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An independently validated, 
portable algorithm for the rapid 
identification of COPD patients 
using electronic health records
Su H. Chu1,3*, Emily S. Wan1,3,4, Michael H. Cho1,3, Sergey Goryachev5, Vivian Gainer5, 
James Linneman6, Erica J. Scotty6, Scott J. Hebbring6, Shawn Murphy5,7, Jessica Lasky‑Su1,3, 
Scott T. Weiss1,3, Jordan W. Smoller3,7,8,9 & Elizabeth Karlson2,3*

Electronic health records (EHR) provide an unprecedented opportunity to conduct large, cost‑
efficient, population‑based studies. However, the studies of heterogeneous diseases, such as chronic 
obstructive pulmonary disease (COPD), often require labor‑intensive clinical review and testing, 
limiting widespread use of these important resources. To develop a generalizable and efficient method 
for accurate identification of large COPD cohorts in EHRs, a COPD datamart was developed from 
3420 participants meeting inclusion criteria in the Mass General Brigham Biobank. Training and test 
sets were selected and labeled with gold‑standard COPD classifications obtained from chart review 
by pulmonologists. Multiple classes of algorithms were built utilizing both structured (e.g. ICD codes) 
and unstructured (e.g. medical notes) data via elastic net regression. Models explicitly including 
and excluding spirometry features were compared. External validation of the final algorithm was 
conducted in an independent biobank with a different EHR system. The final COPD classification 
model demonstrated excellent positive predictive value (PPV; 91.7%), sensitivity (71.7%), and 
specificity (94.4%). This algorithm performed well not only within the MGBB, but also demonstrated 
similar or improved classification performance in an independent biobank (PPV 93.5%, sensitivity 
61.4%, specificity 90%). Ancillary comparisons showed that the classification model built including 
a binary feature for FEV1/FVC produced substantially higher sensitivity than those excluding. This 
study fills a gap in COPD research involving population‑based EHRs, providing an important resource 
for the rapid, automated classification of COPD cases that is both cost‑efficient and requires minimal 
information from unstructured medical records.

The estimated world prevalence of COPD ranges from 4–10%, and it is projected to be the third leading cause of 
mortality by  20301,2. Diagnosis of COPD can be confirmed through spirometry demonstrating a forced expira-
tory volume in 1 s  (FEV1) to forced vital capacity (FVC) ratio of < 0.7 that persists after administration of inhaled 
 bronchodilators3. However, relying solely on  FEV1/FVC to diagnose patients in clinical settings is marked by 
both under- and  misdiagnoses4–6, as it comprises only one parameter of the criteria necessary to establish COPD. 
In most epidemiological studies of COPD, ascertainment of case populations thus frequently requires labor-
intensive, direct medical review in addition to testing (e.g. spirometry) by trained clinicians. This process is a 
significant rate-limiting factor in large-scale COPD studies, especially in the development of new cohorts.
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Electronic health record (EHR) databases and linked biorepositories have become increasingly  common7–9, 
and present a major opportunity for disease research. Numerous studies have demonstrated the utility of lever-
aging EHRs and International Classification of Diseases (ICD) codes for the accurate identification of complex, 
heterogeneous conditions such as asthma, rheumatoid arthritis, bipolar disorder, and Alzheimer’s  disease10–14. 
The development of EHR algorithms can facilitate rapid, low-cost, and large population-based explorations of 
disease that can be employed across a variety of studies, such as pharmacologic  surveillance15–17, personalized 
 medicine18,19, and genetic  association9,10,20.

Prior EHR-based classification heuristics and algorithms for COPD have reported low positive predictive 
value (PPV) estimates ranging from 36.7% to 80.7%21–23. Therefore, our aim was to develop a high-performing, 
portable COPD classification algorithm using EHR data in the Mass General Brigham Biobank (MGBB). This 
diagnostic classification algorithm facilitates rapid identification (i.e., without requiring labor-intensive manual 
chart reviews by clinicians) of COPD cases with high specificity. It has been independently validated, and has 
been successfully implemented across a larger national consortium of biobanks called the Electronic Medical 
Records and Genomics (eMERGE) network.

Methods
Study participants were drawn from the Mass General Brigham (MGB; Boston, MA; formerly Partners Healthcare 
Systems) Biobank, which is a subset of the MGB Research Patient Data Registry (RPDR). The RPDR is a data 
warehouse that gathers data from multiple hospital electronic record systems within MGB and includes over 
4.6 million patients from MGB hospitals, 227 million encounters, and 2.4 billion distinct, coded clinical facts 
dating back to 1986 including demographic data, diagnostic codes, procedures, pharmacy data (e.g. RxNorm), 
inpatient and outpatient encounter information, laboratory data, imaging/pathology data. The MGBB is a col-
lection of DNA, serum, and plasma samples from participants (recruitment ongoing) from MGB hospitals who 
provided informed consent for a) broad use for genomics, biomarker, epidemiology research, and b) linkage with 
RPDR EHRs and survey data. At the time of analysis, the MGBB comprised approximately 77,000 consented 
participants. Demographics of the MGBB are broadly representative of demographic composition of Eastern 
MA. Minority enrollment reflects population demographics (13% non-White).

Patients with one International Classification of Diseases (ICD) code specific to COPD (ICD9: 491.2 obstruc-
tive chronic bronchitis, 493.2 chronic obstructive asthma, 496.* chronic airway obstruction, not elsewhere clas-
sified ; ICD10: J43* emphysema, J44* other chronic obstructive pulmonary disease) were selected to generate 
a “screen positive” COPD datamart. Next, we implemented a data floor threshold whereby subjects with 3 ICD 
codes broadly associated with COPD (ICD9: 491.* chronic bronchitis, 492.* emphysema, 493.2 chronic obstruc-
tive asthma, 496.* chronic obstructive pulmonary disease, not elsewhere classfiied; ICD10: J40* bronchitis, not 
specified as acute or chronic, J41* simple and mucopurulent chronic bronchitis, J42* unspecified chronic bron-
chitis, J43* emphysema, J44* other chronic obstructive pulmonary disease) occurring on distinct dates, and at 
least one unstructured medical note (i.e., narrative text from patient health records regarding reason for visit, 
discharge, operation, labs, etc.) in their records, were selected from the COPD datamart to create our patient 
chart review pool. This was to ensure that study subjects had sufficient EHR and medical record histories to be 
informative in the algorithm development process. An overview of these filtering steps can be seen in Fig. 1, and 
an overview of general model development can be seen in Fig. 2. The protocol for this study was approved by 
the Brigham and Women’s Hospital and the Mass General Brigham institutional review boards, #2015P000983. 
All methods were performed in accordance with relevant guidelines and regulations.

Clinician chart reviews. A random sample of 200 participants was selected from the COPD screen positive 
set, among whom 182 met the data floor selection criteria for chart review. Chart reviews were performed by two 
senior pulmonologists (M.H.C. and E.W.) to establish a gold standard training set using an internally developed 
chart review protocol (Figure S2). To ensure acceptable interrater reliability, 25 charts were reviewed by both 

Figure 1.  Overview of COPD datamart selection and developed algorithms.
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pulmonologists and consistency was assessed using Cohen’s kappa statistic. Charts with available pulmonary 
function tests (PFTs) such as spirometry reports within the past 10 years were reviewed for the presence of val-
ues of FEV1/FVC < 0.7 to classify ‘definite’ COPD cases. Charts without available PFT reports were reviewed for 
clinical COPD criteria based on ≥ 3 of the following: (1) ever smoking, (2) ≥ 2 notes confirming a clinical COPD 
diagnosis, (3) moderate or severe centrilobular or panacinar emphysema on clinical chest computed tomogra-
phy (CT) scan, (4) COPD-specific medications or (5) presence of pulmonologist-diagnosed COPD. Reviewers 
classified patients meeting these criteria but lacking confirmatory spirometry as ‘clinical’ COPD cases. Finally, 
for internal validation, 100 participants with charts were randomly selected and reviewed from the screen-posi-
tive set to comprise a gold-standard test set.

Rule‑based algorithms. Algorithms relying strictly on ICD codes to identify COPD cases have previously 
been proposed and  applied22. Therefore, as a performance benchmark for our algorithm, we employed rule-
based heuristics to classify COPD cases based only on ICD codes among the screen positive set: (1) ICD-strict: 
3 COPD-specific ICD codes, and (2) ICD-broad: 2 COPD-specific codes, where each code was required to have 
occurred on distinct dates in the EHR for a given patient. A rule-based algorithm was also applied to identify 
controls (i.e. subjects with no history of COPD-related codes), requiring 0 COPD-specific codes and 2 encoun-
ters in the EHR.

Model‑based algorithms. To develop model-based algorithms, we first constructed a comprehensive fea-
ture space from which predictive variables of COPD case status could be selected. Variables were derived from 
(1) structured data such as ICD, current procedural terminology, and prescription codes, and (2) unstructured 
data, such as narrative text present in clinical visit and discharge notes or radiology reports. Coded features 
derived from the structured data were obtained based on COPD-related risk factors partly curated by the two 
chart reviewers or drawn from prior  literature21. These included derived variables relating to age at first COPD 
diagnosis, smoking history, medical utilization, PFTs, visit history to pulmonary clinics, ICD codes, COPD and 
asthma medications, and radiography. Values for FEV1, FVC, and smoking status were obtained from spirom-
etry reports using NLP algorithms in R (Supplementary Information 5 and 6), and all other NLP variables were 
constructed using surrogate assisted feature extraction (SAFE)24, which has been described in detail  previously25. 
Briefly, the implementation of the SAFE procedure proceeds as follows: (1) extraction of United Medical Lan-

Figure 2.  Broad overview of steps in phenotyping algorithm development.
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guage System (UMLS) concepts related to COPD from publicly available databases including Medscape, Pub-
Med, and Wikipedia via named entity recognition, (2) application of Narrative Information Linear  Extraction25, 
to scan EHR clinical narratives for positive mentions of the UMLS terms, which are then totaled to obtain 
patient-level counts, (3) feature selection based on majority voting (concept present in the majority of databases 
scanned), frequency control (concept present in > 5% medical notes mentioning COPD), and surrogate selection 
criteria (concept selection based on predictiveness of COPD ICD counts and primary NLP terms).

After creating the feature space, adaptive elastic net regularization was applied to build logistic regression 
classifiers of COPD status using the R package glmnet. Tuning parameters, for the regularization penalty and for 
the mixing parameter between ridge () and lasso () regression, for the elastic net were selected through fivefold 
cross validation using the package caret in  R26.

COPD status from chart reviews was classified as a binary variable combining ‘definite’ and ‘clinical’ into 
COPD versus non-COPD. Classification models were built using several different feature space combinations: 
(1) expert and literature curated features excluding spirometry derived variables (CRT PFT-), (2) expert and lit-
erature curated features including spirometry derived variables (CRT PFT+), (3) SAFE-extracted features only 
(SAFE-NLP), and (4) combined CRT PFT+ and SAFE features (CRT + SAFE). For each model, the set of features 
most predictive of COPD in the gold-standard training set were identified, and the relative weights (beta coef-
ficients) of the features were extracted. After feature selection, classification thresholds were selected holding the 
specificity level at ~ 95%, where those above the cutoff were assigned case status, and those below were assigned 
non-case status. The model with the best performance in terms of 1) total area under the curve (AUC) of the 
receiver operator characteristic curve and 2) estimated sensitivity, positive predictive value (PPV), and negative 
predictive value (NPV) at the 95% specificity threshold was taken forward for algorithm validation. Confidence 
intervals for performance estimates were obtained via bootstrap. F1 and F0.5 metrics of performance were also 
calculated for the final model. An overview of the different criteria for all model and rule-based algorithms can 
be seen in Table 1.

Internal and external validation. Internal validation to confirm algorithm performance was conducted 
in the gold standard test set in the MGBB. To assess the portability of the selected MGBB algorithm, external 
validation was performed at an independent site with a different EHR system: Marshfield Clinic Health Sys-
tem (MCHS; Marshfield, WI). MCHS is an integrated health care delivery system that provides the majority of 
healthcare services to 1.5 million patients residing in more than 50 locations in northern, central, and western 
Wisconsin. The MCHS has coded diagnoses dating back to the early 1960s, and employs a modern integrated, 
internally developed EHR and data warehouse beginning in the 1990s.

Table 1.  Algorithms for classifying chronic obstructive pulmonary disease. a COPD-specific codes include: 
1) ICD9: 491.2, 493.2, and 496.*; 2) ICD10: J43.* or J44.*. b Broad COPD codes include any codes with the 
following base numbers: 1) ICD9: 491.*, 492.*, 493.2*, and 496.*; 2) ICD10: J40.*, J41.*, J42.*, J43.*, J44.*. c All 
model-based algorithms were developed using probability-based thresholding via logistic regression models 
selected using a threshold for specificity at 95%.

Classification method Classifier description

Minimum selection criteria

ICD9/10
Diagnosis criteria Visit criteria Other criteria

Rule-based

ICD-stricta 3 COPD-specific codes 3 or more COPD-specific codes None

ICD-broadb 2 COPD-specific codes 2 or more COPD-specific codes None

Control selection 0 COPD-specific codes Subjects with no history of COPD related 
codes 2 encounters in MGB Biobank

Model-basedc

Automatic extraction NLP features

SAFE-NLP
Model selected from surrogate assisted 
feature extraction with natural language 
processing of unstructured EHR data 
(narrative text from clinic notes)

At least 1 COPD-specific code and at least 
3 broad COPD codes

1 visit with electronic clinical note in 
the EHR Selected by classifier

Curated (CRT) features

CRT PFT-

Model selected from literature-based and 
expert-curated feature inputs primarily 
derived from structured data, exclud-
ing measures of spirometric  FEV1/FVC 
performance

At least 1 COPD-specific code and at least 
3 broad COPD codes

1 visit with electronic clinical note in 
the EHR Selected by classifier

CRT PFT+
Model selected from the feature space 
of CRT PFT-, but inclusive of measures of 
spirometric  FEV1/FVC performance

At least 1 COPD-specific code and at least 
3 broad COPD codes

1 visit with electronic clinical note in 
the EHR Selected by classifier

Mixed (automatic + curated) features

CRT + SAFE Model based on combining the full feature 
space for CRT PFT+ and SAFE

At least 1 COPD-specific code and at least 
3 broad COPD codes

1 visit with electronic clinical note in 
the EHR Selected by classifier
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Using identical filtering procedures as in the MGBB, a COPD datamart was constructed in the Marshfield 
EHR. Among eligible subjects meeting the datamart screening criteria, a random set of 100 subject charts were 
selected for chart review using the clinical heuristic algorithm developed in the MGBB. After applying the MGBB 
COPD algorithm, sensitivity, specificity, PPV, NPV, and F1 and F0.5 metrics were calculated to assess algorithm 
performance in the Marshfield validation sample.

Ethical approval. The eMERGE study protocol was approved by the institutional review board at Mass 
General Brigham (formerly Partners Healthcare System) and Marshfield Clinic Research Institute. All authors 
read and approved the manuscript.

Results
The demographic characteristics of the randomly sampled gold standard training and test sets, as well as the full 
COPD datamart, can be seen in Supplementary Table 1. In total, 77 patients were classified with COPD, and 105 
were defined as non-cases in the full gold-standard training set (N = 182), and 46 and 54 patients were classified 
as cases and non-cases in the gold standard test set (N = 100). Spirometric  FEV1/FVC results were available for 
129 (71%) patients in the training set, and 80 (80%) patients in the test set. Within a random set of 25 subject 
charts reviewed by both pulmonologists, high interrater reliability of COPD diagnosis was observed with an 
estimated Cohen’s kappa of 0.867 (p = 6.6 ×  10–9).

We identified and derived 56 variables for consideration in the curated (CRT) feature space (Supplementary 
File: Code Book for Structured Data Features). Medications associated with pulmonary diseases were classified 
by specificity for COPD management (Supplementary Table 2). In total, 53 NLP features were identified by 
SAFE for use in model training to construct the SAFE-NLP and CRT + SAFE classifiers (Supplementary Table 3).

The two rule-based algorithms using the naïve ICD-based thresholding approach to classify COPD status 
performed similarly in the gold standard training set. The ICD-Strict algorithm had 98.1% sensitivity, 11.7% 
specificity, 60.2% PPV, and 81.8% NPV, with F1 of 0.746 and F0.5 of 0.652, and the ICD-Broad algorithm dem-
onstrated 100% sensitivity, 3.9% specificity, 58.7% PPV and 100% NPV, with F1 = 0.740 and F0.5 = 0.877. As the 
specificity for both rule-based algorithms were extremely low, neither was taken forward for assessment in the 
MGBB test set (Table 2).

As COPD is not an uncommon disease, we prioritized optimizing specificity (i.e. reducing the false positive 
rate) over sensitivity (i.e. detecting all true positives) in the model-based algorithms. Among the four model-
based algorithms, CRT PFT+ produced the highest AUC of 0.879. AUCs for CRT PFT-, SAFE-NLP, and CRT + SAFE 
were 0.834, 0.778, and 0.865, respectively (Fig. 3).

Performance characteristics of the CRT PFT+ model with specificity held at 95% yielded a sensitivity of 59.0%, 
PPV of 93.9%, an NPV of 62.9%, F1 of 0.725, and F0.5 of 0.840 in the gold standard training set (Table 2). The 
performance of the CRT PFT- algorithm excluding spirometric results for  FEV1/FVC revealed a lower sensitivity 
of 40%, a PPV of 89.4% and NPV of 53.3%, F1 of 0.553 and F0.5 of 0.450. The SAFE-NLP algorithm had 36.5% 

Table 2.  Comparison of performance characteristics between different electronic medical record COPD 
classification algorithms within Mass General Brigham Biobank training set (N = 182). a COPD-specific codes 
include: 1) ICD9: 491.2, 493.2, and 496; 2) ICD10: J43 or J44. b Broad COPD codes include any codes with the 
following base numbers: 1) ICD9: 491, 492, 493.2, and 496; 2) ICD10: J40, J41, J42, J43, J44. *All probabilistic 
algorithms were assessed at their corresponding thresholds specifying 95% specificity. SAFE-NLP: Model 
based on surrogate assisted feature extraction with natural language processing of unstructured EHR data (free 
text); CRT PFT-: Model based on literature and expert-curated feature inputs primarily derived from structured 
data, excluding feature weights for spirometric  FEV1/FVC performance; CRT PFT+: Model based on feature 
space of CRT PFT-, but inclusive of feature weights for spirometric  FEV1/FVC performance; CRT + SAFE: Model 
based on combining the full feature space for CRT PFT+ and SAFE.

Algorithm

Counts (N) Algorithm Performance (95% CI)*

True positive
True 
negative

False 
positive

False 
negative Sensitivity Specificity PPV NPV

Rule-based

ICD-Strict 103 9 68 2 0.981 0.117 0.602 0.818

ICD-Broad 105 3 74 0 1 0.039 0.587 1

Automatic NLP features

SAFE-NLP 38 73 4 66 0.365
(0.270–0.462)

0.948
(0.896–0.987)

0.905
(0.816–0.977)

0.525
(0.490–0.567)

Curated features

CRT PFT- 42 72 5 63 0.400
(0.314–0.495)

0.935
(0.883–0.987)

0.894
(0.808–0.976)

0.533
(0.493–0.578)

CRT PFT+ 62 73 4 43 0.590
(0.495–0.676)

0.948
(0.896–0.987)

0.939
(0.878–0.987)

0.629
(0.577–0.688)

Mixed features

CRT + SAFE 47 73 4 62 0.404
(0.317–0.490)

0.948
(0.896–0.987)

0.913
(0.830–0.979)

0.541
(0.503–0.583)
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sensitivity, 90.5% PPV, 52.5% NPV, 0.520 F1, and 0.414 F0.5, while the CRT + SAFE algorithm had 40.4% sensitiv-
ity, 91.3% PPV, 54.1% NPV, F1 of 0.560, and F0.5 of 0.455. The model demonstrating the greatest overall AUC, 
as well as the highest PPV and sensitivity, was the CRT PFT+ model.

In the MGBB gold standard test set (N = 100), the CRT PFT+ algorithm had sensitivity of 71.7%, specificity of 
94.4%, PPV of 91.7%, and NPV of 79.7% (Table 3). The CRT PFT- algorithm had lower sensitivity more consistent 
with performance in the training set at 43.5%, 94.4% specificity, 87% PPV, and 66.2% NPV. The CRT + SAFE algo-
rithm demonstrated 43.5% sensitivity, 98.1% specificity, 95.2% PPV, and 67.1%NPV. The SAFE-NLP algorithm 
had the lowest sensitivity of 37%, specificity of 94.4%, PPV of 85% and NPV of 63.8%. As the CRT PFT+ algorithm 
demonstrated comparably high PPV and higher sensitivity in the test set relative to its performance in the gold 
standard training set, the CRT PFT+ algorithm was taken forward for external validation in the Marshfield Clinic 
EHR (Table 3). Among the Marshfield screen positive set, chart reviewers classified 70 cases and 30 non-cases. 
Applying the CRT PFT+ model revealed independent validation performance of sensitivity 61.4%, specificity of 
90%, PPV of 93.5%, NPV of 50% (Table 3) in the Marshfield validation sample.

Feature weight specifications for the CRT PFT+ algorithm are available in Table 4, and the alternative model 
weights are available in the supplement (Supplementary Table 4).

Discussion
In this study, we developed and compared several phenotyping algorithms for the classification of COPD in large 
EHR databases. We prioritized specificity and PPV for case selection in our algorithms, as the unbiased detec-
tion and estimation of associations between exposures and COPD is conditional on correct case classification. 
Among the models, we found that curated model CRT PFT+ performed with the greatest AUC, and also yielded 
the highest sensitivity and PPV while maintaining specificity of ~ 95%. The feature weight for everPFTlt70 was 
the largest weight in CRT PFT+, with several other clinical variables weighted highly including smoking history, 
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Figure 3.  Receiver-operator characteristic curves to assess classification performance of model-based 
algorithms.

Table 3.  Comparison of performance characteristics of probabilistic electronic medical record COPD 
classification algorithms within Mass General Brigham Biobank validation set (N = 100) and external, 
independent validation of final algorithm in the Marshfield Clinic (N = 100). *All probabilistic algorithms were 
assessed at their corresponding thresholds specifying 95% specificity. SAFE-NLP Model based on surrogate 
assisted feature extraction with natural language processing of unstructured EHR data (free text), CRT PFT- 
Model based on literature and expert-curated feature inputs primarily derived from structured data, excluding 
feature weights for spirometric  FEV1/FVC performance, CRT PFT+ Model based on feature space of CRT PFT-, but 
inclusive of feature weights for spirometric  FEV1/FVC performance, CRT + SAFE Model based on combining 
the full feature space for CRT PFT+ and SAFE.

Algorithm

Counts (N) Algorithm Performance*

True positive True negative False positive False negative Sensitivity Specificity PPV NPV

MGBB Validation (N = 100)

Automatic NLP features

SAFE-NLP 17 51 3 28 0.370 0.944 0.850 0.638

Curated features

CRT PFT- 20 51 3 26 0.435 0.944 0.870 0.662

CRT PFT+ 33 51 3 13 0.717 0.944 0.917 0.797

Mixed features

CRT + SAFE 20 53 1 26 0.435 0.981 0.952 0.671

External validation (N = 100)

Curated features

CRT PFT+ 43 27 3 27 0.614 0.900 0.935 0.500
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having been diagnosed with a COPD-specific code 3 times in a rolling 365 day period, and having ever been 
prescribed tiotropium.

We also developed the CRT PFT- model without inclusion of  FEV1/FVC results from spirometry, as not all 
patients receive spirometric confirmation of COPD at diagnosis, particularly in primary care settings. This model 
demonstrated 19% reduced sensitivity and 4.5% reduced PPV relative to the CRT PFT+ model in the training 
set, and lower sensitivity by 28.2% and PPV by 4.7% in the test set (model weights available in Supplementary 
Table 4). Taken together, our findings are in line with what has been previously observed with respect to under- 
and mis-diagnosis trends for COPD in practice, where spirometry and clinical symptoms are both important 
features for appropriate diagnosis of COPD. Importantly, these findings demonstrate the inadequacy of relying 
solely on structured data features (e.g. counts of diagnostic codes) to identify high-confidence COPD cases in 
the EHR.

Strengths of this study include the large variety of features that were considered in the model building pro-
cess, as the most essential step in developing prediction models is the curation of the feature space. We explored 
semi-automatic feature extraction approaches, in addition to manual development. In our study, we found 
that the use of SAFE did not perform as well as our expert curated models, and that combining the curated 
and SAFE-based feature spaces for model training did not appreciably improve the performance of the model, 
while making the algorithm significantly more laborious to apply. Therefore, we selected the CRT PFT+ model, 
which was largely based on derived variables from structured data in patient EHRs, with only two NLP-based 
variables for PFT and smoking (an overview of the steps for extracting the specific NLP variables in this model 
can be seen in Supplementary Information 5 and 6), to make the model more portable across institutions. More 
importantly, portability of the model was confirmed through external validation at the Marshfield Clinic which 
uses an entirely different home-grown EHR management system, with higher sensitivity (61.4%) reported than 
in our gold standard training set and an excellent PPV of 93.5%.

The advantage of employing an algorithm to classify COPD cases over manual chart review in a large EHR 
context is tremendous. Completing each chart reviews took an average of 15 min per patient in this study; manual 
chart review of the full MGBB COPD datamart (N = 3420) would have required 8 h/day of clinician labor for 
107 days. Once the model terms are extracted from the EHR, our approach can be applied almost instantaneously 
and it is easily re-applied as new participants are enrolled or as EHR records update over time.

Aside from case identification for cohort development or population-based epidemiological research both 
within and across different institutions/biobanks, there may be more immediate potential clinical applications for 
the algorithms developed in this work. For example, the CRT PFT- algorithm could be used to encourage provid-
ers to order PFTs among high-scoring patients. If employed as a pre-screening step, we note that probabilistic 
threshold indicating putative COPD could be relaxed to screen more subjects and thus improve overall capture 
of COPD cases, especially outside of specialty pulmonology clinics.

Our study is not without limitations. First, all of our models were developed using a COPD datamart built 
with a screening paradigm (i.e. multiple instances of COPD-related ICD codes, rather than multiple instances of 

Table 4.  Patient medical history features and weights used in the final Mass General Brigham Biobank CRT 
PFT+ algorithm for classification of COPD. The case assignment threshold for this model, holding specificity at 
95%, was 0.754. For subjects who were missing PFT results, the everPFTlt70 variable was classified as ‘No’ in 
this model.

Model feature Model weight Variable type Description

Intercept − 1.871

everPFTlt70 1.750 NLP Ever had a pulmonary function test with spirometry indicating pre-bronchodilator FEV1/FVC ratio < 0.7 OR post-bron-
chodilator FEV1/FVC ratio < 0.7

nCOPDGTE3_365 0.465 Coded Ever diagnosed with 3 or more COPD-related ICD codes within any rolling time window of 365 days

everTiotropium 0.334 Coded Ever been prescribed tiotropium

iNotWhite − 0.239 Coded Race category denoting whether subject is White or Not White

smkEver 0.175 NLP Any current/former history of smoking

everdxAtPulmClinic 0.056 Coded Ever diagnosed with a COPD-related ICD code at a pulmonary clinic

everCOPDmed 0.048 Coded Ever been prescribed a medication used to treat COPD?

nmedLAMA 0.017 Coded Total count of distinct prescription codes for long acting muscarinic antagonists in participant medical record for treat-
ment of lung diseases

pftCount − 0.016 Coded Total count of any kind of pulmonary function test

ageCOPDt1Specific 0.013 Coded Age (in years) at first ICD code specific to COPD

nCOPD_ICD 0.013 Coded
The COPD feature count of distinct dates on which a subject has a code from this feature
ICD10: J40–J44
ICD9: 491, 492, 493.2, 496

nBronchitis − 0.009 Coded
The count of distinct dates on which a subject has a Bronchitis ICD code
ICD10: J40, J41, J42
ICD9: 490, 491

nBronchiectasis − 0.008 Coded
The count of distinct dates on which a subject has a Bronchiectasis ICD code
ICD10: J47
ICD9: 494

patient_dxenct − 0.001 Coded Total number of encounters (visits) per subject with a coded diagnosis (any diagnosis not limited to COPD)
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any ICD codes) tailored for distinguishing between patients with COPD-like symptoms vs true COPD, which 
may have resulted in a less sensitive algorithm. However, an advantage of training on a more stringently screened 
sample is that the specificity for COPD is likely higher when applied to the general population, where we expect 
that distinguishing between COPD cases vs general controls and non-cases is less challenging than in our training 
set. In addition, the use of a screening step enhances PPV by increasing the prior probability of true cases in the 
sample to which the algorithm is applied. While none of the models performed outstandingly well with respect 
to NPV, our goal was to successfully make the more challenging distinction between COPD cases vs non-cases in 
the COPD datamart, rather than COPD cases vs controls in the general EHR; high confidence case ascertainment 
is essential for improving the power to detect even small associations between a given exposure and COPD (e.g. 
in molecular epidemiologic contexts). Thus, control selection was conceived as a rule-based approach requiring 
no history of any COPD-specific ICD codes, as has been successfully implemented  previously11,12.

Second, our models are subject to the same vulnerabilities as any other predictive model in that that their 
development, and therefore their performance, depends significantly on the quality and source of the data 
inputs on which they are trained. In particular, while the demographic distribution of the MGB datamart was 
predominantly white, the randomly selected chart review sample from the external validation at Marshfield Clinic 
was entirely so; in both cases, the sampled participants were reflective of the demographic composition of the 
populations from which they were drawn. However, the consequence was that the predictive weight assigned to 
the indicator for White vs Not White was not applied in the execution of the algorithm at Marshfield and was not 
technically validated. Indeed, the weights assigned to this indicator variable in our curated models may reflect 
racial disparities in COPD  diagnosis27,28 rather than a reliable predictor of true clinical COPD case status, and 
should thus be considered with appropriate caution in the absence of evidence to the contrary.

Finally, to apply our algorithm requires additional computational time to extract terms that are typically 
not reliably captured in structured EHR and are more often found in test results, lab reports, and clinical notes; 
however, we note that our final algorithm limits this work by restricting such extractions to just two features. On 
balance, the time saved by obviating more traditional, manual clinical review should still considerably outweigh 
the time required to extract even more extensive lists of NLP-based terms than the two proposed in our model.

In summary, we provide a high-performing, externally validated, and generalizable algorithm for the rapid 
classification of COPD using EHRs obviating the need for laborious manual chart review. Our algorithm relies 
primarily on structured data features, while minimizing dependency on unstructured records to just two features: 
smoking history and spirometry. In settings where support for text-mining of unstructured records is limited, 
we supply an alternative algorithm with high PPV as a viable alternative, albeit with lower sensitivity. While 
prior studies have used a variety of ICD-based strategies for identifying COPD patients, none have previously 
examined the impact of spirometry on classification performance. This study provides strong supportive evidence 
for the inclusion of spirometric features, in tandem with clinical features derived from structured records, in 
EHR investigations requiring classification of COPD.

Data availability
Data are available to investigators whose proposed use of the data are approved through an institutional review 
committee of Mass General Brigham.
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