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Interaction between dietary total 
antioxidant capacity and BDNF 
Val66Met polymorphism on lipid 
profiles and atherogenic indices 
among diabetic patients
Faezeh Abaj1, Masoumeh Rafiee2 & Fariba Koohdani3*

Brain-derived neurotrophic factor (BDNF) belongs to the “neurotrophin” family of growth factors, and 
it has recently been associated to cardiovascular disease (CVD). We anticipated that BDNF Val66Met 
polymorphisms may alter CVD risk markers such as serum lipid profile differences, and interaction with 
total antioxidant capacity of diet (DTAC) could alter these clinical parameters. This cross-sectional 
study consisted of 667 diabetic patients (39.7% male and 60.3% female). DTAC was calculated by 
international databases. Biochemical markers including total cholesterol (TC), low-density lipoprotein 
(LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive 
protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). 
interleukin 18 (IL18), leptin and ghrelin were measured by standard protocol. Atherogenic indices (AIP, 
AC, CR-I, CR-II) were calculated. Genotyping of the BDNF Val66Met polymorphisms was conducted 
by the real-time PCR–RFLP method. The gene-diet interactions were evaluated using a generalized 
linear mode (GLMs). Carriers of the Val/Met genotype who were in the higher median intake of FRAP 
had lower HDL (P:0.04) and higher TG (P:0.005), AIP (P:0.02) and AC (P:0.02) index compared to Val/
Val genotypes with lower median intake. Moreover, diabetic patients with Val/Met genotype who 
consumed higher ORAC intake had increased odds for anthropometric indices (BMI (P:0.01) and WC 
(P:0.03)), lipid profiles (TG) (P:0.01), and atherogenic index (AIP) (P:0.02), also decreased odds for HDL 
(P:0.03) concentration compared to reference group whit lower ORAC intake. Individuals with Val/
Met genotype who consumed higher TRAP intake had increased odds for WC (P:0.04), TC (P:0.001), 
TG (P < 0.001), AIP (P < 0.001) and AC (P < 0.001). Finally, Val/Met patients with a higher median 
intake of TEAC had higher TG (P:0.02), AIP (P:0.009) and AC (P:0.03) compared to the reference group 
whit lower TEAC intake. Our study showed that Val/Met genotype had also the highest lipid profile 
and atherogenic indices even in the highest adherence to DTAC. While it seems that the presence 
of the Val/Val wild-type and BDNF Met/Met homozygotes in diabetic patients with a high DTAC is a 
protective factor.

High lipid serum concentrations are involved in the development of CVD and metabolic disorders. As a result, 
lipid level detection and treatment are critical in preventing CVD and its implications in diabetes  patients1,2. Sig-
nificant evidence suggests that high TC and TG levels, as well as an inverse association with HDL-C, are directly 
or indirectly connected to the risk of  CVD3,4. The TC/HDL ratio is a more specific and sensitive indicator of 
cardiovascular risk than TC, with a value more than 5.5 indicating significant atherogenic  risk5. The atherogenic 
index of plasma, in addition to dyslipidemia, is one of the most powerful markers in predicting the risk of CVD. 
The atherogenic index of plasma (AIP) is a new  index6–8, that has been used to quantify blood lipid levels and is 
often utilized as an optimum indication of dyslipidemia and related problems such as  CVD9–11.
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Environmental factors, such as dietary consumption, genetic variations, and their interactions, have an impact 
on blood lipid  levels12–15. Dietary changes could impact the oxidation profile of patients with various clinical dis-
eases including diabetes, dyslipidemia, and CVDs, which are affected by foods and diets including polyphenols, 
flavonoids, PUFAs, and the Mediterranean  diet16,17. The influence of antioxidants alone in decreasing oxidative 
stress has been identified; however, combining antioxidants is shown to have a synergistic activity; the perfect 
way to demonstrate this is to estimate the cumulative function and complex effects of all antioxidants in body 
fluids; total antioxidant capacity (TAC) is characterized as the moles of a given free radical removed by a test 
 solution16,18,19. According to studies, DTAC is inversely connected to cancer fatalities, cardiovascular disease 
deaths, and all other causes of  death20. Given the impact of DTAC on the aforementioned parameters, it’s not 
unreasonable to believe that DTAC is related to atherogenic and anthropometric indices.

Moreover, BDNF is a candidate gene among the genetic variables linked to serum lipid levels that have been 
reported. The human BDNF gene is found on chromosome 11, in the region p13–14, and is mainly expressed in 
brain  tissue21,22. The valine (Val) to a methionine (Met) substitution at codon 66 of BDNF gene, which can disrupt 
construction of BDNF into secretory vesicles and lead to low secretion of  BDNF23. Several studies have showed 
the possible association between Met allele and insulin resistance and obesity in patients with  schizophrenia24. 
In study of Leipzig Childhood cohort on German obese children showed that the Met allele associated with 
lower body mass index (BMI), postprandial glucose and HbA1c levels, however had not significant association 
with serum insulin and lipid  profile25. The effects of BDNF single-nucleotide polymorphisms (SNPs) on the 
risk of cardiovascular disease, type 2 diabetes, and metabolic syndrome have been investigated  extensively26–28. 
Gene variations have been found to interact with nutritional intakes, eating preferences, and body composition 
in several  investigations29,30. In some studies, met-allele carriers were directly correlated to the high intake of 
dietary total calorie, carbohydrate, and protein.

In Puerto Rican men, the BDNF rs6265 GG genotype has been related to increased, but in women, it has 
been related to a lower BMI. However the reasons for the gender disparities are unknown, they appeared to be 
related to variations in PUFA intake, and there was a significant interplay between the BDNF alleles and u-3 
and u-6 PUFA  consumption30. As a result, the interactions between the rs6265 BDNF variation and ethnic and 
nutritional factors appear to be essential, but they are still unknown. Although there are some nutrigenetic studies 
related to DTAC, to the best of our knowledge, no studies have investigated the interactions of BDNF variants 
with dietary TAC on atherogenic indices changes. Hence, this study aimed to find out the possible relationship 
between this dietary index and atherogenic indices and compare it among BDNF Val/Met polymorphism groups.

Result
Study population characteristics. In the current study, 667 patients with T2DM were evaluated, sex 
distribution of the population was 39.7% and 60.3% male and female, respectively, 17.5% were smoker and 
81.8% had a family history of diabetes. The means and standard deviation (SD) of age, BMI, and WC of individu-
als were (54.03 ± 6.51 years, 29.42 ± 4.64 kg/m2, and 92.67 ± 10.72 cm), respectively. According to our findings, 
genotype distribution of BDNF Val66Met (rs6265) in type 2 diabetes population was 54.9%, 35.2% and 9.9% for 
Val/Val, Val/Met and Met/Met. Genotype frequencies were in Hardy Weinberg equilibrium (P > 0.05). Also, the 
median intake of DTAC was (FRAP (15.83) TRAP (8.19) TEAC (7.46), and ORAC (27,372.14)).

Association between population characteristics, biochemical parameters between DTAC and 
BDNF Val66Met polymorphism. We found that there was no significant association between lipid pro-
files and atherogenic indices among BDNF Val66Met genotypes (p > 0.05) (Table 1).

Lipid profiles and atherogenic indices among DTAC groups (ferric reducing-antioxidant power (FRAP), 
total radical-trapping antioxidant parameter (TRAP), total reactive antioxidant potential (TEAC), and oxygen 
radical absorbance capacity (ORAC)), is presented in Tables 2 and 3. An individual with higher adherence to 
FRAP (P = 0.02), TEAC (P = 0.04), and ORAC (P = 0.01) had lower TAC concentrations. Moreover, patients with 
a higher intake of TRAP (P = 0.03) were more likely to have higher IL-18 concentrations.

Interaction between the BDNF Val66Met polymorphism and DTAC . Tables 4, 5, 6, 7 show the 
interactions between BDNF Val66Met polymorphism and DTAC (FRAP, TRAP, TEAC, and ORAC) on anthro-
pometric indices (BMI and WC), lipid profiles (HDL, LDL, TC, and TG), and atherogenic indices (AIP, AC, CRI.
II and CRI).

In both crud and adjusted model for potential confounders, BDNF Val66Met and FRAP interactions were 
significant in terms of HDL, TG, AIP and AC index. Carriers of the Val/Met genotype who were in the higher 
median intake of FRAP had lower HDL (β: − 4.18, 95%CI − 8.29 to − 0.68, P:0.04) and higher TG concentration 
(β: 51.84, 95%CI 15.39 to 88.30, P:0.005), AIP (β: 0.12, 95%CI 0.04 to 0.20, P:0.003), and AC (β: 0.59, 95%CI 0.08 
to 1.10, P:0.02) index compared to Val/Val genotypes whit lower median intake (Table 4, Fig. 1).

Besides, BDNF Val66Met and ORAC  interactions were significant in terms of anthropometric indices (BMI 
and WC), lipid profiles (HDL and TG), and atherogenic index (AIP) in crude model and after adjusted to 
cofounding factors. Diabetic patients with Val/Met genotype who consumed higher ORAC intake had increased 
odds for BMI (β: 1.84, 95%CI 0.31 to 3.37, P:0.01), WC (β: 3.75, 95%CI 0.19 to 7.31, P:0.03), TG (β: 45.52, 95%CI 
9.30 to 81.73, P:0.01) and AIP (β: 0.09, 95%CI 0.01 to 0.17, P:0.02), also decreased odds for HDL concentration 
(β: − 4.62, 95%CI − 8.83 to − 0.41, P:0.03) compared to reference group whit lower ORAC intake (Table 5, Fig. 2).

Moreover, Val/Met patients with a higher median intake of TEAC had higher TG (β: 55.85, 95%CI 19.85 
to 91.84, P = 0.002), AIP (β: 0.10, 95%CI 0.02 to 0.18, P = 0.009) and AC (β: 0.55, 95%CI 0.05 to 1.06, P = 0.03) 
compared to reference group whit lower TEAC intake in both crud and adjusted model. Moreover, in the crude 
model, there was no significant interaction between Val/Met group and TEAC intake on TC (β: 22.44, 95% CI 
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− 0.52 to 45.42, P:0.05) however, after controlling for confounders, a significant interaction was found on TC (β: 
26.39, 95% CI 3.40 to 49.38, P:0.02). In crude model, Met/Met group with higher TEAC intake had lower HDL 
(β: − 7.09, 95% CI − 13.77 to − 0.24, P:0.04), also after adjustment for cofounders this association was disappeared 
(β: − 6.03, 95% CI − 12.64 to 0.56, P:0.07) (Table 6, Fig. 3).

Finally, BDNF Val66Met and TRAP interactions were significant in terms of the anthropometric index (WC), 
lipid profiles (TC and TG), and atherogenic indices (AIP and AC). Diabetic patients with Val/Met genotype who 
consumed higher TRAP intake had increased odds for TC (β: 37.20, 95%CI 14.38 to 60.03, P:0.001), TG (β: 65.28, 
95%CI 29.36 to 101.20, P < 0.001), AIP (β: 0.16, 95%CI 0.08 to 0.24, P < 0.001) and AC (β: 0.89, 95%CI 0.39 to 
1.39, P < 0.001) compared to reference group whit lower TRAP intake in both crud and adjusted model (Table). 
Moreover, in the crude model, there was a significant interaction between the Val/Met group in comparison 
with the reference group (Val/Val) on WC (β: 3.75, 95%CI 0.20 to 7.29, P:0.03), however, after controlling for 
confounders, a significant interaction was disappeared WC (β: 3.36, 95%CI − 0.07 to 6.80, P:0.05) (Table 7, Fig. 4).

Discussion
The key findings of the current study were the significant interaction result of BDNF Val66Met polymorphism 
with DTAC on lipid profile and atherogenic indices in T2DM patients. High DTAC intake modified the associa-
tion of the BDNF Val66Met genotypes with the odds of higher lipid profile and atherogenic indices. Particularly, 
we revealed that increased DTAC did not influence the negative consequences of the Val/Met genotype. While 
it seems that the presence of the Val/Val wildtype and BDNF Met/Met homozygotes in diabetic patients with a 
high DTAC is a protective factor.

In this present study, we revealed that an individual with higher adherence to DTAC had lower TAC con-
centrations. Moreover, patients with a higher intake of TRAP were more likely to have higher IL-18 concentra-
tions. There have been few investigations on the relationship between DTAC and metabolic indicators such as 

Table 1.  The association between BDNF Val/Met polymorphism with lipid profiles and atherogenic indices 
in T2DM patients. Data are presented as mean ± standard deviation (SD). BMI body mass index, HDL-c high 
density lipoprotein cholesterol, LDL-c low density lipoprotein cholesterol, TG triglyceride, CRP C-reactive 
protein, PTX3 pentraxin-3, IL18 interleukin 18, TAC  total antioxidant capacity, SOD superoxide dismutase, 
PGF2α prostaglandinF2α, FRAP ferric reducing ability of plasma, TRAP total reactive antioxidant potential, 
TEAC trolox equivalent antioxidant capacity, ORAC  oxygen radical absorbance capacity, AIP log (TG/HDL), 
AC (TC-HDL)/HDL, CRI.II (LDL/HDL), CRI-I (TC/HDL).

BDNF Val/Met polymorphism

P-valueVal/Val Val/Met Met/Met

Age (year) 54.20 ± 6.28 53.91 ± 6.97 53.56 ± 6.19 0.71

Sex (male) N% 155(58.5%) 81(30.6%) 29(10.9%) 0.11

Cigarette smoking (yes) N% 76 (58.5%) 37 (28.5%) 17 (13.1%) 0.12

Alcohol consumption (no) N% 355 (55%) 229 (35.4%) 62 (9.6%) 0.34

Familial history of diabetes (yes) N% 296 (54.9%) 186 (34.5%) 57 (10.6%) 0.42

Glucose-lowering medication
297 (53.9%)
69 (59.5%)

197 (35.8%)
38 (32.8%)

57 (10.3%)
9 (7.8%) 0.48Metformin and glybenclamid N%

Other medications N%

Supplementation use (yes) 364 (55%) 232 (35%) 66 (10%) 0.45

Total energy intake, kcal/day 2606.74 ± 1030.58 2627.05 ± 918.05 2537.43 ± 865.26 0.80

BMI (kg/m2) 29.19 ± 4.61 29.78 ± 4.86 29.38 ± 3.86 0.30

WC (cm) 92.67 ± 10.90 92.70 ± 10.61 92.62 ± 10.21 0.99

HDL (mg/dl) 54.95 ± 13.40 54.66 ± 12.11 55.83 ± 11.32 0.80

LDL (mg/dl) 109.43 ± 34.33 112.48 ± 37.13 116.50 ± 38.50 0.27

LDL/HDL 3.03 ± 13.16 2.11 ± 0.67 2.12 ± 0.65 0.48

TC (mg/dl) 193.06 ± 65.66 199.80 ± 75.98 199.72 ± 66.06 0.46

TG (mg/dl) 183.77 ± 106.1 179.10 ± 103.24 192.46 ± 138.80 0.67

Leptin (ng/ml) 24.28 ± 13.55 27.67 ± 16.54 23.01 ± 14.18 0.16

Ghrelin (ng/ml) 2.15 ± 1.18 2.37 ± 1.30 2.33 ± 1.21 0.41

AIP 0.47 ± 0.23 0.46 ± 0.24 0.45 ± 0.27 0.82

AC 2.68 ± 1.51 2.81 ± 1.62 2.64 ± 1.17 0.54

CRI.II 2.06 ± 0.69 2.11 ± 0.67 2.12 ± 0.65 0.63

CRI-I 3.80 ± 1.67 3.83 ± 1.46 3.51 ± 1.05 0.32

FRAP (mmol  Fe2+/100 g) 18.17 ± 13.41 17.35 ± 7.72 16.95 ± 6.62 0.56

TRAP (mmol TE/kg) 9.68 ± 5.56 9.75 ± 5.62 8.65 ± 3.70 0.32

TEAC (mmol TE/kg) 8.63 ± 4.30 8.63 ± 4.14 7.98 ± 3.09 0.49

ORAC (µmol TE/100 g) 30,553.29 ± 16,659.94 29,889.21 ± 12,158.26 29,602.80 ± 10,295.74 0.81
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lipid profiles and inflammatory markers; the findings of numerous research have contradicted the findings of 
the current  study20,31–35. In line with our findings, Mozaffari et al.36, have shown subjects in the highest tertile of 
dietary TRAP had higher BMI than those in the lowest tertile. Numerous findings have reported obesity has been 
linked to a persistent low-grade inflammatory disease, which has been linked to the development of T2DM and 
 CVD37,38. In these situations, human adipose tissue secretes a high amount of inflammatory markers, including 
IL-18, in these  circumstances39.

We did not find significant association between BDNF rs6267 groups and biochemical markers. BDNF play 
important role in etiology of diabetes and obesity by probably biological mechanism including controlling food 
behaviour, energy homeostasis and anorexigenic  effects40. Some experimental studies have also suggested that 

Table 2.  The association between lipid profiles and atherogenic indices with DTAC (FRAP, TRAP) in T2DM 
patients. Data are presented as mean ± standard deviation (SD). Bold values denote statistical signifcance 
at the P < 0.05 level. BMI body mass index, HDL-c high density lipoprotein cholesterol, LDL-c low density 
lipoprotein cholesterol, TG triglyceride, CRP C-reactive protein, PTX3 pentraxin-3, IL18 interleukin 18, TAC  
total antioxidant capacity, SOD superoxide dismutase, PGF2α prostaglandinF2α, AIP log (TG/HDL), AC 
(TC-HDL)/HDL, CRI.II (LDL/HDL), CRI-I (TC/HDL).

FRAP
Mean ± SD

P

TRAP
Mean ± SD

P

Low High Low High

327 321 335 325

Age (year) 53.83 ± 6.53 54.13 ± 6.36 0.55 54.06 ± 6.68 53.86 ± 6.28 0.68

Sex (male) N% 127 (49.2%) 131 (50.8%) 0.33 129 (49%) 134 (51%) 0.28

BMI (kg/m2) 29.42 ± 4.96 29.42 ± 4.36 0.98 29.43 ± 4.88 29.39 ± 4.40 0.90

WC (cm) 92.63 ± 10.64 92.89 ± 10.92 0.75 92.99 ± 11.20 92.38 ± 10.25 0.46

Occupation unemployed 168 (51.9%) 156 (48.1%) 0.26 158 (48.2%) 170 (51.8%) 0.27

Education university educated 67 (54%) 57 (46%) 0.21 73 (58.4%) 52 (41.6%) 0.03

Cigarette smoking (yes) N% 50 (40%) 75 (60%) 0.006 54 (42.2%) 74(57.8%) 0.02

Alcohol consumption (NO) N% 317 (50.6%) 310 (49.4%) 0.48 323 (50.5%) 316 (49.5%) 0.35

Familial history of diabetes (yes) N% 227 (50.3%) 224 (49.7%) 0.49 235 (51.2%) 224 (48.8%) 0.39

Glucose-lowering medication
279 (52.1%)
48 (42.58%)

256 (47.9%)
65 (57.5%) 0.03 283 (51.9%)

52 (45.2%)
262 (48.1%)
63 (54.8%) 0.11Metformin and glybenclamid N%

Other medications N%

Supplementation use (yes) 326 (50.7%) 317 (49.3%) 0.18 334 (51%) 321 (49%) 0.17

Total energy intake, kcal/day 2594.64 ± 961.68 2639. ± 998.72 0.53 2569.34 ± 950.53 2654.10 ± 999.75 0.23

Carbohydrate, g/day 341.16 ± 141.08 352.74 ± 148.18 0.27 337.21 ± 131.41 355.31 ± 155.02 0.08

Protein, g/day 90.55 ± 35.87 91.73 ± 37 0.65 90.30 ± 35.60 91.72 ± 37.12 0.58

Total fat, g/day 104.83 ± 51.36 103.60 ± 47.07 0.73 104.06 ± 50.50 103.95 ± 47.60 0.97

Saturated fatty acids, g/day 26.70 ± 10.40 27.15 ± 12.19 0.58 26.49 ± 10.55 27.25 ± 11.98 0.35

Monounsaturated fatty acids, g/day 36.14 ± 19.79 35 ± 17.35 0.39 35.91 ± 19.28 35.29 ± 17.76 0.75

Polyunsaturated fatty acids, g/day 25.83 ± 16.29 25.43 ± 14.16 0.71 25.45 ± 15.55 25.73 ± 14.85 0.79

Cholesterol, (mg/day) 222.69 ± 143.12 221.49 ± 49 0.93 226.41 ± 160.26 221.60 ± 22.07 0.73

Dietary fiber, g/day 41.64 ± 21.86 44.28 ± 24.30 0.11 41.12 ± 12.34 44.58 ± 24.43 0.03

HDL (mg/dl) 54.48 ± 12.48 55.28 ± 13.05 0.43 54.93 ± 12.25 54.86 ± 13.24 0.94

LDL (mg/dl) 111.33 ± 35.51 110.50 ± 35.81 0.76 111.24 ± 35.60 110.69 ± 35.65 0.84

Cholesterol (mg/dl) 194.92 ± 69.25 195.40 ± 70.33 0.93 196.81 ± 68.23 194.15 ± 70.93 0.62

TG (mg/dl) 181.05 ± 110.92 182.38 ± 105.97 0.87 184.39 ± 116.49 180.72 ± 100.36 0.66

Leptin (ng/ml) 25.28 ± 13.58 25.45 ± 15.88 0.92 25.10 ± 13.70 25.29 ± 15.77 0.91

Fat% 36 ± 8.39 34.79 ± 7.63 0.05 35.85 ± 7.88 34.93 ± 8.19 0.14

Ghrelin (ng/ml) 2.19 ± 1.24 2.27 ± 1.25 0.61 2.22 ± 1.30 2.26 ± 1.65 0.77

CRP (mg/l) 2.06 ± 1.39 2.20 ± 1.57 0.56 2.12 ± 1.47 2.19 ± 1.50 0.76

Pentrexin3 (ng/ml) 2.63 ± 0.52 2.56 ± 0.39 0.36 2.62 ± 0.45 2.59 ± 0.46 0.70

Interlukin18 (pg/ml) 247.61 ± 32.24 248.68 ± 27.86 0.82 241.96 ± 32.05 252.24 ± 27.71 0.03

TAC (g/dl) 2.62 ± 0.58 2.40 ± 0.56 0.02 2.60 ± 0.59 2.44 ± 0.55 0.08

SOD (U/ml) 0.14 ± 0.04 0.15 ± 0.10 0.52 0.15 ± 0.04 0.16 ± 0. 08 0.65

PGF2alpha (pg/ml) 72.48 ± 6.46 72.52 ± 5.61 0.96 72.50 ± 6.39 72.38 ± 5.83 0.90

AIP 0.46 ± 0.25 0.47 ± 0.23 0.72 0.46 ± 0.25 0.47 ± 0.23 0.77

AC 2.73 ± 1.56 2.69 ± 1.49 0.74 2.72 ± 1.53 2.70 ± 1.51 0.86

CRI.II 2.10 ± 0.68 2.05 ± 0.66 0.36 2.08 ± 0.67 2.08 ± 0.68 0.93

CRI-I 3.83 ± 1.54 3.79 ± 1.57 0.74 3.76 ± 1.52 3.82 ± 1.59 0.61
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hyperphagia, hyperinsulinemia, and higher levels of serum leptin and body weight following a decrease in BDNF 
levels, among BDNF-knockout  mice41. In terms of human study, association between Val66Met polymorphism 
with obesity, dyslipidaemia and diabetes are controversial. For instance, several studies have shown that Met/Met 
genotype have higher risk for insulin resistance, obesity and  dyslipidaemia24,42,43. Bonaccorso et al. revealed, Met-
allele of BDNF Val66Met polymorphism was to be positively associated with serum levels TG and TG/HDL-C 
 ratio24. However, some authors have suggested the Met-allele carriers have lower risk for obesity, postprandial 
glucose and HbA1c  levels25,44,45. Additionally, also some studies have observed no association with anthropo-
metric indices and lipid  profile46–48. The inconsistent results have been revealed on the association between the 
Val66Met polymorphism and obesity and lipid profile, proposing that environmental factors like dietary intake 
may be modify this association.

Table 3.  The association between lipid profiles and atherogenic indices with DTAC (TEAC, ORAC) in T2DM 
patients. Data are presented as mean ± standard deviation (SD). Bold values denote statistical signifcance 
at the P < 0.05 level. BMI body mass index, HDL-c high density lipoprotein cholesterol, LDL-c low density 
lipoprotein cholesterol, TG triglyceride, CRP C-reactive protein, PTX3 pentraxin-3, IL18 interleukin 18, TAC  
total antioxidant capacity, SOD superoxide dismutase, PGF2α prostaglandinF2α, AIP log (TG/HDL), AC 
(TC-HDL)/HDL, CRI.II (LDL/HDL), CRI-I (TC/HDL).

TEAC
Mean ± SD

P

ORAC 
Mean ± SD

PLow High Low High

Age (year) 53.95 ± 6.61 54.01 ± 6.34 0.89 54.02 ± 6.75 53.90 ± 6.22 0.80

Sex (male) N% 131 (49.8%) 132 (50.2%) 0.48 123 (46.9%) 139 (53.1%) 0.16

BMI (kg/m2) 29.29 ± 4.88 29.51 ± 4.41 0.54 29.36 ± 4.79 29.49 ± 4.54 0.72

WC (cm) 92.72 ± 11.19 92.68 ± 10.29 0.95 92.54 ± 10.68 92.93 ± 10.83 0.64

Occupation unemployed N% 166 (50.5%) 163 (49.5%) 0.45 158 (48.2%) 170 (51.8%) 0.27

Education university educated N% 64 (51.2%) 61 (48.8%) 0.42 70 (56.5%) 54 (43.5%) 0.05

Cigarette smoking (yes) N% 55 (40.3%) 73 (57%) 0.04 54 (41.9%) 75 (58.1%) 0.03

Alcohol consumption (NO) N% 321 (50.3%) 317 (49.7%) 0.32 316 (49.7%) 320 (50.3%) 0.34

Familial history of diabetes (yes) N% 267 (50%) 267 (50%) 0.44 224 (49.1%) 232 (50.9%) 0.42

Glucose-lowering medication
248 (52.2%)
46 (40%)

260 (47.8%)
69 (60%) 0.01 281 (51.8%)

44 (38.3%)
261 (48.2%)
71 (61.7%) 0.005Metformin and glybenclamid N%

Other medications N%

Supplementation use (yes) N% 329 (50.3%) 325 (49.95) 0.18 325 (49.8%) 327(50.2%) 0.03

Total energy intake, kcal/day 2555.76 ± 946.78 2670.21 ± 1002.04 0.10 2572.94 ± 926.81 2654.90 ± 1023.31 0.24

Carbohydrate, g/day 336.14 ± 131.80 356.64 ± 154.67 0.04 330.73 ± 130.61 353.17 ± 154.60 0.03

Protein, g/day 90.16 ± 35.48 91.96 ± 37.23 0.49 90.05 ± 34.30 92.10 ± 38.35 0.43

Total fat, g/day 103.27 ± 50.12 104.86 ± 47.99 0.65 103.13 ± 49.99 105.15 ± 48.18 0.56

Saturated fatty acids, g/day 26.53 ± 10.82 27.22 ± 11.75 0.39 26.60 ± 10.35 27.16 ± 12.17 0.49

Monounsaturated fatty acids, g/day 35.52 ± 19.17 35.53 ± 19.17 0.99 35.38 ± 19.04 35.73 ± 18.06 0.79

Polyunsaturated fatty acids, g/day 25.31 ± 15.23 25.90 ± 15.18 0.59 25.11 ± 15.68 26.15 ± 14.73 0.34

Cholesterol, (mg/day) 222.44 ± 144.44 225.65 ± 232.93 0.81 218.93 ± 122.38 229.43 ± 245.65 0.45

Dietary fiber, g/day 41.18 ± 21.44 44.57 ± 24.37 0.04 42.06 ± 12.75 43.79 ± 24.24 0.29

HDL (mg/dl) 54.79 ± 12.33 55.02 ± 13.16 0.81 54.68 ± 12.50 55.07 ± 12.97 0.69

LDL (mg/dl) 111.91 ± 36.23 110.04 ± 35.03 0.50 110.52 ± 35.30 111.49 ± 36.08 0.72

Cholesterol (mg/dl) 196.97 ± 69.42 193.92 ± 69.79 0.57 194.26 ± 71.39 196.32 ± 67.68 0.70

TG (mg/dl) 185.42 ± 113.34 178.96 ± 103.33 0.45 184.29 ± 111.44 179.20 ± 105.06 0.55

Leptin (ng/ml) 25.19 ± 13.75 25.20 ± 15.57 0.99 24.82 ± 13.74 25.56 ± 15.62 0.68

Fat% 35.65 ± 7.81 35.15 ± 8.28 0.42 35.54 ± 8.08 35.30 ± 8.05 0.71

Ghrelin (ng/ml) 2.11 ± 1.12 2.35 ± 1.31 0.13 2.18 ± 1.19 2.29 ± 1.27 0.51

CRP (mg/l) 2.08 ± 1.47 2.23 ± 1.50 0.55 2.13 ± 1.36 2.15 ± 1.58 0.92

Pentrexin3 (ng/ml) 2.65 ± 0.50 2.56 ± 0.42 0.21 2.63 ± 0.52 2.57 ± 0.39 0.44

Interlukin18 (pg/ml) 247.35 ± 27.85 247.97 ± 32.16 0.89 245.56 ± 32.45 250.29 ± 27.33 0.33

TAC (g/dl) 2.60 ± .58 2.42 ± .55 0.04 2.62 ± 0.58 2.39 ± 0.55 0.01

SOD (U/ml) 0.15 ± 0.04 0.15 ± 0.09 0.85 0.14 ± 0.04 0.15 ± 0.10 0.33

PGF2alpha (pg/ml) 72.29 ± 6.22 72.56 ± 5.95 0.78 72.33 ± 6.49 72.50 ± 5.67 0.86

AIP 0.47 ± 0.24 0.46 ± 0.24 0.64 0.47 ± 0.25 0.46 ± 0.23 0.74

AC 2.73 ± 1.54 2.68 ± 1.49 0.66 2.69 ± 1.57 2.73 ± 1.47 0.77

CRI.II 2.09 ± .67 2.06 ± 0.67 0.56 2.07 ± 0.66 2.09 ± 0.68 0.80

CRI-I 3.81 ± 1.75 3.78 ± 1.32 0.80 3.80 ± 1.54 3.80 ± 1.56 0.98
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Variable Allele

High adherence of FRAP

β 95% CI P

BMI

Crud

Met/Met 0.55 − 1.94 to 3.04 0.66

Val/Met 0.66 − 0.88 to 2.21 0.40

Val/Val Reference

Adjusted

Met/Met 0.64 − 1.85 to3.12 0.61

Val/Met 0.72 − 0.81 to 2.26 0.35

Val/Val Reference

WC

Crud

Met/Met − 0.15 − 5.92 to 5.60 0.86

Val/Met 0.48 − 3.11 to 4.07 0.79

Val/Val Reference

Adjusted

Met/Met − 0.48 − 6.09 to 5.11 0.86

Val/Met 0.23 − 3.25 to 3.73 0.89

Val/Val Reference

HDL

Crud

Met/Met − 7.25 − 14.04 to − 0.47 0.03

Val/Met − 4.39 − 8.63 to − 0.16 0.04

Val/Val Reference

Adjusted

Met/Met − 6.10 − 12.69 to 0.49 0.07

Val/Met − 4.18 − 8.29 to − 0.68 0.04

Val/Val Reference

TG

Crud

Met/Met 25.52 − 32.43 to 83.48 0.86

Val/Met 49.98 13.86 to 86.11 0.007

Val/Val Reference

Adjusted

Met/Met 24.16 − 34.37 to 82.71 0.41

Val/Met 51.84 15.39 to 88.30 0.005

Val/Val Reference

LDL

Crud

Met/Met − 1.66 − 20.67 to 17.33 0.43

Val/Met − 0.43 − 12.30 to 11.43 0.07

Val/Val Reference

Adjusted

Met/Met 3.37 − 15.55 to 22.31 0.72

Val/Met 0.16 − 11.64 to 11.97 0.97

Val/Val Reference

TC

Crud

Met/Met − 25.42 − 62.49 to 11.64 0.17

Val/Met 19.56 − 3.64 to 42.77 0.09

Val/Val Reference

Adjusted

Met/Met − 22.09 − 59.24 to 15.06 0.24

Val/Met 21.79 − 1.44 to 45.03 0.06

Val/Val Reference

AIP

Crud

Met/Met 0.07 − 0.05 to 0.20 0.23

Val/Met 0.12 0.03 to 0.20 0.004

Val/Val Reference

Adjusted

Met/Met 0.06 − 0.06 to 0.20 0.30

Val/Met 0.12 0.04 to 0.20 0.003

Val/Val Reference

AC

Crud

Met/Met − 0.02 − 0.84 to 0.78 0.94

Val/Met 0.57 0.05 to 1.08 0.02

Val/Val Reference

Adjusted

Met/Met − 0.06 − 0.87 to 0.75 0.87

Val/Met 0.59 0.08 to 1.10 0.02

Val/Val Reference

LDL/HDL.CRI.II

Crud

Met/Met 0.23 − 0.12 to 0.59 0.21

Val/Met 0.05 − 0.16 to 0.28 0.62

Val/Val Reference

Adjusted

Met/Met 0.27 − 0.08 to 0.62 0.13

Val/Met 0.05 − 0.16 to 0.27 0.60

Val/Val Reference

Continued
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In this study, we discovered that a diet high in overall antioxidant capacity is more beneficial in homozygotes 
carriers than in Val/Met carriers. This is the first research to investigate at how dietary antioxidants interact with 
the BDNF polymorphism. In addition, only a few studies have examined the relationship between BDNF rs6267 
and dietary patterns, as well as food and nutrient  intakes29,30. According to a pervious study, individuals with 
BDNF Val/Met and Met/Met had a lower risk for T2DM in low energy intake and especially BDNF Val/Met had 
a negative association with low-protein, high-carbohydrate, and low-fat diet. In comparison to BDNF Val/Val, 
BDNF Val/Met reduced the risk of HOMA-IR in low-energy intake but raised the risk of HOMA-B in high-energy 
intake. HOMA-B is an insulin secretion capacity index that could aim to decrease the incidence of T2DM. When 
high-energy consumption is combined with BDNF Val/Met, insulin secretion is increased in terms of maintain-
ing normoglycemia condition. As a result, individuals with BDNF Val/Met may also have a higher potential to 
compensate for the development of  T2DM29. In this term, another study has shown, total food intake, total caloric 
intake, and protein intake were not related to the BDNF rs6265 variation. Regarding obesity indicators, although, 
this variation interacted with PUFA and total food intake. Met allele carriers in men exhibited a higher BMI as 
their PUFA intake increased, and a smaller waist as their n-3: n-6 PUFA ratio increased. In contrast to heterozy-
gotes, Val/Val homozygous men showed the opposite trend in BMI: BMI dropped with increased PUFA intake 
and higher n-3:n-6 PUFA ratio increased waist  circumference30. Furthermore, another study indicated that when 
Met allele carriers were exposed to a high-CHO diet, their chance of developing carbohydrate-induced hyper-
triglyceridemia  enhanced49. In contrast, another study has shown, Val66Met polymorphism did not appear to 
affect the link between food quality and BDNF serum in terms of depression  prediction50. Previous research has 
revealed that dietary intakes alter the relationship between BDNF genotype and obesity-related behaviors, which 
is corroborated by findings in  rats51–53. As a result, food consumption may influence the relationship between 
BDNF polymorphism and cardiovascular disease indicators via BDNF expression and serum protein modulation.

On the effect of diet on the BDNF serum, some nutrigenomic studies have done based on diet or other macro-
nutrient induced obesity and healthy diet. For example, a previous study found that high glucose concentrations 
decreased BDNF  release54. As a result, blood BDNF levels in T2DM patients were shown to be considerably 
higher than in healthy controls in humans and were found to be strongly associated with triglyceride  levels55. In 
diabetic mice, subcutaneous injections of BDNF were found to considerably improve lipid and glucose  profiles56. 
In this regard, experimental studies have revealed that diet-induced obese mice include high-fat and high-sugar 
 diets53,57,58 or n-3 PUFA deficient  diets51 and chronic high-fat DIO  mice53 lowered BDNF expression in the hip-
pocampus by more than 30%, which has been associated to weaker inhibitory regulation of food consumption 
and, as a result, promoted obesity-related phenotype, while low-fat mice showed no difference.

We observed that the presence of the Val/Val wild-type and BDNF Met/Met homozygotes in diabetic patients 
with a high DTAC is a protective factor. Antioxidant-rich diets may affect previously unknown biological pro-
cesses, altering vulnerability to cardiovascular disease. Antioxidant-rich diets have been demonstrated to have a 
positive influence on metabolic syndrome components, cardiovascular disease risk factors, and obesity-related 
aspects in several epidemiological  investigations36,59,60. Reduced inflammation and oxidative stress, increased 
leptin gene expression, appetite regulation, adipocyte metabolism regulation, and suppression of nuclear factor-B 
factor are all probable  mechanisms36,61,62.

We investigated the nutrigenomic research on BDNF serum because there was no nutrigenetics study in this 
term. In adult rats, fish oil treatment resulted in a considerable increase in BDNF  expression52. Furthermore, 
administration of whole-grain (WG) rye has been demonstrated to upregulate BDNF levels. When compared to 
white wheat flour-based bread meals raised BDNF levels by 27% after  fasting63. Furthermore, prebiotic feeding 
elevated the expression of BDNF and peptide  YY64. Furthermore, there was a ‘very probable’ rise in BDNF levels 
with protein  supplementation65. A Mediterranean-style  diet66, omega-3 fatty  acids67,68, and even vitamin E and 
refined flavonoids consumption have all been associated with increased concentrations of brain BDNF. There 
are some possible mechanisms for these favourable effects in our study and nutrigenomic studies include similar 

Table 4.  The interaction of BDNF Val/Met polymorphism and FRAP on anthropometric indices, lipid 
profile and atherogenic indices. Val/Val genotype is considered as a reference. Low adherence of DTAC is 
considered as a reference. Generalized linear model; crude model and adjusted model Age, physical activity, 
sex, smoking, alcohol, energy intake, lipid, and glucose-lowering medicines, and family history of diabetes, 
as covariates. Bold values denote statistical signifcance at the P < 0.05 level. FRAP ferric reducing ability 
of plasma, CI confidence interval, AIP (Atherogenic index of plasma): log(TG/HDL), AC (Atherogenic 
coefficient): (TC-HDL/HDL), CRI-II (Castelli s risk index): LDL/HDL, CRI-I (Castelli s risk index): TC/HDL, 
TC total cholesterol, TG triglyceride, HDL high density lipoprotein, LDL low density lipoprotein, WC waist 
circumference.

Variable Allele

High adherence of FRAP

β 95% CI P

TC/HDL.CRI.I

Crud

Met/Met − 0.25 − 1.10 to 0.59 0.55

Val/Met 0.20 − 0.72 to 0.31 0.43

Val/Val Reference

Adjusted

Met/Met − 0.28 − 1.13 to 0.56 0.51

Val/Met − 0.18 − 0.74 to 0.34 0.49

Val/Val Reference
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Variable Allele

High adherence of ORAC 

β 95% CI P

BMI

Crud

Met/Met 1.57 − 0.88 to − 4.02 0.20

Val/Met 1.69 0.16 to 3.23 0.03

Val/Val Reference

Adjusted

Met/Met 1.62 − 0.82 to 4.06 0.19

Val/Met 1.84 0.31 to 3.37 0.01

Val/Val Reference

WC

Crud

Met/Met 1.75 − 3.91 to 7.43 0.54

Val/Met 3.60 0.04 to 7.16 0.04

Val/Val Reference

Adjusted

Met/Met 1.50 − 4.17 to 7.19 0.60

Val/Met 3.75 0.19 to 7.31 0.03

Val/Val Reference

HDL

Crud

Met/Met − 5.50 − 12.20 to 1.19 0.10

Val/Met − 4.71 − 8.92 to − 0.51 0.02

Val/Val Reference

Adjusted

Met/Met − 5.09 − 11.82 to 1.62 0.13

Val/Met − 4.62 − 8.83 to − 0.41 0.03

Val/Val Reference

TG

Crud

Met/Met − 0.23 − 57.60 to 57.13 0.99

Val/Met 44.95 9.09 to 80.82 0.01

Val/Val Reference

Adjusted

Met/Met − 1.18 − 59.34 to 56.98 0.96

Val/Met 45.52 9.30 to 81.73 0.01

Val/Val Reference

LDL

Crud

Met/Met − 6.57 − 19.06 to 5.91 0.30

Val/Met 6.78 − 0.77 to 14.33 0.07

Val/Val Reference

Adjusted

Met/Met − 3.46 − 22.29 to 15.37 0.71

Val/Met 2.44 − 9.33 to 14.22 0.68

Val/Val Reference

TC

Crud

Met/Met − 27.31 − 63.90 to 9.28 0.14

Val/Met 13.20 − 9.81 to36.22 0.26

Val/Val Reference

Adjusted

Met/Met − 22.16 − 58.97 to 14.63 0.23

Val/Met 15.15 − 7.92 to 38.22 0.19

Val/Val Reference

AIP

Crud

Met/Met − 0.03 − 0.16 to 0.09 0.63

Val/Met 0.09 0.01 to 0.18 0.01

Val/Val Reference

Adjusted

Met/Met − 0.04 − 0.17 to 0.08 0.50

Val/Met 0.09 0.01 to 0.17 0.02

Val/Val Reference

AC

Crud

Met/Met − 0.23 − 1.04 to 0.56 0.56

Val/Met 0.47 − 0.02 to 0.98 0.06

Val/Val Reference

Adjusted

Met/Met − 0.26 − 1.07 to 0.53 0.51

Val/Met 0.43 − 0.07 to 0.93 0.09

Val/Val Reference

LDL/HDL.CRI.II

Crud

Met/Met 0.01 − 0.34 to 0.37 0.94

Val/Met 0.13 − 0.08 to 0.36 0.23

Val/Val Reference

Adjusted

Met/Met 0.02 − 0.32 to 0.37 0.88

Val/Met 0.10 − 0.11 to 0.32 0.36

Val/Val

Continued
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components. Endothelial dysfunction is prevented by a high antioxidant diet, which is linked to reduced levels 
of pro-inflammatory cytokines in the  plasma69–72 Moreover, pro-inflammatory cytokines like IL-6 and TNF- 
may also suppress BDNF  expression73. Compliance to these interventions would be predicted to be related with 
greater plasma BDNF concentrations under this mechanism. These antioxidant components increase BDNF levels 
and phosphorylation of the CREB  pathway74–76. Although we observed being in BDNF Val/Val wild-type and 
BDNF Met/Met homozygotes reduced lipid markers and atherogenic indices between homozygotes participant, 
heterozygotes have shown increased these factors even in high DTAC. These results go beyond previous reports, 
showing the negative effect of heterozygotes BDNF mic opposite of homozygotes. The heterozygotes BDNF val-
66met genotype is correlated with cortical morphology that differs from that of BDNF val66met homozygotes. 
The BDNF Val/Met genotype, in particular, may affect brain tissue volumes and neurodevelopment, resulting 
in phenotypic differences between BDNF Val/Val wildtype and BDNF Met/Met  homozygotes77–79. Interestingly, 
5-HT turnover was impaired in heterozygous BDNF+/− mice with lowered BDNF expression and resulting in 
increased food intake and obese  phenotypes80. Kernie et al. found that heterozygous BDNF/– mice with low 
BDNF mRNA expression gain 300% more body fat and develop obesity than homozygous BDNF/– mice with 
high BDNF mRNA  expression81. Consequently, diet-induced dyslipidemia may be exacerbated by the down-
regulation of BDNF in heterozygotes individuals. Besides, these discrepancies may be attributed to variations in 
food choices, fortification, and preferences, which could also impact antioxidant intake through various dietary 
sources, as well as some changes in antioxidant activity and availability that occur during food processing and 
 preparation82–85. The unfavorable impact found in our study between Val/Met genotypes could be related to a 
higher intake of high-calorie antioxidant-rich foods and a higher energy intake, since we discovered in our study 
that greater DTAC consumption was associated with higher carbohydrate intake in diabetic  patients86. We did 
not separate different sources of TAC, also based on previous studies source of TAC may have significant effect 
on biochemical  markers87.

Limitations and strengths
limitations of the present study including the cross-sectional design, so any causality cannot be argued; the use 
of FFQ for dietary assessing. Due to financial limitations, it was not possible to perform a western blot analysis to 
determine whether rs6265 SNP alters the expression of BDNF. markers. Furthermore, our participants were from 
the Iranian country which may not be generalized due to racial and regional differences. Despite the limitations 
mentioned above, this is the first effort to study the interaction between BDNF Val66Met polymorphism and 
DTAC on lipid profiles and atherogenic indices. Recognition of these gene-diet interactions could be determining 
in prescribe personalized nutritional recommendations for the improvement and management of CVD risk in 
T2DM patients. Finally, these results can be used in combination with a patient’s genetic history to provide more 
applicable and tailored nutritional advice for preventing or attenuating cardiovascular disease in T2DM patients.

Conclusion
However, this study has several strengths among which it should be emphasized that is the first study of the gene-
environment interaction in diabetic patients exploring how BDNF polymorphism (Val66Met) affects the diet in 
correlation with lipid profiles and atherogenic indices, adding important information to previous studies that 
assessed dietary habits and lipid markers in diabetic patient’s groups without considering genetic implications. 
Further functional studies are necessary to confirm the exact mechanism through which this SNP influences 
food intake regulation.

Table 5.  The interaction of BDNF Val/Met polymorphism and ORAC on anthropometric indices, lipid 
profile and atherogenic indices. Val/Val genotype is considered as a reference. Low adherence of DTAC is 
considered as a reference. Generalized linear model; crude model and adjusted model Age, physical activity, 
sex, smoking, alcohol, energy intake, lipid, and glucose-lowering medicines, and family history of diabetes, 
as covariates. Bold values denote statistical signifcance at the P < 0.05 level. ORAC  oxygen radical absorbance 
capacity, CI confidence interval, AIP (Atherogenic index of plasma): log(TG/HDL), AC (Atherogenic 
coefficient): (TC-HDL/HDL), CRI-II (Castelli s risk index): LDL/HDL, CRI-I (Castelli s risk index): TC/HDL, 
TC total cholesterol, TG triglyceride, HDL high density lipoprotein, LDL low density lipoprotein, WC waist 
circumference.

Variable Allele

High adherence of ORAC 

β 95% CI P

TC/HDL.CRI.I

Crud

Met/Met 0.05 − 0.77 to 0.88 0.90

Val/Met − 0.17 − 0.69 to 0.33 0.49

Val/Val Reference

Adjusted

Met/Met 0.01 − 0.82 to 0.85 0.96

Val/Met − 0.16 − 0.68 to 0.35 0.53

Val/Val Reference
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Variable Allele

High adherence of TEAC

Pβ 95% CI

BMI

Crud

Met/Met − 7.09 − 13.77 to − 0.24 0.04

Val/Met − 1.82 − 6.02 to 2.38 0.39

Val/Val Reference

Adjusted

Met/Met 1.60 − 0.85 to 4.05 0.20

Val/Met 1.31 − 0.19 to 2.83 0.08

Val/Val Reference

WC

Crud

Met/Met − 20.43 − 57.26 to 16.40 0.27

Val/Met 22.44 − 0.52 to 45.42 0.05

Val/Val Reference

Adjusted

Met/Met 3.15 − 2.40 to 8.70 0.26

Val/Met 2.31 − 1.13 to 5.76 0.18

Val/Val Reference

HDL

Crud

Met/Met − 7.09 − 13.77 to − 0.24 0.04

Val/Met − 1.82 − 6.02 to 2.38 0.39

Val/Val Reference

Adjusted

Met/Met − 6.03 − 12.64 to 0.56 0.07

Val/Met − 5.67 − 5.79 to 2.41 0.41

Val/Val Reference

LDL

Crud

Met/Met − 5.99 − 24.91 to 12.93 0.53

Val/Met − 1.65 − 13.43 to 10.11 0.78

Val/Val Reference

Adjusted

Met/Met − 1.42 − 20.29 to 17.44 0.88

Val/Met − 1.30 − 13.02 to 10.41 0.82

Val/Val Reference

TC

Crud

Met/Met − 20.43 − 57.26 to 16.40 0.27

Val/Met 22.44 − 0.52 to 45.42 0.05

Val/Val Reference

Adjusted

Met/Met − 17.15 − 54.06 to 19.75 0.36

Val/Met 26.39 3.40 to 49.38 0.02

Val/Val Reference

TG

Crud

Met/Met − 30.82 − 88.36 to 26.71 0.29

Val/Met 53.51 17.80 to 89.22 0.003

Val/Val Reference

Adjusted

Met/Met − 32.04 − 90.16 to 26.08 0.28

Val/Met 55.85 19.85 to 91.84 0.002

Val/Val Reference

AIP

Crud

Met/Met 0.005 − 0.12 to 0.13 0.94

Val/Met 0.105 0.02 to 0.18 0.01

Val/Val Reference

Adjusted

Met/Met − 0.002 − 0.13 to 0.12 0.98

Val/Met 0.10 0.02 to 0.18 0.009

Val/Val Reference

AC

Crud

Met/Met 0.03 − 0.77 to 0.83 0.93

Val/Met 0.51 0.01 to 1.02 0.04

Val/Val Reference

Adjusted

Met/Met 0.02 − 0.78 to 0.82 0.96

Val/Met 0.55 0.05 to 1.06 0.03

Val/Val Reference

LDL/HDL.CRI.II

Crud

Met/Met 0.10 − 0.25 to 0.47 0.55

Val/Met − 0.04 − 0.26 to 0.17 0.69

Val/Val Reference

Adjusted

Met/Met 0.15 − 0.20 to 0.50 0.39

Val/Met − 0.05 − 0.27 to 0.16 0.64

Val/Val Reference

Continued
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Method
Study population. The current cross-sectional study was carried out on 667 T2DM patients who were 
referred from diabetes referral clinics in Tehran, Iran. Our study comprised diabetic patients with fasting blood 
sugar levels of > 126 mg/dl or who were on glucose-lowering medicines. The complete inclusion and exclusion 
criteria, demographic, physical activity (METs) information, and anthropometric measurements (body mass 
index (BMI) and WC), were taken based on our previous larger  investigation88. The International Physical Activ-
ity Questionnaire (IPAQ) short form was used to assess physical activity. The reliability and validity of the IPAQ 
has previously been evaluated in Iranian  adolescents89. All of the patients were asked to give their informed 
permission. The study was conducted based on the Declaration of Helsinki, and Ethics Committee of the Tehran 
University of Medical Sciences approved the protocol (no. 15060).

Biochemical assessments. The study participants’ venous blood samples were taken after they had fasted 
for 12 h. The levels of HDL-C and LDL-C in the blood were measured using a Roche Hitachi analyzer using 
turbidimetry (Roche, Germany). The ELISA approach was also used to determine the serum levels of leptin and 
ghrelin (Bioassay Technology Co, China and Mediagnost, Germany, respectively). The number of inflammatory 
markers in the blood, such as IL-18 and PTX3, was measured using the ELISA method (Shanghai Crystal Day 
Biotech Co., Ltd). The intra-assay and interassay coefficients of variation (CV) were less than 10% and 12%, 
respectively, for the IL-18 ELISA kit, which had a sensitivity of 28 ng/l. The intra-assay and interassay CVs were 
less than 10% and 12%, respectively, for the PTX3 ELISA kit, which has a sensitivity of 0.05 ng/ml. The levels of 
hs-CRP in the blood were measured using an ELISA kit (Diagnostic Biochem Canada Inc., London, Ontario, 
Canada). The intra-assay and interassay CVs were both less than 5% and 9.5%, respectively. Both the intra- and 
inter-assay CVs were less than 5% and 9.5%, respectively. The total antioxidant capacity of the serum was deter-
mined using specttrophometry (TAC). The serum enzymatic activity of SOD was measured using a colorimetric 
method (Cayman Chemical Company, USA). The concentration of 8-isoprostane F2 in the blood was measured 
using an ELISA (Shanghai Crystal Day Biot). The Nutrition and Genomics Laboratory at TUMS was used to 
conduct all of the tests.

Atherogenic indices of plasma (AIP) and lipid ratio assessment. The atherogenic indices of plasma 
were calculated using the logarithmic ratio of (TG to HDL-C) (AIP). Furthermore, Olamoyegun et al. invented 
the lipid ratio, which is calculated using the following formula: CRI-I = TC/HDL-C, CRI-II = LDL-C/HDL-C, 
AC = (TC − HDL-C)/HDL-C.

Dietary assessment and DTAC calculation. Dietary data were analyzed using a standard semi-quanti-
tative FFQ that included 147 food categories and was specifically prepared for usage in  Iran90. Face-to-face per-
sonal interviews with professional dietitians were used to complete the FFQ. Participants were asked to rate the 
frequency with which they consumed each food item throughout the previous year. Using household measures, 
the portion sizes of ingested food products were translated to grams per day. The Total Antioxidant Capacity 
(TAC) is an indicator of overall plasma antioxidant status consisting of four indices: TEAC and TRAP relying 
on Italian food  databases91, FRAP based on Norwegian antioxidant table and reduce ferric iron to ferrous  iron92, 
and ORAC based on United States Department of Agriculture (USDA) databases, that also demonstrates the 
sample’s capacity to exchange hydrogen to stabilize a free  radical93.

DNA extraction and gene sequencing. For DNA extraction, a salting-out approach was  applied20. The 
PCR–RFLP method was used to genotype the Val66Met polymorphism. The following primers were used to 
amplify rs6265: Forward: 5′-CAC TAG CCC AGA GAG AGG AGTG-3′, Revers:50-TGA GCC CAG CCG CAC ACT 

Table 6.  The interaction of BDNF Val/Met polymorphism and TEAC on anthropometric indices, lipid 
profile and atherogenic indices. Val/Val genotype is considered as a reference. Low adherence of DTAC is 
considered as a reference. Generalized linear model; crude model and adjusted model Age, physical activity, 
sex, smoking, alcohol, energy intake, lipid, and glucose-lowering medicines, and family history of diabetes, as 
covariates. Bold values denote statistical signifcance at the P < 0.05 level. TEAC trolox equivalent antioxidant 
capacity, CI confidence interval, AIP (Atherogenic index of plasma): log(TG/HDL), AC (Atherogenic 
coefficient): (TC-HDL/HDL), CRI-II (Castelli s risk index): LDL/HDL, CRI-I (Castelli s risk index): TC/HDL, 
TC total cholesterol, TG triglyceride, HDL high density lipoprotein, LDL low density lipoprotein, WC waist 
circumference.

Variable Allele

High adherence of TEAC

Pβ 95% CI

TC/HDL.CRI.I

Crud

Met/Met 0.25 − 0.58 to 1.09 0.55

Val/Met − 0.04 − 0.56 to 0.46 0.86

Val/Val Reference

Adjusted

Met/Met 0.22 − 0.61 to 1.06 0.60

Val/Met − 0.03 − 0.54 to 0.48 0.91

Val/Val Reference
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Variable Allele

High adherence of TRAP

β 95% CI P

BMI

Crud

Met/Met 0.87 − 1.61 to 3.36 0.49

Val/Met 1.20 − 0.32 to 2.73 0.12

Val/Val Reference

Adjusted

Met/Met 0.81 − 1.66 to 3.29 0.52

Val/Met 1.81 − 0.33 to 2.69 0.12

Val/Val Reference

WC

Crud

Met/Met 0.88 − 4.86 to 6.63 0.76

Val/Met 3.75 0.20 to 7.29 0.03

Val/Val Reference

Adjusted

Met/Met 0.93 − 4.66 to 6.53 0.74

Val/Met 3.36 − 0.07 to 6.80 0.05

Val/Val Reference

HDL

Crud

Met/Met − 3.58 − 10.40 to 3.23 0.30

Val/Met − 3.86 − 8.06 to 0.34 0.07

Val/Val Reference

Adjusted

Met/Met − 3.16 − 9.83 to 3.49 0.35

Val/Met − 3.71 − 7.80 to 0.38 0.07

Val/Val Reference

TC

Crud

Met/Met − 18.56 − 55.53 to 18.40 0.32

Val/Met 34.93 12.10 to 57.76 0.003

Val/Val Reference

Adjusted

Met/Met − 18.29 − 55.35 to 18.76 0.33

Val/Met 37.20 14.38 to 60.03 0.001

Val/Val Reference

TG

Crud

Met/Met − 33.52 − 91.54 to 24.48 0.25

Val/Met 63.78 28.09 to 99.46  < 0.001

Val/Val Reference

Adjusted

Met/Met − 37.97 − 96.61 to 20.67

Val/Met 65.28 29.36 to 101.20  < 0.001

Val/Val Reference

LDL

Crud

Met/Met 1.37 − 17.70 to 20.46 0.88

Val/Met 1.39 − 10.36 to 13.14 0.81

Val/Val Reference

Adjusted

Met/Met 5.53 − 13.50 to 24.56 0.56

Val/Met 1.21 − 10.46 to 12.90 0.83

Val/Val Reference

AIP

Crud

Met/Met − 0.01 − 0.14 to 0.11 0.85

Val/Met 0.16 0.07 to 0.24  < 0.001

Val/Val Reference

Adjusted

Met/Met − 0.02 − 0.15 to 0.11 0.76

Val/Met 0.16 0.08 to 0.24  < 0.001

Val/Val Reference

AC

Crud

Met/Met − 0.12 − 0.93 to 0.68 0.76

Val/Met 0.88 0.38 to 1.38 0.001

Val/Val Reference

Adjusted

Met/Met − 0.15 − 0.96 to 0.65 0.71

Val/Met 0.89 0.39 to 1.39  < 0.001

Val/Val Reference

LDL/HDL.CRI.II

Crud

Met/Met 0.14 − 0.21 to 0.51 0.42

Val/Met 0.09 − 0.13 to 0.31 0.41

Val/Val Reference

Adjusted

Met/Met 0.19 − 0.15 to 0.55 0.27

Val/Met 0.07 − 0.14 to 0.29 0.48

Val/Val Reference

Continued
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AAC. 75 ng genomic DNA, 0.6 mM of each primer, and 2X Taq DNA Polymerase Master Mix were included in 
the final volume of the PCR result (Amplicon; Germany). Denaturation at 95 °C for the 30 s (40 cycles), anneal-
ing at 8 °C for 30 s, and 40 s of extension at 72 °C were used in the PCR cycles, with a final extension at 65 °C 
for 30 min. Finally, the products were electrophoresed on 2% agarose gels. Importantly, 15% of the samples were 
directly sequenced for confirmation of the PCR–RFLP results. The sequencing process performed using the ABI 
PRISM 3730 automated sequencer (Applied Biosystems, Foster City, Calif, USA).

Table 7.  The interaction of BDNF Val/Met polymorphism and TRAP on anthropometric indices, lipid 
profile and atherogenic indices. Val/Val genotype is considered as a reference. Low adherence of DTAC is 
considered as a reference. Generalized linear model; crude model and adjusted model Age, physical activity, 
sex, smoking, alcohol, energy intake, lipid, and glucose-lowering medicines, and family history of diabetes, 
as covariates. Bold values denote statistical signifcance at the P < 0.05 level. TRAP total reactive antioxidant 
potential, CI confidence interval, AIP (Atherogenic index of plasma): log(TG/HDL), AC (Atherogenic 
coefficient): (TC-HDL/HDL), CRI-II (Castelli s risk index): LDL/HDL, CRI-I (Castelli s risk index): TC/HDL, 
TC total cholesterol, TG triglyceride, HDL high density lipoprotein, LDL low density lipoprotein, WC waist 
circumference.

Variable Allele

High adherence of TRAP

β 95% CI P

TC/HDL.CRI.I

Crud

Met/Met − 0.25 − 1.10 to 0.60 0.56

Val/Met − 0.21 − 0.72 to 0.30 0.41

Val/Val Reference

Adjusted

Met/Met − 0.23 − 1.09 to 0.61 0.58

Val/Met − 0.21 − 0.73 to 0.30 0.41

Val/Val Reference
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Figure 1.  Interaction between the BDNF Val66Met polymorphism and DTAC (FRAP) intake with regard 
to TG, HDL, AIP and AC according to the median DTAC, the participants were dichotomized into low and 
high categories. P 1 = P value with unadjusted (crude) model, P 2 = P value with adjustments for potential 
confounding factors including (Age, physical activity, sex, smoking, alcohol, energy intake, lipid, and glucose-
lowering medicines, and family history of diabetes).
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Statistical analyses. The Kolmogorov–Smirnov test was used to determine the data’s normality. In this 
study, the sample size was calculated according to following formula: N = (([(Z1 − α + Z1 − β) × √1 − r 2]/r) 2 + 2), 
whit considering r = 0.15, β = 0.95 and α = 0.05. The Hardy–Weinberg equilibrium (HWE) was assessed with 
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Figure 2.  Interaction between the BDNF Val66Met polymorphism and DTAC (ORAC) intake with regard 
to TG, HDL, AIP and AC according to the median DTAC, the participants were dichotomized into low and 
high categories. P 1 = P value with unadjusted (crude) model, P 2 = P value with adjustments for potential 
confounding factors including (Age, physical activity, sex, smoking, alcohol, energy intake, lipid, and glucose-
lowering medicines, and family history of diabetes).



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19108  | https://doi.org/10.1038/s41598-021-98663-9

www.nature.com/scientificreports/

the χ2 test. Based on their FRAP, TRAP, TEAC, and ORAC scores, the subjects were separated into two groups: 
low and high intakes. Qualitative variables were compared with one-way ANOVA and analysis of covariance 
(ANCOVA) in crude and adjusted models respectively. Potential interactions between the rs6265 genotype and 
DTAC on lipid profiles and atherogenic indices were investigated using the generalized linear models (GLMs) 
model. Age, physical activity, sex, smoking, alcohol, energy intake, lipid, and glucose-lowering medicines, and 
family history of diabetes were all used as cofounder factors in adjusted analyses. All stages of our research’s 
analysis were conducted using SPSS software (SPSS Inc., Chicago, IL, USA, version 25). A p-value of less than 
0.05 was also considered significant.
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Figure 3.  Interaction between the BDNF Val66Met polymorphism and DTAC (TEAC) intake with regard 
to TG, HDL, AIP and AC according to the median DTAC, the participants were dichotomized into low and 
high categories. P 1 = P value with unadjusted (crude) model, P 2 = P value with adjustments for potential 
confounding factors including (Age, physical activity, sex, smoking, alcohol, energy intake, lipid, and glucose-
lowering medicines, and family history of diabetes).
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Ethics approval and consent to participate. The protocol of the study was approved by the ethics com-
mittee of TUMS. All participants completed a written informed consent.
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