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Coal–rock damage characteristics 
caused by blasting within a reverse 
fault and its resultant effects 
on coal and gas outburst
Kui Gao1,2, Ping Huang3*, Zegong Liu1,2, Jian Liu1,2, ChiMin Shu4* & Guodong Qiao1

In view of the coal and gas outburst accidents occur frequently caused by blasting in geological 
structural belt, in order to study the mechanical characteristics of coal rock in tectonic belt disturbance 
by blasting and blasting vibration effect influenced on the stability of surrounding rock, coal–rock 
damage and failure characteristics within a reverse fault caused by a blasting stress wave were 
investigated using numerical analyses and experiments. According to the experimental results, 
the causes of coal and gas outburst dynamic disasters within a reverse fault during blasting are 
analyzed. The outcomes indicated that the crushing circle created by the crack propagation near 
the blasting hole severely damaged the fault plane and floor rocks adjacent to the footwall of the 
reverse fault. Fractures also extended to the upper and lower coal seams of the reverse fault; this 
caused the surface of the coal seam to fall off and severe internal damage. According to theoretical 
analysis, the reflection of the blasting stress wave propagating to the reverse fault intensified the 
damage to coal and rock. Elastic strain energy accumulation within the reverse fault structural zone 
was accompanied by high-stress concentration. The reverse fault tectonic region was destroyed by 
blasting vibration. It increased gas pressure and caused a weak surface, which provided a channel for 
gas flow and a dynamic basis for the occurrence of coal and gas outburst. The research results have 
important theoretical value to reveal the mechanism of coal and gas outburst in tectonic belt induced 
by blasting.

Coal and gas outburst is a nonlinear dynamic process of energy accumulation and unsteady energy release of 
coal, rock and gas system in coal mine1. In general, although these disasters only last for a few seconds or tens 
of seconds from initiation to termination2, hundreds or even tens of thousands of tons of coal can be ejected 
from the wall onto adjacent roadways with large volumes of discharged gases3. These outbursts mainly occur 
in local areas within mined coal seams, which are generally adjacent to a structural zone4,5. Before the 1950s, 
the research on coal and gas outburst was mainly field investigation and data analysis. Since the 1950s, many 
scholars began to use the method of laboratory test to study coal and gas outburst, achieved rich results and 
accumulated valuable experience6,7.

With an increase in mining activities, controlled blasting technology has been increasingly used in mining 
technologies to enhance seam permeability8,9, to cause forced hard roof caving10,11, and to weaken the top of 
hard coal in thick seams. These effects improve the mining rate and gas extraction efficiency and speed up tun-
neling into hard rock through deep hole blasting12. However, in blasting applications, a stress wave can disturb 
a structural area and readily induce coal–rock and gas dynamic disasters. Some statistics regarding coal–rock 
and gas dynamic disasters due to blasting are listed in Table 1.

Previous studies have made statistics on the relationship between blasting and coal and gas outburst. The 
results show that there is a direct correlation between coal and gas outburst and blasting, and most gas outbursts 
are caused by blasting13; The influence of geological structure and blasting technology on coal and gas outburst 
is analyzed, but the article on coal and gas outburst simulation experiment under the joint action of geological 
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structure and blasting is rare14. Limited studies have been conducted on the relationship between blasting and 
coal and gas outbursts15. To date, no in-depth study has been performed on the damage and failure characteristics 
of coal within structural areas under explosion loads. This study aimed to optimise control blasting technology 
and prevent the occurrence of dynamic gas disasters by understanding the physical processes caused by these 
activities.

This study also investigated the damage and failure characteristics of coal and rock and their influence on 
outburst dynamical disasters by combining numerical simulation, similarity experiments, and theoretical analyses 
to address the problem of coal and rock dynamic evolution within reverse fault tectonic belts under the action 
of blasting stress waves.

Blast disturbance through numerical simulation
Model construction.  DYNA3-D was used for numerical simulations through a three-dimensional (3-D) 
numerical model (Fig. 1). The length, width, and height of this numerical model were 1.2 m each. Blasting holes 
were arranged in the lower rock strata 40 cm from the upper wall of the reverse fault, and the thickness of the 
coal seam was 20 cm. The soft coal and rock mechanical parameters within the reverse fault are summarised in 
Table 2.

The detonation pressure acting on coal and rock at any given time can be expressed as follows:
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Table 1.   Selected coal and gas dynamic disasters caused by blasting: summarised statistics in China.

Time Name of mine Causes of outburst
Coal seam 
characteristics

Outburst coal (rock) 
quantity (t)

Outburst gas quantity 
(10,000 m3)

Number of deaths 
(persons)

2014.01.04 Zhongtian Coal Mine, 
Guizhou Province Blasting excavation Coal bed thickening 260 2.4 4

2014.06.11 Xinhua Coal Mine, 
Guizhou Province

Coal uncovered by 
blasting Soft coal seam 1010 12 10

2015.08.11 Zhengzhong Coal Mine, 
Guizhou Province Blasting Outburst area 218 2.8 13

2016.03.06 Songshu Town Coal Mine, 
Jilin Province Blasting excavation Graben structure NA NA 12

2017.01.04 Xingyu Coal Mine, Henan 
Province Blasting excavation Outburst coal seam NA NA 12

2018.04.04
Heilongjiang Dida-
oshenghe Coal Mine, 
Heilongjiang Province

Blasting excavation Graben structure 67 0.23 5
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Figure 1.   Three-dimensional (3-D) numerical blasting model used in this analysis.

Table 2.   Tectonic coal and rock parameters used in numerical simulation.

Blasting medium Density (g/cm3) Modulus of elasticity (GPa) Poisson’s ratio Yield strength (MPa)

Tectonic coal 1.4 5.3 0.32 6.9

Rock 2.4 9.8 0.24 35
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where P is the pressure of the blasting product, MPa; A and B are the parameters of explosives, GPa; V is the 
relative volume of detonation products, m3; E0 denotes the internal energy generated by detonation products, 
GPa; and R1, R2, and ω are characteristic dimensionless explosive parameters16. The explosive parameter settings 
used in numerical calculations are presented in Table 3. Post explosive load action, the failure forms observed 
in coal and rock mainly included tensile stress and compressive shear. Coal and rock fractures under pressure 
(P) can be expressed as follows:

In these expressions, Pmax and Pmin denote maximum compressive and minimum tensile strengths of coal and 
rock, respectively. Thus, when Pmax is negative, Pmin is positive (both expressed in MPa).

Analytical results.  Effective stress at different moments along the cut surface of a blasting hole is displayed 
in Fig. 2. These simulations revealed that when t = 60 μs, a blasting stress wave propagated uniformly along the 
hole at the initial time of development, and in this case, stress was less affected by the reverse fault. However, 
when t = 120  μs, the propagation of a stress wave was prominently influenced by soft coal seams within the 
reverse fault. Blasting stresses on the coal–rock interface adjacent to the reverse fault plane and coal seam near 
the hole were considerably greater than those on the other side, which led to the concentration of blasting stress. 
Throughout this process, a soft coal seam was subjected to the blasting stress to a lesser extent than within the 
rock seam. Blasting stress concentration mainly occurred near the hole and the area adjacent to the fault plane 
at the footwall of the reverse fault after 120 μs.

These numerical simulation results revealed that blasting stress wave propagation was considerably influenced 
by the reverse fault. Furthermore, coal and rock within the reverse fault under the wall adjacent to the hole were 
most strongly disturbed by blasting stress.

(2)
{

P ≤ Pmax

P ≥ Pmin.

Table 3.   Explosive parameter settings used in the numerical model.

Density (g/cm3) Detonation velocity (m/s) A (GPa) B (GPa) R1 R2 ω E0 (GPa)

0.95 3,200 347 0.733 4.15 0.95 0.3 1.0

t=60 μs                  t=120 μs   t=200 μs

t=260 μs        t=360 μs                   t=600 μs

Stress concentration

Blasting hole

Upper wall of reverse fault

Under wall of reverse fault

Figure 2.   Part contours of 3-D effective stress at different times. (1) pressure gauge mounting hole; (2) pressure 
conduction device; (3) gas hole; (4) box wall; (5) hydraulic jackhole; (6) pressure transmitting steel plate; (7) bolt 
hole; (8) front cover plate; (9) blasting wireway lead hole; (10) back cover plate; (11) strain brick wireway lead 
hole.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19158  | https://doi.org/10.1038/s41598-021-98581-w

www.nature.com/scientificreports/

Experimental blast disturbance validation
An experimental model was established using similarity theory and numerical simulation results. This simulation 
experiment was conducted in the laboratory to reproduce the damage and failure characteristics of a blasting 
stress wave on a reverse fault structural belt17,18.

Similarity theory.  The Froude proportional method was used to establish the experimental model used 
here19, which satisfied the following scale factor:

Thus, we obtain the following expression:

In these expressions, Kσ, Kρ, and Kl represent proportional coefficients of similar stress, density, and length, 
respectively. The basic variables used are length, l, and density, ρ, whereas m and p refer to the model and pro-
totype, respectively.

Thus, Kρ ∈ (1.24, 1.6), Kσ ∈ (0.15, 0.4), and Kl = Kσ/Kρ = (0.15/1.6, 0.4/1.24) = (0.09, 0.32). The sample used in 
this experiment was tectonic soft coal; thus, on the basis of the stress ratio range, Kσ is 0.4 and Kρ is 1.6. Thus, 
Kl = Kσ/Kρ = 0.25.

The similarity relationship between explosion load and charge amount can, therefore, be calculated as 
follows19:

Thus, the proportional distance between experimental model material and coal in the field can be expressed 
as follows:

In this expression, W refers to the number of explosives loaded, C represents the stress wave velocity, n 
expresses the attenuation coefficient, f annotates the coupling coefficient, R stands for proportional distance 
such that R = R/W1/3, and R symbolizes the blasting centre distance.

Because some energy leaks from coal during cylindrical charge presplit blasting, the proportional coupling 
coefficient, Kf = 2.0; the proportional stress wave coefficient, Kc = 0.41; and the attenuation coefficient, n = 2.5, 
are all recorded. Therefore, the proportional distance coefficient can be expressed as:

Thus, if a 100-mm columnar second-level permissible water glue explosive charge is present within a mine, 
25 mm is required for this experiment.

Simulated experimental device.  A special gas–solid coupling blasting simulation test system was used 
for all experiments. The size of the inner cavity of the experimental chamber is 30 cm × 30 cm × 30 cm (Fig. 3). 
The experimental chamber consists of main body of the box (Fig. 3a), front cover plate (Fig. 3b) and rear cover 
plate (Fig. 3c). The connection between the loading device and box was sealed with a ring, and the front and rear 
sides were sealed with high strength silica gel pads and bolts. The loading device used in this study comprised 
three hydraulic jacks and transfer plates (Fig. 4). Where Fig. 4a is the experimental blasting device main view 
and Fig. 4b is the 3-D schematic diagram.

Experimental data monitoring system.  An SDY2107A super dynamic strain data acquisition system 
was used in this analysis to investigate stress values in three directions from the bricks during the blasting pro-
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cess. The experimental data monitoring system (Fig. 5a) and strain brick used in the experiments are illustrated 
in (Fig. 5b).

In a plane stress model based on strain values, corresponding stress values for measuring points can be 
calculated as follows:

In this expression, ε1 refers to the horizontal strain, ε2 expresses the strain at 45°, ε3 annotates the vertical 
strain, and E denotes the elastic modulus, GPa.

Ultrasonic information can reflect changes in microdamage and cracks in coal and rocks. The wave velocity 
of an ultrasonic wave is related to the elastic modulus, density, and Poisson’s ratio of coal and rock samples. Thus, 
under explosive load action, the propagation of acoustic waves results in diffraction, reflection, and scattering, 
causing a decrease in the overall propagation speed.

A U-81 concrete ultrasonic detector developed by the Beijing Haichuang Hi-tech Technology Co. (Beijing, 
PR China) was used in this study (Fig. 6).

Experimental cartridge preparation.  The experimental cartridge used here was prepared from a poly-
vinyl chloride tube with a diameter and thickness of 16.0 and 1.0 mm, respectively (Fig. 7). Second-level permis-

(8)σ =
E

2(1− µ)
(ε1 − ε3)±

E

2(1+ µ)
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(ε1 − ε3)2 + (2ε2 − ε1 − ε3)2.
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Figure 3.   An experimental device used for blasting simulations: (a) main body of the box, (b) front cover plate, 
and (c) rear cover plate.
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Figure 4.   Schematic of the experimental blasting device used in this study: (a) device main view, and (b) 3-D 
schematic diagram.

 
(a) (b) 

Figure 5.   Experimental data monitoring system and strain brick used in this study: (a) test data monitoring 
system, and (b) strain brick.
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sible water glue explosives used in coal mines were filled into the cartridge during the experiment, and a special 
explosive booster of the same length was placed in the cartridge tube. This detonator was used to detonate the 
explosive (Fig. 7a).The finished blasting cartridge is shown in (Fig. 7b).

Experimental model construction.  The experimental model used in this study measured 
30  cm × 30  cm × 30  cm. This meant that applying the length similarity ratio, field coal, and rock of 
1.2 m × 1.2 m × 1.2 m dimensions can be simulated. Blasting holes were arranged in the rock layer 10 cm away 
from the upper wall of the fault, and the thickness of the coal seam was 5 cm. Detailed parameters are displayed 
in Fig. 8.

Stress measuring points 4 and 5 were positioned directly above the blasting hole at vertical distances of 2 and 
5 cm, respectively. Stress measuring points 1, 2, and 3 were arranged 2, 4, and 7 cm away, respectively, from the 
blasting hole in a horizontal direction (Fig. 9).

Figure 6.   Ultrasonic wave velocity testing system used in this study.

(a) (b) 

Figure 7.   Experimental cartridge production system with (a) detonator, and (b) blasting cartridge.

Blasting hole

13 cm 15 cm2 cm

Upperwall of reverse

Underwall of reverse

Fault plane

Figure 8.   Experimental blasting test model.
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To measure the ultrasonic wave velocity of the experimental model after blasting and to assess the inversion of 
microcrack damage caused by the blasting load, sections M1, M2, M3, and M4 were selected for testing (Fig. 10). 
Section M3 passed through the lower wall of the reverse fault coal seam, whereas M4 passed through the upper 
wall of the reverse fault coal seam.

Ultrasound transmitting and receiving points were arranged on two sides of the text block. Transmitting 
points were numbered from 1 to 24, whereas corresponding receiving points were numbered as 1′–24′ (Fig. 11). 
Six ultrasonic detection waves were emitted from one measuring point and were received at six corresponding 
sites on the other side of the same section (Fig. 12).

The experimental prototype was developed in the 14,136 working face of the 6th coal seam of Zhangji Mine 
within the Huainan Mining Area, Anhui Province, PR China, in this study. A total of 14 faults were developed 
in this working face, five of which had a drop greater than 3 m, and nine of which had a drop of less than 3 m. 
Original coal and rock mechanical parameters are outlined in Table 4.

The material ratio parameters of the experimental model are presented in Table 5. The experimental model 
was placed inside a prefabricated box. Strain bricks and reserved blasting holes were then embedded in their 
design position (Fig. 13a). In this case, the fault plane hardness was less than that of normal rock layers (Fig. 13b). 
Prepared samples were then air-dried at room temperature for a month (Fig. 13c). The samples were then loaded 
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Figure 9.   Stress measuring point.

Figure 10.   Surface layout for ultrasonic testing.
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Figure 11.   Ultrasonic testing point layout used in this study.
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into the blasting simulation test device. The experimental blasting cartridge was then loaded into the hole, which 
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Figure 12.   Diagram of launching and receiving ultrasonic test points.

Table 4.   Summary of mudstone and coal seam mechanical parameters.

Rock type Density (g/cm3) Modulus of elasticity (GPa) Poisson’s ratio
Compressive strength 
(MPa) Tensile strength (MPa)

Mudstone 2.4 9.8 0.24 28.2 1.3

Coal seam 1.4 5.3 0.32 7.1 0.4

Table 5.   Material ratio parameters included in the blasting experiment for rock, fault plane, and coal seam.

Rock type Cement Coal Gypsum Sand Water

Rock 1.2 0 0.5 6.1 0.70

Fault plane 1.0 0 0.8 6.2 0.80

Coal seam 0.2 1.8 1.2 2.5 0.65

Strained brick 

Blasting hole 

Floor strata 

Roof strata 

(a) (b)

(c) (d)

Detonator conductor

Upper wall of reverse

Floor strataBlasting holeFloor strataBlasting hole

Coal seam

Roof strata

Fault plane

Figure 13.   The entire process on the experimental model development: (a) rock layers of the reverse fault floor, 
(b) coal seam in the lower wall, (c) experimental model completion, and (d) charging and sealing.
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was sealed with yellow mud (Fig. 13d).
Post to charge blasting, the experimental device was then filled with CO2 before the detonator and exploder 

were connected for blasting simulation tests after coal seam adsorption was balanced. The complete experimental 
system is depicted in Fig. 14.

Analysis.  Crack growth observed in the experimental model after blasting is displayed in Fig. 15. This figure 
shows that blasting cracks propagated around holes and subsequently generated crushing circles (Fig. 15a). The 
fault plane and floor rock adjacent to the footwall of the reverse fault were severely damaged in this experiment 
(Fig. 15b). The fracture extended to the upper and lower coal seams within the reverse fault. Furthermore, the 
surface body of the coal seam fell off, and internal damage was severe. A blasting fracture also developed, which 
produced an extensive crack between the coal seam fracture and the crushing circle around the blasting hole 
(Fig. 15c).

Super dynamic 

strain instrument

Reaction frame

Hydraulic jack 

Detonator conductor

Figure 14.   Blasting simulation with the experimental system.

(a) (b) 

(c) (d)

Blasting hole 

Blasting crack 

Blasting hole 

Blasting crack 

Coal spalling 

Figure 15.   Crack development within the model after blasting: (a) development of cracks in the blasting model, 
(b) an enlarged partial map of the reverse fault structural belt, and (c) crack development on the surface of the 
blasting model, and (d) development of internal cracks in the blasting model.
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When the experimental model was removed from the blast simulation box, internal cracks were also devel-
oped in the sample (Fig. 15d). The upper and lower coal seam surfaces fell off the reverse fault, internal damage 
to the coal body was severe and cracks intersected with the crushing circle around the blasting hole.

Stress curves for measuring points are displayed in Fig. 16. A positive value in this figure represents compres-
sive stress generated by the blasting compressive wave, whereas a negative value represents tensile stress generated 
by the blasting tensile wave. This curve clearly revealed that peak stress decreased with an increase in the blasting 
hole distance but decreased with a decrease in time.

The stress similarity ratio, Kσ, of the experimental model was 0.4, and its compressive and tensile strengths 
were 11.28 and 0.52 MPa. The compressive strength of the experimental model coal was 2.84 MPa, whereas the 
tensile strength was 0.16 MPa. Thus, when blasting stress was greater than the compressive strength of coal and 
rock, a blasting crushing circle was produced. Similarly, when blasting stress was greater than the tensile strength 
of coal and rock, blasting cracks were produced.

Data revealed that the stress recorded at measuring point 1 was the largest (2.9 MPa), which was greater than 
the tensile rock strength, resulting in radial blasting cracks. Because of the superposition of reflected tensile and 
incident stress waves at the coal–rock interface, multiple stress peaks were observed in this experiment. Thus, 
under coal seam influence in the lower wall of the reverse fault and the fault plane, the maximal stress at stress 
measuring point 2 could reach 1.8 MPa. Furthermore, the trend in stress change at measuring point 3 was similar 
to that at measuring point 2; here, the stress value was slightly less than that at measuring point 3, where the 
maximal value was 0.5 MPa (Fig. 16a).

Stress measurement points 4 and 5 were located far away from the coal seam on the upper wall of the reverse 
fault and were less affected by the fault plane. The maximal stress recorded at stress measuring point 4 was 
2.8 MPa, whereas that at point 5 was 1.8 MPa. The recorded stress values at measuring points 4 and 5 were all 
greater than the tensile rock strength, which resulted in radial cracks (Fig. 16b).

The data cloud monitored by the ultrasonic detector post velocity value inversion is presented in Fig. 17. The 
Fig. 17a–d corresponds to the four planes of ultrasonic monitoring in Fig. 10. These data revealed that blasting 
cracks mainly developed toward the fault plane and coal seam within the lower wall of the reverse fault. These 
experimental results were consistent with those obtained from a numerical simulation.

(a) (b) 

)aP
M(

erusserP

Time (μs)

 No. 1 measurement point
 No. 2 measurement point
 No. 3 measurement point

)aP
M(

erusserP

Time (μs)

 No. 4 measurement point
 No. 5 measurement point

Figure 16.   Blasting stress variation curves: (a) horizontal stress measurement points, and (b) vertical stress 
measurement points.

(a) (b) (c) (d) 

Figure 17.   Ultrasonic image programs for different sections: (a) M1 section, (b) M2 section, (c) M3 section, and 
(d) M4 section.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19158  | https://doi.org/10.1038/s41598-021-98581-w

www.nature.com/scientificreports/

Mechanism analysis of outburst disturbance due to blasting
Propagation rule for a blasting stress wave within a reverse fault tectonic zone.  The blasting 
stress wave propagation characteristics indicate that the wave impedance value for a coal seam is far less than 
that for a rock seam20. This indicates that when a blasting stress wave propagates to the coal seam within the 
lower wall of a reverse fault, a stress wave is transmitted and reflected at the coal–rock interface. This effect 
produces transmitted compression and reflected tension waves. Thus, compression and expansion deformations 
in coal and rock occur within an area where transmitted compression and reflected tension stress waves pass 
(Fig. 18)21,22.

Given the blasting impact load action, a stress wave was first caused by microdamage and microcracks in hard 
rock. The generation of tensile stress was closely related to the action of tensile waves in soft coal and fractured 
rock on fault planes and was concentrated in an area where wave impedance changed. Coal and rock were, 
therefore, both prone to tension–shear failure. Because of the reflection of stress waves adjacent to the coal–rock 
interface, the transformation of compressive stress and tensile stress were frequent, and energy was therefore 
held in a repeated cumulative state23,24. A transmitted compressive stress wave thus acted on the coal body and 
increased seam cracks. A reflected tensile stress wave then reacted on the rock and formed an extensive crack 
adjacent to the coal body, increasing damage and rock range.

Analysis of coal and gas outbursts.  Cumulative damage due to blasting vibration caused the most severe 
damage to the coal and rock interface adjacent to the reverse fault. Cross cracks near the interface between coal 
and rock formed a network crack; the larger the impact load was, the farther the altered distribution cracks 
would propagate inside the coal and rock to provide a passage for gas and form a weak surface for the occurrence 
of a dynamic disaster. These areas were, therefore, candidates for coal and gas outbursts.

Before a blasting stress wave was applied to the structure of coal and rock, free and adsorbed gases in coal 
pores and fissures remained in dynamic equilibrium. However, when a tensile stress wave acted on tectonic soft 
coal within the coal–rock interface area, a coal body in this area expanded and deformed, which resulted in an 
increase in pores and fissures. This destroyed the adsorption equilibrium state within coal as well as adsorbing 
gas dissolution25. Adsorbed free gas then diffused into the blasting crack area and caused an increase in the gas 
pressure within the coal seam, which provided a dynamic basis for the occurrence of coal and gas outbursts and 
increased the risk of these events.

The mechanical conditions leading to coal and gas outbursts mainly depended on tensile stress, gas pressure, 
and coal shear force strength. Penetrating cracks between coal and rock within the lower wall of reverse faults 
and blasting holes reduced the friction between coal internal bedding planes and their interfaces with the rock. 
Thus, when the tensile stress and gas pressure in coal were greater than the shear strength and friction force of 
coal and rock combined, gas internal energy stored in a coal seam and coal elastic potential were swiftly released 
along the weak broken surface between coal and rock, which resulted in outbursts.

Conclusions
The following three conclusions were drawn:

•	 The propagation of blasting stress waves was highly influenced by reverse fault structures and fault planes, and 
the coal seam adjacent to the reserve fault under the wall adjacent to the hole was most strongly disturbed. A 
stress wave is transmitted and reflected when it propagated into a coal seam. Furthermore, the transformation 
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Figure 18.   Schematic of the propagation of a blasting stress wave within a reverse fault.
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of compressive and tensile stresses was frequent, which resulted in repeated accumulation of energy. This 
phenomenon indicated that damage to coal and rock in the underwall of a reverse fault was the most severe.

•	 A high concentration of stress and elastic strain energy accumulated within a reverse fault structural zone, 
which was a potentially dangerous area for coal and gas outbursts. A tensile wave formed by the reflection 
of the blasting stress wave acted on the rock between the hole and the underwall of the reverse fault, which 
reduced mechanical rock properties and provided a weak surface for outburst occurrence. A compression 
wave formed by the transmission of the blasting stress wave disturbed coal in the underwall of the reverse 
fault, increased cracks in the coal seam, adsorbed gas dissolution, and increased gas pressure. These factors 
created a dynamic basis for coal and gas outbursts.

•	 Blasting caused fragmentation of coal and rocks within a reverse fault tectonic region. This process attenu-
ated the friction between the internal bedding planes of coal and the interface with the rock. Because tensile 
stress and gas pressure within a coal seam were greater than the shear strength and friction force of coal and 
rock, gas energy and the elastic potential of the seam were released swiftly along this weak surface, which 
resulted in coal and gas outbursts.
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