayed 54 to 100% misjudgments of identifying tumors into normal samples 
(Table 2). And in these four cancer types, for the dead patients, the tumors misjudged into normal showed better 
prognosis (lived ≥ 2 years) compared with the ones identified correctly. For example, in the THCA cancer, there 
were 37 tumors misjudged into normal samples, 468 tumors were correctly identified, and 3 and 6 samples were 
dead (but lived ≥ 2 years) in the misjudged samples and correctly identified samples, respectively; the odds ratio 
of two groups (i.e., error and correct identification samples) in survival time was 6.324 that indicated the tumors 
misjudged into normal samples were exhibited longer survival time or less number of death in THCA cancer. 
According to the previous results (Fig. 5), the patients who were misjudged into normal tissues might display 
more similar gene expression profiles as normal tissues, and had better prognosis.

Discussions
The related study developed three CNN models and discovered that the same tissue of origin, such as lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), led the model to make  misjudgments10. 
In our study, we obtained the similar observations, and further observed that two different cancer types, LUSC 
and HNSC with the same cell type (both were squamous cell) would also confuse CNN model (Fig. 4C). Fur-
thermore, we indicated that the LUSC tumor samples, which were often misjudged into HNSC, showed more 
similar gene expression profiles to HNSC, and vice versa. We consider our works have sensitivity in recognizing 
cell-type-specific, and displayed potential on prediction of prognosis (e.g., metastasis) and treatment selection 
for LUAD, LUSC and HNSC in the  future34–36.

Figure 5.  The correlation analysis of gene expression profiles between misjudged tumors and tumors in truth 
and predicted classes. (A) The heat map showed the unsupervised clustering analysis of gene expression in 
LUAD, LUSC and HNSC tumor samples. The intensity of gene expression for 6261 DEGs are presented in red 
color and blue color. To the top panels, three colors indicate LUAD (light yellow), LUSC (gold color) and HNSC 
(peach color) respectively. And the frequency of error identification is presented in grey (≥ 1 misjudgment) and 
purple color. In the four scatter plots (B–E), each dot represents the each misjudged tumor sample, and the 
orange dots means their frequencies of error identification ≥ 50% among the number of total prediction times, 
otherwise the ones were presented with blue dots. The plots illustrated the averaged gene expression correlation 
(i.e., Pearson’s r) between the each misjudged tumor of (B) LUAD, (C, D) LUSC and (E) HNSC to every tumor 
in truth class cancers and in predicted class cancers. If the dots are below the diagonal that indicate the gene 
expression profiles of misjudged tumors are more similar to tumors in predicted classes than in truth classes.
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We also compared our CNN model with the ones of Mostavi et al.10 and Matsubara et al.17 (Supplementary 
Table S1). First, the CNN model of Matsubara et al. is similar to the 2D-Vanilla-CNN of Mostavi et al., but has 
two more convolution and pooling layers. Our CNN model was similar to Matsubara et al.; however, we modified 
CNN structure to predict multi-cancer types. Second, our model and Mostavi et al. filtered the overexpression 
genes before reformatting the data to model input, but Matsubara et al. did not. Third, we and Matsubara et al. 
integrated gene expression profiles and PPI networks as model inputs. Fourth, we and Mostavi et al. performed 
multi-label classification, but Matsubara et al. did not. In summary, our CNN model has several advantages, such 
as the multi-label classification, DEGs filtering and integration of multi-omics data, and the better accuracies.

In general, our model is able to integrate multi-omics data with protein–protein interactions (PPIs) for the 
classification of different cancer types if the omics data can be presented in numerical values and mapped into PPI 
networks. However, our CNN model has several limitations. First, except the RNA-Seq gene expression profile, 
many researches provided the evidences of multiple omics data (e.g., alternative polyadenylation, microbiota 
or antigen) for identifying cancer  types37–39, but some biological data were not easy to map into PPI networks 
for generating our model input data. Second, after implementing dimensionality reduction for PPI network by 
spectral clustering approach, the topology of PPI networks would be changed and some nodes (i.e., proteins) of 
the network were overlapped into new ones; that led us to trace proteins back difficultly, and made the results 
cannot be interpretable. However, we provide the promising results for identification and classification of pan-
cancer by integrating gene expression and PPI networks.

Conclusions
In this study, we are the first to combine multi-cancer gene expression profiles and PPI networks for CNN 
architecture to identify and classify thousands of normal tissues and tumors. Our CNN model provided 95.4% 
accuracy of classification between normal tissues and 11 cancer types. Furthermore, we provided some evidences 
about the different cancer types that would display similar gene expression signature in biological networks due 
to tissue-specific and cell-type-specific, that confuse machine to identify the truths.
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