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Effect of single tube sections 
on the structural safety of Chinese 
solar greenhouse skeletons
Xingan Liu1,2, Zhenkun Li1,2, Lei Zhang2,4, Yu Liu1,2, Yiming Li2,3* & Tianlai Li1,2*

In recent years, the use of single-tube skeletons for the construction of Chinese solar greenhouses has 
increased. As a consequence, during the selection of the construction materials, the safety of these 
structures has become an important issue. The single tube section has various forms, but there is no 
scientific theory to guide the selection process. To the best of our knowledge, the scientific analysis of 
the impact of single pipe cross section on the safety of greenhouse skeleton has not been addressed 
so far. In this context, the finite element analysis software was used to calculate and analyze the 
stress elements, displacement of round tube, Ω tube, elliptic tube and square tube under the same 
load conditions. We used the Chinese Standard values as a reference and analyzed structural features 
of different sizes and thicknesses of the greenhouse steel skeleton sections under non-uniform 
snow load. The results showed that, under the same load condition, the maximum stress in the four 
skeleton materials was all located at the connection of the transverse tension bar and the front roof. 
In addition, under same load condition, the greenhouse skeleton with elliptic tube presented the 
smallest cross-sectional displacement between the different materials tested. The effect of increasing 
the size of the greenhouse frame was better than that of increasing the greenhouse material 
thickness. All this work will provide theoretical guidance to the material selection of this structure.

Chinese solar greenhouses are agricultural facilities that have been used in north China for crop cultivation 
without additional heating during severe cold weather1. By the end of 2017, the total area of horticultural facili-
ties in China had reached 3.7 million hm22. A significant amount of research had been performed in order to 
improve overall size3, wall structure4, surface structure5 and skeleton structure6,7, among others. In recent years, 
a new structure called single pipe skeleton has been used to replace the truss structure in the solar greenhouse. 
However, single pipe skeleton parts provide less safety as compared with traditional trusses. In fact, it has been 
reported that several single pipe Chinese solar greenhouses that have been built or are under construction, 
especially those with the greenhouse skeleton structure, display many potential safety hazards8. Some of them 
have resulted in the collapse of greenhouses’ structures and in consequence, great economic losses9,10. The lack 
of scientific data that can be used to determine construction parameters is the main cause of these accidents. In 
addition, in order to reduce economic costs, relatively low safety coefficients have been considered when calculat-
ing the geometrical parameters of single tube sections. Moreover, the selection of many geometrical parameters 
of single tube sections have been based on empirical estimations, which results in weak structures that cannot 
support various loads. Therefore, it is essential to investigate the effect of geometric parameters of single tube 
sections on the safety factors of Chinese solar greenhouse skeleton structures.

Several researchers have studied the mechanical behavior of greenhouse structures using experimental and 
numerical methods. They have investigated the truss sections of the glasshouse skeleton structures11, the stress 
on the struts and the whole structure12, and the influence of different structural parameters on the greenhouse 
characteristics13. These studies have provided the theoretical basis to improve safety and reduce economic costs 
of the solar greenhouse skeletons. Also, several researchers have studied the characteristics of single-tube skel-
etons in order to replace truss structures. Lu and Qiu carried out a load test of a single-slope solar greenhouse 
skeleton structure. For this specific study, they determined the influence of the truss structure, round-shaped 
steel tube (hereinafter referred to as round tube) structure, and square-shaped steel tube (hereinafter referred 
to as square tube) structure on the final capacity14. Also, a new type of full-steel frame with elliptic-shaped steel 
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tube (hereinafter referred to as elliptic tube) was designed and tested for its safety15. Zhou included an elliptic 
pipe, a circular pipe, and Ω-shaped steel tube (hereinafter referred to as Ω tube) sections on their Chinese solar 
greenhouse design16. Even when a significant amount of research has been performed on single tube skeleton 
Chinese solar greenhouses, the influence of geometric parameters on structural safety still needs further study.

Compared with the truss structure, the single pipe skeleton does not consider various structural safety com-
ponents. Thus, its safety is reduced. Within this context, the purpose of the present study was to perform a finite 
element analysis using several skeleton sections commonly used in greenhouses. The analysis, which considered 
different section dimensions and wall thicknesses, was performed to identify the best parameters. In addition, we 
calculated the single tube section of each span greenhouse. The results of the present investigation will provide 
theoretical support for the selection of proper parameters for the skeleton during the greenhouse construction.

Methods
Greenhouse structural parameters.  The third-generation Liaoshen solar greenhouse, which is widely 
used in the Liaoning Province, has a high rate of land utilization. This solar greenhouse is selected in the present 
research. Greenhouse span is 10 m, ridge height is 6.1 m, greenhouse frame spacing is 0.85 m, and the horizontal 
plane of the north roof is 2.1 m. The front roof is an arched round roof with an arc length of about 12.3 m. The 
lower part of the north roof is covered with wood boards, the middle layer is made of benzene boards, and the 
outer layer included waterproof coiled materials. In addition, the tie rod and tie bar reinforcement are made of 
a 20 × 2 mm round tube. The rest of the parameters are shown in Fig. 1.

Pipe shape and size.  In this research, we determined the effect of the pipe shape and size on the green-
house skeleton characteristics. The area of the round, elliptic, square and Ω tube sections were equal. Also, the 
wall thickness of the round, elliptic, square and Ω tube sections were 2 mm and the Q235 steel was used to build 
the greenhouse skeleton. Parameters of the Q235 steel used in the present research are shown in Table 1 and 
section sizes are shown in Fig. 1.

In the case of the elliptic tube, we also used the third-generation Liaoshen solar greenhouse structure steel 
arch. The tie rod was 20 × 2 mm. The tie bar was 20 × 2 mm. Tables 2 and 3 display the different main beam sizes 
and main beam thickness that were selected in the present study to determine their effect on the safety features 
of the greenhouse skeleton.

Figure 1.   Explanation diagram of greenhouse skeleton structure (mm): (a) greenhouse sectional view; (b) 
greenhouse skeleton connection diagram; (c) round tube section size; (d) square tube section size; (e) Ω tube 
size; (f) elliptic tube section size.
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Geometric modeling and meshing.  The structural performances are investigated by finite element 
method based on the ANSYS 18.0 software. In this research, we have employed the equilibrium equation, the 
geometric equation and the physical equation. The formula is as follows:

The equilibrium equation is expressed as:

The stress state of an elastomer at any point in the body under the action of load can be composed of six stress 
components (i.e. σx, σy, σz, τxy, τyz, τzx).

The geometric equation is expressed as:

The strain at any point in the elastic body can be represented by six components: γxy, γyz, γzx are all shear 
strains, and εx, εy, εz are all positive strains.

The physical equation is expressed as:
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Table 1.   Q235 steel parameters.

Category Density/kg m−3 Elasticity modulus/GPa Poisson ratio Yield strength/MPa

Q235 7850 206 0.3 235

Table 2.   Characteristics of the greenhouse frame materials.

Serial number 1 2 3 4 5 6

Main beam size/mm 25 × 40 × 2 25 × 45 × 2 25 × 50 × 2 30 × 60 × 2 30 × 65 × 2 30 × 70 × 2

Serial number 7 8 9 10 11 12

Main beam size/mm 30 × 75 × 2 30 × 80 × 2 30 × 85 × 2 30 × 90 × 2 30 × 95 × 2 30 × 100 × 2

Table 3.   Wall thickness of main beam materials.

Serial number 1 2 3 4 5

Main beam material wall thickness/mm 30 × 60 × 1 30 × 60 × 1.5 30 × 60 × 2 30 × 60 × 2.5 30 × 60 × 3
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The displacement of any point in an elastic body can be expressed by three displacement components (i.e. 
w, v and u) along the direction of the rectangular coordinate axis. E is the elastic modulus. ν is Poisson’s ratio.

We used the finite element software to study the stress and deformation distribution of the greenhouse 
skeleton structure under different load conditions can be directly understood17. This software can be used to 
accurately calculate different structural features and determine the deformation stress and strain of the structure. 
For this reason, the finite element software is an important tool used in the design of greenhouse structure18. 
Depending on structural characteristics of the greenhouse, the finite element model can be partly simplified con-
sidering the calculation efficiency. Thus, it was not necessary to establish a complete structural model. The load 
distribution was consistent throughout the length and only varied in the span-direction. Thus, analyzing a bay 
was equivalent to analyzing the entire structure. For this reason, a bay located in the middle of the whole skeleton 
was been selected for the analysis19. In the finite element model, some greenhouse parts that had small impact on 
the analysis were ignored. These included welding gaskets and vents. Although the greenhouse skeleton structure 
included curve sections, the single pipe skeleton might be considered as a series of straight lines. Considering 
this, we used the finite element software is used to analyze the mechanical properties of 4 tubular greenhouses.

Unit and meshing.  The Beam 188 is a 3-D 2-node beam element based on the Timoshenko beam theory 
which includes shear-deformation effects, and is suitable for analyzing slender to moderately stubby/thick beam 
structure. Since Beam 188 is suitable for the analysis of thin or thick beams, it is used as the grid division unit 
during the modeling of the greenhouse skeleton. According to the size of the greenhouse, 3-D modeling was car-
ried out using the finite element software. In addition, during grid division in the solid modeling process, factors 
that did not affect strength calculation, such as chamfered walls, were ignored20. The finite element modeling was 
performed considering the greenhouse structural parameters, as shown in Fig. 2.

It is worth mentioning that the web members are mainly subjected to only axial force in theory. Thus, the 
link element seems to be more suitable. The grid sizes of tie rods and tie bars were both controlled at 100 mm. 
And the grids were properly encrypted at connection of members to improve calculation accuracy. The finite 
element model and its details are displayed in Fig. 3.

Constraint conditions.  The tie bars are fixed on the skeleton by buckles, which can be regarded as rigid 
constraints. Therefore, the connection is made through sharing nodes. Meanwhile, the two ends of the skeleton 
were fixed on the base.

Loads and analytical method.  The failure mode of the single-pipe solar greenhouse structure is the col-
lapse of the greenhouse structure. In addition to the self-weight of the greenhouse structure, crop load and 

Figure 2.   Schematic diagram of the greenhouse skeleton.

Figure 3.   The finite element model and its details of the skeleton model.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19307  | https://doi.org/10.1038/s41598-021-98779-y

www.nature.com/scientificreports/

the concentrated load of the roof structure, the main external factor that causes the collapse of the greenhouse 
structure in Shenyang is the snow load. This snow load is shown in Fig. 4.

The external conditions of the greenhouse represent an important constrain. They include constant load (G), 
crop load (Ck), concentrated load of roof construction (Ek), seismic load (Ak), and snow load (Sk).

Constant load G.  The total value of the constant load on the greenhouse skeleton structure is G, which 
includes the skeleton weight G0, the quality of the front roof covering material G1, and the quality of the north 
roof material G2.

Crop load Ck.  Crop load is the load formed by crop hanging on the greenhouse due to the need of cultiva-
tion, and its size is related to the variety of the cultivated crop. According to the standard value of crop load 
defined in GB/T51183-2016, for solanaceous and melons, the corresponding value of crop load Ck is 0.15 kN/m2.

Concentrated roof load construction Ek.  Concentrated roof loads, usually 0.8 kN m−2, are included in 
the uniformly distributed roof loads.

Seismic load Ak.  Seismic load due to earthquakes is not considered in the present analysis.

Snow load Sk.  Snow load refers to the load acting on the horizontal projection of the solar greenhouse roof. 
Basic snow pressure is calculated using data of snow weight on open and flat ground. It can be obtained by que-
rying the local snow load table. According to the GB/T51183-2016 parameters, the snow load standard value Sk 
on the horizontal projection of the roof should be calculated with Equation:

where S0 is the basic snow pressure (kN m−2); μr is the distribution coefficient of roof snow cover; ct is the heating 
influence coefficient. Considering the effect of snow movement on the greenhouse framework, the distribution 
coefficient of snow load on the solar greenhouse was divided into uniform distribution and non-uniform distribu-
tion (Fig. 5). In the uniform distribution section, μr was calculated considering the following values: greenhouse 
span (10 m) and ridge height (6.1 m), μr = 10/(8 * 6.1) = 0.205; μrb was related to the elevation angle of the rear roof 
(47.65°); μrb = 0.8 * (60°–47.65°)/30° = 0.33. In addition, in the non-uniform distribution section 0.75μrb = 0.2475. 
In this case, μrm was calculated using the following data: greenhouse span (10 m) and ridge height (6.1 m), 
μrm = 0.2 + 10 (6.1/10) = 6.3, with a maximum μrm value of 2.0 when the insulation was covered. According to 
the GB/T51183-2016 standard, no heating device was included in the solar greenhouse; the heat was stored and 
release through the wall. For this reason, the ct heating influence coefficient was included in Eq. (1). According 
to the GB/T51183-2016 standard, the basic snow load is S0 = 0.38 kN m−2 in the Shenyang, Liaoning Province.

Governing equations.  Greenhouse load conditions are calculated using equation:

where F is the force acting on the skeleton (N); P is the force acting on the skeleton per unit area (N/m2), which 
could be constant load (G), crop load (Ck), concentrated load of roof construction (Ek) and/or snow load (Sk); 
S is the area applied to the skeleton (m2).

Equation is used to calculate reference material deformation:

where λ is the shape variable of the material (mm); F represents the force applied to the material (N). C is the 
ability of the material to resist deformation, which is known as material stiffness (N mm−1).

(10)Sk = µr · ct · S0

(11)F = P · S

(12)� = F/C

Figure 4.   Field picture of greenhouse snow load.
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Linear buckling stability analysis.  Linear buckling analysis is based on the assumption of small displace-
ment theory, the change of structural shape is ignored during the process of loading, and the small incremental 
displacement is the linear function of external incremental load. In this section, linear buckling analysis was 
an ideal case, which had some deviations with the actual project. The main purpose of linear buckling analysis 
was to obtain the upper limit of the actual critical load and buckling mode, which could provide reference for 
nonlinear stability analysis. Standard for design of steel structures (2017) suggests that the initial defect value 
of round tube of long-span steel structure should be lower than 1/400, that is 25 mm (10,000 mm/400) for this 
greenhouse. The initial defect value of square tube of long-span steel structure should be lower than 1/300, that 
is 33 mm (10,000 mm/300) for this greenhouse. The initial defect value of elliptic tube and Ω tube of long-span 
steel structure should be lower than 1/350, that is 28.6 mm (10,000 mm/350) for this greenhouse.

Working conditions.  Because the greenhouse is usually subjected to a variety of loads such as snow load 
and the weight of the rear roof covering, the load distribution on the greenhouse skeleton is relatively complex21. 
For this reason, in the present experiments, constant load + crop load + snow load working conditions were con-
sidered. In the cases of uniform (a) and non-uniform (b) distributions snow load were considered for the analy-
sis of four pipe types of greenhouse skeletons. The load combination is shown in Table 4. Also, in the case of 
non-uniform snow load, the greenhouse skeleton was analyzed considering different beam sizes. In addition, the 
wall thickness of the main beam was used to determine the safety of the greenhouse skeleton.

Results
Stress and shape are considered as the two main criteria for structural analysis We present the results of the effect 
of stress and structural deformation on structural performance.

Effect of uniform snow load on skeleton safety.  Figure 6 displays the normal stress distribution dia-
gram of the greenhouse skeleton. Results indicated that, under uniform snow load, the maximum normal stress 
of the skeleton was located at the connection between the transverse tensile reinforcement and the front roof. 
According to Fig. 7, the maximum normal stress on the four skeleton pipe types were 22.889 MPa, 25.623 MPa, 
25.443 MPa and 26.611 MPa, respectively. We concluded that the structural strength of the analyzed pipes com-
plied with the standard requirements. According to the results shown in Fig. 6, the skeleton part with the maxi-

Figure 5.   Snow distribution coefficient on the solar greenhouse roof: (a) uniform distribution; (b) uneven 
distribution.

Table 4.   The greenhouse skeleton load combination mode.

Load combinations Constant load Gk Snow load Sk (kN/m2) Crop load Gk (kN/m2)
Concentrated roof load 
construction EK (kN/m2)

a 1.0 0.38ur,b, 0.38ur 0.15 0.8

b 1.0 0.285ur,b, 0.38ur,m ≤ Sk ≥ 0.285ur,b 0.15 0.8
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mum normal stress was located on the transversal tensile reinforcement, which was subjected to the highest 
positive pressure. This pressure was the result of the forces exerted by the back slope and the front arch. Data 
also indicated that under uniform load conditions, the transverse tensile reinforcement was essential in the 
construction of the greenhouse. Figure 7 shows the comparison for maximum normal stress in the four types of 
skeleton tubes. According to these data, the round tube displayed the minimum normal stress and elliptic tube 
the maximum one. 

Greenhouse skeleton shape variations under uniform snow load.  Figure 8 shows the distribution 
diagram for shape variations of greenhouse skeletons. Data indicated that, under uniform snow load action, the 
largest shape variations of the greenhouse skeleton were concentrated on the transversal tensile reinforcement. 
These results were consistent with those obtained for the normal stress distribution of the greenhouse skeleton. 
The largest shape variations in the four pipe types were 30.952 mm, 33.073 mm, 21.942 mm and 20.598 mm. 
As Fig. 9 shows, the highest shape variation was that of the square tube. That of the elliptic tube was the small-
est one. Therefore, under uniform snow load conditions, the smallest effect on the greenhouse skeleton was the 
elliptic tube.

Influence of non‑uniform snow load conditions..  Figure 10 presents the results for the normal stress 
distribution of the greenhouse skeleton. Data indicated that under non-uniform snow load conditions, the maxi-
mum normal stress of the skeleton was located at the connection between the transversal tensile reinforcement 
and the front roof. According to Fig.  11, the maximum normal stress on the four skeleton pipe shapes was 
56.401  MPa, 63.142  MPa, 69.21  MPa and 65.566  MPa. Comparing these values with that of the Q235 steel, 
which was 235 MPa, we concluded that these values met the requirements. Also, comparing the results shown 
in Figs. 6 and 10, we concluded that the skeleton member with the maximum normal stress was the transversal 
tensile reinforcement. In addition, according to the data presented in Figs. 7 and 11, the normal stress of the 

Figure 6.   Normal skeleton stress diagram under uniform snow load condition: (a) round tube; (b) square tube; 
(c) Ω tube; (d) elliptic tube.
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skeleton under non-uniform snow load significantly increased. Moreover, comparing the normal stress of the 
four materials, results indicated that the normal stress corresponding to round tube was the lowest one, and that 
of the Ω tube was the highest one.

Greenhouse skeleton shape variations under non‑uniform snow load conditions.  Figure  12 
displays the distribution of greenhouse skeleton shape variations. Results indicated that under non-uniform 
snow load conditions, the largest shape variations of the greenhouse skeleton were concentrated on the trans-
versal tensile reinforcement. These results were consistent with those obtained for the normal stress distribution 
of the greenhouse skeleton. The maximum shape variations of the four-pipe types of greenhouse skeletons were 
46.896 mm, 52.592 mm, 36.362 mm and 30.743 mm, respectively. Results presented in Fig. 13 indicated that the 

Figure 7.   Histogram of normal skeleton stress under uniform snow load condition.

Figure 8.   Diagram of skeleton shape variations under uniform snow load condition: (a) round tube; (b) square 
tube; (c) Ω tube; (d) elliptic tube.
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Figure 9.   Linear graph for skeleton shape variation under uniform snow load condition: (a) round tube; (b) 
square tube; (c) Ω tube; (d) elliptic tube.

Figure 10.   Normal stress diagram of greenhouse skeleton under non-uniform snow load condition: (a) round 
tube; (b) square tube; (c) Ω tube; (d) elliptic tube.
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square tube skeleton presented the largest shape variation. The elliptic tube greenhouse skeleton displayed the 
smallest shape variation. Therefore, the smallest effect on the greenhouse skeleton was the elliptic tube.

Figure 11.   Normal skeleton stress under uneven snow load condition: (a) round tube; (b) square tube; (c) Ω 
tube; (d) elliptic tube.

Figure 12.   Skeleton shape variations under non-uniform snow load condition: (a) round tube; (b) square tube; 
(c) Ω tube; (d) elliptic tube.
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Influence of section size on skeleton structural safety.  Under non-uniform snow condition, elliptic 
tubes of different sizes were used as main beams for the greenhouse skeletons. The steel quantity and shape vari-
ations of the greenhouse skeletons are shown in Table 5, where T represents the reduction of the greenhouse 
skeleton shape variation for every increment of 10 kg of steel. T was calculated with the following equation:

where L1 is the greenhouse skeleton shape variation of element number 1; L is the greenhouse skeleton shape 
variation; t is the amount of steel in the greenhouse skeleton; and t1 is the amount of steel in the greenhouse 
skeleton of the element number 1. The steel structure Design Code (2017) has indicated that the maximum defor-
mation of the elliptic tube in large-span steel structures should be 28.6 mm. The Main girder size 25 × 40 × 2 mm, 
25 × 45 × 2 mm and 25 × 50 × 2 mm, our results indicated that shape variations were 47.766 mm, 39.585 mm and 
33.524 mm, which exceeded normal shape variations. When the greenhouse skeleton shape variation does not 
exceed the standard value, with the increase of the greenhouse girder size, the greenhouse skeleton shape vari-
ation gradually decreases.

Influence of wall thickness on skeleton safety.  Under non-uniform snow load, elliptic tube of the 
same size and different wall thickness were used as main beams for the greenhouse skeleton. The steel quantity 
and shape variations of the greenhouse skeleton are shown in Table 6, where T represents the reduction of the 
shape variation of the greenhouse skeleton for every 10 kg of increment in steel weight. T was calculated accord-
ing to the formula T = 10 * (L1 − L)/(t − t1), L1 is the greenhouse skeleton shape variation of Number 1; L is the 
greenhouse skeleton shape variation; t is the amount of steel in the greenhouse skeleton; and t1 is the amount of 

(13)T = 10 (L1 − L)/(t− t1)

Figure 13.   Linear diagram of skeleton variations under non-uniform snow load condition. (a) Round tube, (b) 
square tube, (c) Ω tube, (d) elliptic tube.

Table 5.   The quantity and shape of steel used for different materials sizes.

Serial number Main beam size/mm Amount of steel (t)/kg Form of a variable (L)/mm T/(mm/kg)

1 25 × 40 × 2 902.27 47.766 0

2 25 × 45 × 2 948.96 39.585 1.7522

3 25 × 50 × 2 995.64 33.524 1.5253

4 30 × 60 × 2 1162.3 27.079 0.7956

5 30 × 65 × 2 1209 25.82 0.7155

6 30 × 70 × 2 1255.7 24.796 0.6499

7 30 × 75 × 2 1302.4 23.896 0.5965

8 30 × 80 × 2 1349.1 23.169 0.5269

9 30 × 85 × 2 1395.8 22.444 0.5141

10 30 × 90 × 2 1442.5 21.788 0.4809

11 30 × 95 × 2 1489.2 21.136 0.4537

12 30 × 100 × 2 1535.8 20.597 0.4288
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steel in the greenhouse skeleton of number 1. According to the steel structure Design Code (2017), the maxi-
mum elliptic tube deformation in large-span steel structure should be 28.6 mm. Thus, values of 30 × 60 × 1 mm 
and 30 × 60 × 1.5 mm did not comply with the shape variations standard. According to Table 7, with the increase 
of wall thickness, the reduction of the skeleton shape variation gradually decreased.

In the present research, the optimum size of the single tube for the Chinese solar greenhouse skeleton to be 
used in the Shenyang region was calculated (Table 3). According to our results, the tie rod should be made of a 
30 × 2 mm round tube, while the tie bar reinforcement of a 20 × 2 mm round tube.

Conclusion
In the present research, the effect of different geometric parameters of single tube sections on the safety of solar 
greenhouse skeletons was studied. The results are provided below:

1.	 The maximum stress of the four types of cross-section skeletons was located at the connection between the 
transversal tensile reinforcement and the front roof. This position should be strengthened during construc-
tion.

2.	 Elliptic tube should be selected as the skeleton cross-section during greenhouse construction because it 
works best in greenhouse loads. It is conducive to the unification of the skeleton standard of the single tube 
greenhouse.

3.	 The effect of increasing the greenhouse skeleton size was better than that of increasing the wall thickness of 
the greenhouse materials.

4.	 We determined the appropriate skeleton size of single tube skeletons to be used in solar greenhouses for the 
Shenyang region.

5.	 The single tube greenhouse skeleton applied to the largest span needs to be carried out in-depth research on 
it, so as to the main and secondary beam structure of the greenhouse skeleton safety.
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