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Using machine learning 
for predicting intensive care unit 
resource use during the COVID‑19 
pandemic in Denmark
Stephan Sloth Lorenzen1, Mads Nielsen1, Espen Jimenez‑Solem2,6,7, 
Tonny Studsgaard Petersen2,6, Anders Perner3,6, Hans‑Christian Thorsen‑Meyer3, 
Christian Igel1 & Martin Sillesen4,5,6*

The COVID-19 pandemic has put massive strains on hospitals, and tools to guide hospital planners in 
resource allocation during the ebbs and flows of the pandemic are urgently needed. We investigate 
whether machine learning (ML) can be used for predictions of intensive care requirements a fixed 
number of days into the future. Retrospective design where health Records from 42,526 SARS-CoV-2 
positive patients in Denmark was extracted. Random Forest (RF) models were trained to predict risk 
of ICU admission and use of mechanical ventilation after n days (n = 1, 2, …, 15). An extended analysis 
was provided for n = 5 and n = 10. Models predicted n-day risk of ICU admission with an area under 
the receiver operator characteristic curve (ROC-AUC) between 0.981 and 0.995, and n-day risk of 
use of ventilation with an ROC-AUC between 0.982 and 0.997. The corresponding n-day forecasting 
models predicted the needed ICU capacity with a coefficient of determination (R2) between 0.334 and 
0.989 and use of ventilation with an R2 between 0.446 and 0.973. The forecasting models performed 
worst, when forecasting many days into the future (for large n). For n = 5, ICU capacity was predicted 
with ROC-AUC 0.990 and R2 0.928, and use of ventilator was predicted with ROC-AUC 0.994 and R2 
0.854. Random Forest-based modelling can be used for accurate n-day forecasting predictions of ICU 
resource requirements, when n is not too large.

Since the outbreak of the COVID-19 pandemic in early 2020, almost 205 million confirmed cases and 4.3 million 
deaths have occurred as a result of the SARS-CoV-2 infection worldwide1,2. The speed of viral spread combined 
with hospital and governmental systems being ill-prepared for large-scale pandemic responses, created a situa-
tion where allocation of health care resources, including the mobilization of ad-hoc intensive care and isolation 
units were urgently needed.

As hospital resources were redirected towards the COVID-19 response, elective visits and planned surgical 
procedures quickly became the victim of collateral damage induced by the shift in health care resources, resulting 
in a massive backlog of elective procedures that will likely take months or even years to overcome3.

As expected, the pandemic hit societies in waves, creating an ebb during the summertime where resources 
could again be partly redirected towards other tasks. The choice of when to up or downscale the COVID-19 
response thus quickly became a challenge for hospital planners, mobilizing resources at the time of pandemic 
acceleration while re-routing physical as well as staff-resources during the months characterized by low infec-
tion rates.
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Deciding when to increase the resources for the pandemic response at the cost of the elective workload is, 
however, a challenge. Such decisions are dependent on accurate prediction models capable of risk-stratifying 
patients based on available health information on confirmation of SARS-CoV-2 infection, as well as ensuring 
that these predictive models can adjust to changes in disease patterns as the pandemic progresses from the first 
to subsequent waves of infection4,5. And indeed, according to a recent review by Becker et al. as of Sept 27, 2020, 
there have been more than 5000 modelling analyses published in peer-reviewed journals, excluding preprint 
servers, since the start of the epidemic6. In contrast to mechanistic models, we and others have trained machine 
learning (ML) models on electronic health record (EHR) data towards risk prediction on SARS-CoV-2 infection, 
specifically targeting resource-requiring events such as hospitalization, ICU admission and use of mechanical 
ventilation7–9. We found that accurate risk prediction of the individual patient (micro-prediction) can be per-
formed with a limited EHR dataset, thus opening the potential for predicting hospital resource requirements on 
a population-wide scale (macro-prediction) in advance, based on available EHR data at the time of COVID-19 
diagnosis.

Usual epidemiological modelling takes into account the number of infected patients, and, based on a small 
number of constants, partial differential equations model the future development of the epidemic 10. While 
providing insights into the role of macroscopic variables on the disease dynamics, such approaches have limited 
ability to model shifts in epidemic constants arising from the underlying demography of the patients as well as 
changes in the testing strategy. An approach based on the full medical history of all individuals tested positive 
for SARS-CoV-2 has the potential to overcome these issues as shifts in the epidemic constants will be reflected 
in the inputs, and by considering the more detailed information provided at the level of individuals—in contrast 
to macroscopic variables at population level—it may allow for higher accuracy. We hypothesize that such an 
approach modelling the epidemic severity development based on relevant clinical information can yield more 
precise forecasting essential for the resource management in hospitals.

Thus, this study investigates whether the previously trained ML models9 can be retrained for the purpose of 
n-day forecasting, capable of predicting the number COVID-19 related ICU admissions and use of mechanical 
ventilation in a bi-regional cohort in Denmark. While the approach is also applicable to hospital admission in 
theory, patients are often not known to the system in the n-day timeframe prior to admission (due to not yet 
having been tested for SARS-CoV-2), and thus the method will likely be less precise. Similarly, the approach is 
also applicable to the prediction of mortality within the n-day period, although forecasting the number of deaths 
explicitly is less relevant in terms of determining the need for hospital resources. However, for completeness, 
we investigated the approach for forecasting both hospital admission and mortality and included results in the 
supplementary material.

We apply our suggested approach for various values of n = 1, 2, …, 15, and provide a more in-depth analysis 
and evaluation of the 5- and 10-day forecasts, as we expect these to meet the tradeoff between a relevant window 
for hospital planners with perceived retention of predictive accuracy.

Data
Data access and handling was carried out in accordance with national guidelines and regulations. The study 
was approved by the relevant legal boards: the Danish Patient Safety Authority (Styrelsen for Patientsikkerhed, 
approval #31-1521-257) and the Danish Data Protection Agency (Datatilsynet, approval #P-2020-320). Under 
Danish law, these agencies provide the required legal approval for the handling of sensitive patient data, includ-
ing EHR data, without patient consent.

Cohort information.  We conducted the study on health data extracted from the Danish Capital and Zea-
land region EHR system, covering approx. 2.5 million citizens in eastern Denmark. The extracted cohort con-
sisted of 42,526 patients tested positive for SARS-CoV-2 in both regions from March 3rd, 2020 to May 26th, 
2021. Extracted patient data included age, Body Mass Index (BMI), sex, smoker/non-smoker status and diag-
noses. Extracted temporal data included time and date of SARS-Cov-2 PCR tests, hospital and ICU admissions 
(due to COVID-19), use of mechanical ventilation, medications administered, laboratory tests performed, vital 
signs recorded, and death where applicable.

Data set construction.  For each patient, a timeline was constructed from the time of the first positive 
SARS-CoV-2 test and until censoring. Patients were censored at the time of death, a negative SARS-CoV-2 PCR 
test, 30 days without hospitalization (but 30 days after the positive test at the earliest), or at the time of cohort 
extraction.

From each patient timeline, a set of snapshots was constructed, one for every 24 h. Each patient snapshot 
consisted of the set of features extracted for the patient: age, sex, BMI, comorbidities (based on the ICD-10 and 
ATC codes, for a full definition, please see9, smoker/non-smoker status, lab tests, and temporal features: time 
since positive test result, time spent in hospital, time spent in ICU, and time on a ventilator. See Supplementary 
Table 1 for a complete overview of features included. For each lab test and vital sign feature, we added the follow-
ing aggregated features to each snapshot, based on all tests/measurements prior to the timestamp of the snapshot:

•	 Most recent test/measurement,
•	 Mean of tests/measurements,
•	 Fitted slope of tests/measurements,
•	 Number of tests/measurements.
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In total, 1,246,019 snapshots were created covering the set of patients in the timespan March 3rd, 2020 to 
May 26th, 2021.

For each patient snapshot, we defined n-day forecast prediction targets for ICU admission and use of mechani-
cal ventilation. Each target described the n-day forecast for the patient, for instance whether the patient will be 
in hospital n days later.

By summing targets for snapshots with the same date, we obtained corresponding population wide n-day 
forecast training targets: The number of patients admitted to ICU n days from a given date, and the number of 
patients on mechanical ventilation n days from a given date.

A limitation of constructing population wide n-day targets in this fashion is that they underestimate the 
ground truth due to late arriving patients; any n-day target cannot include patients added to the dataset in the 
n days after the prediction is made. This problem increases with n. To get a proper evaluation of our approach, 
we thus also consider the true targets for each training target above, by summing over the actual admitted and 
ventilated patients for each date.

Methods
Evaluation setup.  We applied Random Forest (RF)11 models for n-day forecasting of ICU admission and 
ventilator use for all patients with a positive SARS-CoV-2 test. We trained and evaluated the models in two dif-
ferent setups:

•	 Monthly retraining: To emulate the real-world use case in which models will be frequently retrained (possibly 
daily), we fitted models on all (training) data until the first of a month and evaluated them on data for the 
following month (test data), for each month starting with June 2020 and ending with May 2021. For instance, 
models trained on data until June 1st were evaluated on data from June. Predictions from each month were 
then pooled together to be used for evaluation over the entire period from June 1st until May 26th.

•	 First wave: The dataset was split in two: the first wave and subsequent waves (before and after June 1st). Mod-
els were fitted on the first wave (training data) and evaluated on the remaining data (test data). Predictions 
from the entire second data set was used for evaluation in this setting.

Note, that in both setups, some patients may be present in both training and test partitions of data. This was 
chosen as it reflects the real-world usage with frequent retraining, and thereby best estimates the real-world 
performance.

For model fitting, missing BMI measurements were imputed based on the training data using k-nearest 
neighbor imputation considering only patients of the same sex (k = 100). Missing in-hospital tests and measure-
ments were set to 0.

Model setup.  We fitted random forests on the training set11,12, with each individual decision tree in the 
ensemble trained on a bootstrap sample from the training set, leaving a set of out-of-bag (OOB) samples available 
for evaluating the performance of the RF11.

We used 500 trees and considered all features in each split, using the Gini-impurity as splitting criterion. We 
tuned the maximum tree depth (2, 4, 6 and 8) by performing grid search using the Receiver Operating Character-
istics Area Under the Curve (ROC-AUC) computed on the OOB samples as evaluation metric.

Population wide (macro) forecasts were obtained from the individual (micro) prediction models by sum-
mation over the predicted probabilities for all individual patients for a given timestamp. Furthermore, we also 
computed the 95% confidence intervals (CI) by considering individual predictions as dichotomous Bernoulli 
variables and then summing their variances.

Evaluation metrics.  We evaluated the population wide forecast models by computing the coefficient of 
determination (R2) and the maximum error (ME) between the predictions and the true targets. Furthermore, 
we constructed plots of the true target and the forecast trajectory for both ICU admissions and ventilator use, 
including in the plots the training targets and the 95% CIs for the outputs.

We also evaluated the micro models for making individual predictions by computing the ROC-AUC scores 
over all test set predictions, as well as plotting the ROC curves.

We computed 95% confidence intervals for both R2 and ROC-AUC scores by bootstrapping. Furthermore, the 
performance of the RF for predicting individual outcomes was compared to the baseline using the deLong test13.

Baseline comparison models.  We considered three baseline models:

•	 A standard logistic regression (LogR) micro-level model fitted to the individual patients and applied in the 
same fashion as the RF to make population wide forecasts. Continuous features were Z-normalized before 
the model was applied.

•	 A static micro-level model, which for each individual patient simply outputs the current state of the patient, 
that is, it predicts hospitalization if the patient is currently in hospital.

•	 A standard linear regression (LinR) macro-level model fitted directly on the true target curves (ICU admission 
or ventilated patients); for predicting the number of patients admitted to ICU or ventilated at day D + n, the 
model input was the number of patients at days D, D-1, D-2, D-4, D-8, and D-12. In contrast to our approach 
and the above baselines, this model was fitted on the true targets, which is possible because it works directly 
on the population level.
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Results
Demographics.  Table 1 presents an overview of the data set, including the number of hospitalized, ICU 
admitted and ventilated patients. Figure 1 shows the distribution of snapshots over time. Patients were observed 
to change state multiple times during the observed time period for both ICU and ventilator use. Table 2 reports 
median, interquartile range (for continuous features) and percentage (for binary features) for age, sex, BMI, and 
comorbidities in each of the three data sets. The percentages of missing features are listed in Supplementary 
Table 1, including the percentages of missing features for the subset of patients in hospital.

Monthly retrained.  Figure 2 plots the R2 and ME for the n-day forecasts (n = 1, 2, …, 15) for the RF model. 
Figures 3 and 4 show the 5- and 10-day forecasts versus the training and the true targets respectively. The RF was 
found to perform very well when retrained monthly when n is not too large. As n increased, the performance 
decreased. In particular, the RF model obtained an R2 of 0.928 and 0.854 for 5-day forecasting of ICU admission 
and ventilator use respectively, with performance dropping to 0.756 and 0.784 for 10-day forecasts.

Supplementary Figs. 1 and 2 plot the baseline forecasts for n-day forecasts respectively (n = 1, 2, …, 15). Sup-
plementary Tables 2, 3, 4, and 5 present numerical results for the RF model and the baselines, including also 
results for hospital admission (Supplementary Table 2) and mortality (Supplementary Table 5), with targets 
constructed in a similar fashion to the targets for ICU and ventilator. In general, RF performed better than the 
baseline models for predicting ICU admission and ventilation, when n was small. In particular, RF outperformed 
all other models on both targets for 5-day forecasts. For 10-day ICU admission forecasts, the RF exhibited similar 
performance to the LinR model and was outperformed by the LogR model.

First wave.  Figure 5 plots the R2 and ME for the n-day forecasts (n = 1, 2, …, 15) for the RF model. Figures 6 
and 7 show the 5- and 10-day forecasts versus the training and true targets for both the first wave (training data) 
and the subsequent waves (test data). The model was found to generalize well to the subsequent waves, with 
performance in general decreasing as n was increased. For 5- and 10-day ICU admission forecasts, the model 
obtained R2s of 0.940 and 0.851 respectively. For ventilator use, the corresponding R2s were 0.649 and 0.747, 
showing an increase with n.

Supplementary Figs. 3 and 4 plot the baseline forecasts for the 5- and 10-day forecasts respectively. Sup-
plementary Tables 6, 7, 8, and 9 present numerical results for the RF model and the baselines, including results 
for hospital admission (Supplementary Table 6) and mortality (Supplementary Table 9). The RF outperformed 

Table 1.   An overview of the data sets and the number of patients in different states: patients tested positive 
with SARS-CoV-2, patients admitted to hospital, and patients admitted to ICU.

Patient state #Patients #Snapshots

Infected 42,526 1,246,019

In hospital 7271 216,685

In ICU 657 17,370

Figure 1.   Distribution of patient 24-h snapshots during the period (March 2020–May 2021) considered in the 
study.
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Table 2.   Data set statistics: basic patient information (BMI, age, sex), patient comorbidities and smoker/non-
smoker status. For binary variables, we report the occurrence in percent; for continuous variables, we report 
the median and interquartile range.

Infected
Not admitted to 
hospital Admitted to hospital Not admitted to ICU Admitted to ICU Survivor Non-survivor

#Patients 42,526 35,255 7271 6614 657 40,872 1540

Age 44 (27–61) 39 (24–55) 70 (54–81) 70 (53–81) 68 (58–75) 43 (26–59) 83 (76–90)

Body mass index 24.7 (20.9–28.9) 24.1 (20.1–28.3) 26.1 (22.8–30.2) 25.9 (22.7–30.1) 27.6 (24.1–32.0) 24.7 (20.8–29.0) 24.4 (21.4–28.1)

Male 44.1% 42.0% 54.2% 52.6% 70.3% 43.8% 52.0%

Diabetes 8.0% 3.2% 31.1% 26.3% 79.9% 6.9% 36.4%

Ischemic heart disease 1.8% 0.6% 7.6% 7.2% 11.6% 1.6% 9.0%

Heart failure 0.1% 0.0% 0.3% 0.3% 0.3% 0.1% 0.3%

Arrhythmia 2.0% 0.5% 8.9% 8.3% 14.2% 1.4% 16.1%

Stroke 3.5% 2.1% 10.4% 10.6% 7.8% 3.0% 16.7%

Asthma 6.8% 4.2% 19.5% 19.2% 22.4% 6.2% 22.5%

Arthritis 0.7% 0.5% 1.6% 1.6% 1.7% 0.6% 2.0%

Osteoporosis 2.7% 1.6% 8.0% 8.2% 6.1% 2.4% 12.1%

Dementia 2.2% 1.7% 5.1% 5.5% 0.8% 1.8% 14.2%

Severe mental disorder 1.0% 0.8% 2.1% 2.0% 2.6% 1.0% 1.8%

Immuno-deficiencies 0.1% 0.1% 0.1% 0.1% 0.6% 0.1% 0.1%

Neurological manifesta-
tions 8.8% 7.3% 16.3% 16.5% 14.2% 8.2% 23.8%

Cancer 5.0% 3.1% 14.0% 14.2% 12.8% 4.3% 21.2%

Chronic kidney failure 1.1% 0.4% 4.8% 4.7% 5.3% 0.9% 7.3%

Dialysis 0.2% 0.1% 1.0% 1.0% 1.2% 0.2% 1.1%

Hypertension 13.6% 6.4% 48.7% 45.9% 77.0% 12.0% 56.5%

Smoker 17.7% 18.2% 16.7% 17.1% 12.5% 17.8% 17.6%

Figure 2.   R2 and 95% confidence interval (top), and ME (bottom) for n-day forecasts using the RF model in 
the monthly retrained setting, computed on the pooled predictions for the months after June 2020. Numerical 
results are given in Supplementary Tables 3 and 4.
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all baselines for predicting ICU admission for n < 12, while the static model was in general better for predicting 
ventilator use for small n. For 5- and 10-day ICU admission, RF performed best (without overlap of the 95% 
CIs); in particular it outperformed the population level LinR model.

Individual forecasts.  Supplementary Table  10 reports ROC-AUC for the individual n-day predictions 
(n = 1, 2, …, 15) for the macro models RF and LogR when retrained monthly, including results for prediction of 
hospital admission and mortality. Supplementary Figs. 5 and 6 show the ROC curves for n = 5, 10. For all n-day 
forecasting targets, the RF was found to obtain ROC-AUC scores above 0.95 and was found to perform signifi-
cantly better than LogR (p < 0.0001) by application of the deLong test.

Discussion
In this study, we demonstrate how COVID-19 micro-predictions made at the level of the individual SARS-CoV-2 
positive patient, can be extrapolated to a population-wide macro-prediction by modelling incremental patient 
data as this becomes available in the EHR system. Based on evaluation in a cohort with 42,526 SARS-CoV-2 posi-
tive patients, we find that, using an RF, accurate n-day forecasting of ICU admissions and ventilator use can be 
achieved using initial datapoints including age, sex, BMI and comorbidities with additional datapoints including 
lab tests and vital parameters added as these become available. As expected, the results generally degraded as n 
was increased, but models provided good fits for n = 5 and even n = 10. When using regular retraining, the RF 
approach generally outperformed all baseline methods; among 5- and 10-day forecasts, only logistic regression 
performed better for 5-day ICU admission forecasts, as explained below. The setting with regular retraining best 
resembles the expected real-life deployment, during which the model will be retrained on the latest available data 
even more frequently. When only a single model trained on the first wave was used, the RF still generalized well 
for n-day forecasting admission to ICU and use of ventilation, beating most baselines when n < 12, including 

Figure 3.   5-day forecasts of admission to ICU and use of mechanical ventilation, compared to the training and 
true targets in the monthly retrained setting. The estimated 95% confidence intervals are shown.

Figure 4.   10-day forecasts of admission to ICU and use of mechanical ventilation, compared to the training 
and true targets in the monthly retrained setting. The estimated 95% confidence intervals are shown.
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the macro-level LinR model, confirming that, in this case, the micro-to-macro approach handles shifts in the 
distribution (on the macro/population level) better.

While we reported results for only monthly retraining, the data processing and RF implementation is so 
efficient that the models can be retrained on the entire cohort daily as new data arrives, allowing for real-time 
deployment of the most up-to-date models.

The system is currently limited by missing access to early SARS-CoV-2 tests, which means patients are not 
included in the input early, leading to the model producing underestimates of the true admission/ventilation 
numbers. This can be seen by inspection of the plots of the forecast trajectories and training/true targets (e.g., 
Figs. 2 and 3). The model consistently underestimates the true targets due to the training targets being under-
estimates themselves. The problem increases with the number of days n we look ahead in the forecasts, as a 
patient is less likely to be in the system, when predicting many days ahead; this can also be seen in Figs. 2 and 5, 

Figure 5.   R2 and 95% confidence interval (top), and ME (bottom) for n-day forecasts using the RF model in 
the first wave setting, computed on the pooled predictions for the months after June 2020. Numerical results are 
given in Supplementary Tables 7 and 8.

Figure 6.   5-day forecasts of admission to ICU and use of mechanical ventilation, compared to the training 
and true targets in the first wave setting. Predictions and targets for both the first wave (training data) and the 
subsequent waves (test data, dashed) are shown, as well as the 95% confidence intervals.
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where the R2 score degrades. We also evaluated the model for prediction of hospital admissions, but since many 
patients are not confirmed positive until after admission, the issue was even more pronounced, and the model 
severely underestimated the true admission numbers (see Supplementary Tables 2 and 6), even though the model 
performed well for predicting for individual patients.

However, our focus is on ICU admission and use of ventilation, because constraints on ICU and ventilators 
are one of the main issues in capacity planning in hospitals14– and for n sufficiently small, for instance for the 
5- and 10-day ICU and ventilator forecasts, the training targets and the true targets were fairly close, leading to 
good model performance and useable forecasts, with true targets often within the 95% CI.

When looking at the prediction accuracy on the individual level, LogR performed worse than RF. In our 
experiments, the logistic regression had a tendency to overestimate the individual risks, that is, the training 
targets. The training targets themselves being underestimates of the true targets, this sometimes led to LogR 
giving better results on the true values, despite being less accurate on the individual level; for instance, for 10-day 
forecasting of ICU admission.

The problem that the training targets underestimate the true targets may be reduced by access to earlier SARS-
CoV-2 testing. While the Danish test capacity during and after the second wave was improved and patients in 
general have been tested early (before hospital admission), we only have access to tests performed by the regional 
test system and not by private vendors or the national test centers. Thus, we only have access to a limited num-
ber of positive tests before admission and for many of the patients we only have a confirmatory in-hospital test, 
leading to a very short time between test and hospital admission, and thus the discrepancy between the targets 
and actual number of ICU admitted or ventilated patients.

We expect the accuracy of the micro-to-macro approach to increase with access to these early tests, which 
might even make hospital admission forecasting feasible, however this will rarely be possible due to the number 
of different providers of COVID-19 tests. A more feasible alternative would be adjustment of predictions by use 
of macro model predictions, for instance by estimation of the total number of infected expected to arrive within 
the n-day forecasting window.

The findings mirror previously published results from the United Kingdom COVID-19 Capacity Planning and 
Analysis System (CPAS)15. In contrast to the CPAS system, our model captures patients at the time of their posi-
tive SARS-CoV-2 test result, with the ability to extract EHR information for all patients irrespective of hospital 
admission status. Even when we lack access to the early tests for many patients, this allows us to forecast ICU 
admission and ventilator use, even for non-hospitalized patients. This approach is feasible due to data sharing 
between the EHR system and Danish national registries, where detailed information on diagnoses codes, previous 
hospital admissions and pharmaceutical use is available for all Danish citizens. As such, the system can model 
basic demographic and healthcare datapoints even for non-hospitalized patients, which aids the prediction of 
need for hospital admission on a population-wide scale. However, as mentioned, the approach is limited by 
patients with late positive test results. In practice, the hospitalization model has to be adjusted, for instance by 
extending the model by modelling COVID-19 spread as done by CPAS and then adjusting the hospitalization 
model accordingly. Even better would be access to the early Danish PCR tests performed outside of the hospitals, 
which we hypothesize will alleviate the problem.

Our approach differs from conventional epidemiological analyses, where modelling is based on the number 
of patients tested positive, calculated infection rates and social mobility models for a specific infection during a 
pandemic with subsequent forecasting16. The generalization ability and performance of the RF model between the 
first and subsequent COVID-19 waves of 2020 and 2021 show the potential of modelling risk predictions at the 
individual level based on EHR data with subsequent extrapolation to population wide modelling in this as well as 
future pandemics. Furthermore, the approach could be ported to other disease settings, including a hospital-wide 
ICU admission forecasting, provided relevant disease modalities could be modelled by dedicated ML systems.

Figure 7.   10-day forecasts of admission to ICU and use of mechanical ventilation, compared to the training 
and true targets in the first wave setting. Predictions and targets for both the first wave (training data) and the 
subsequent waves (test data, dashed) are shown, as well as the 95% confidence intervals.
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Pivotal for the success of this approach is, however, an ability to rapidly mobilize EHR data for the purpose of 
ML modelling, thus indicating the need for maintaining updated data transfer protocols from the EHR system to 
a High-Performance Computing (HPC) platform capable of training ML models in a secure environment. Such 
EHR and HPC integration should ideally be maintained even between pandemic surges, owing to the often-rapid 
spread and unknown features of pandemics.

Furthermore, accumulating data indicates that the patient characteristics of the COVID-19 pandemic change 
from the first to subsequent waves. Indeed, reports have indicated that the second wave was characterized by an 
altered disease spectrum and updated treatment protocols17, resulting in potentially milder disease trajectories 
with lower ICU and ventilator requirements5, while the current third wave is expected to be affected by the 
increasing rate of vaccination in the Danish population. As such, effective forecasting models need to be robust 
towards demographic fluctuations, which is exemplified in our approach, where the predictive performances of 
the models were retained for both first, second and third wave patients in this study. Furthermore, these fluctua-
tions can be addressed by frequent model retraining, as evidenced by the improved performance of the monthly 
retraining method demonstrated here. While demographics may change, the pandemic progression carry the 
inherent risk of mutations in the viral genome altering the disease severity, as is seen SARS-CoV-2 variations 
such as the D614G and B117, the latter being the dominant strain in the current third wave of the pandemic in 
both Denmark and neighboring countries18,19. As such, predictive models could ideally be dynamically retrained 
on emerging data from multiple data sources, including potentials such as viral sequencing data in combination 
with EHR data.

Furthermore, adding additional data feeds (e.g., imaging data) to hybrid prediction models could potentially 
augment the value of such systems, which has been suggested by previous studies20–22. The caveat is, however, that 
such systems require integration of healthcare and population specific data, enabling extraction of EHR data on 
a community wide rather than a hospital specific scale. Healthcare systems operating as individual units rather 
than covering the entirety of a regional population, may thus not be optimally suited for real-time deployment 
of these prediction models.

This study has several limitations. First, we model data retrospectively and have not demonstrated a pro-
spective value in this study. As such, although accurate on retrospective data predictions, novel features of a 
potential next COVID-19 wave could affect model performance. Furthermore, we model a selected subset of 
patient-derived variables based on previous experience9, although other data points could affect the model’s 
classification ability.

Secondly, we have not performed external validation on a separate cohort. This, however, may not be desirable 
due to several factors: The model should be trained to forecast locally, and transferring to different healthcare 
systems with different social and geographical factors would require retraining of the model to capture these 
effects. We have also recently demonstrated that transferring COVID-19 ML prediction models between health 
care systems internationally results in a reduction of the classification precision, presumably due to inherent 
differences between healthcare systems even though patient demographics are comparable9.

Thirdly, as mentioned, the model could benefit from either adjustment based on macro predictions, or access 
to earlier SARS-CoV-2 tests for Danish patients, before deployment. This might also make hospital admission 
feasible.

In conclusion, this study demonstrates that transferring ML based patient level predictions for COVID-19 to 
a population wide-scale for the purpose of n-day resource use predictions, is feasible and should be considered 
for the current and future pandemic events.

Data availability
Data used for the purpose of this manuscript cannot be publicly shared due to patient confidentiality issues.
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