
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18953  | https://doi.org/10.1038/s41598-021-98579-4

www.nature.com/scientificreports

An updated, computable 
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Wei‑Qi Wei1,5*

The MEDication‑Indication (MEDI) knowledgebase has been utilized in research with electronic health 
records (EHRs) since its publication in 2013. To account for new drugs and terminology updates, 
we rebuilt MEDI to overhaul the knowledgebase for modern EHRs. Indications for prescribable 
medications were extracted using natural language processing and ontology relationships from six 
publicly available resources: RxNorm, Side Effect Resource 4.1, Mayo Clinic, WebMD, MedlinePlus, and 
Wikipedia. We compared the estimated precision and recall between the previous MEDI (MEDI‑1) and 
the updated version (MEDI‑2) with manual review. MEDI‑2 contains 3031 medications and 186,064 
indications. The MEDI‑2 high precision subset (HPS) includes indications found within RxNorm or at 
least three other resources. MEDI‑2 and MEDI‑2 HPS contain 13% more medications and over triple 
the indications compared to MEDI‑1 and MEDI‑1 HPS, respectively. Manual review showed MEDI‑2 
achieves the same precision (0.60) with better recall (0.89 vs. 0.79) compared to MEDI‑1. Likewise, 
MEDI‑2 HPS had the same precision (0.92) and improved recall (0.65 vs. 0.55) than MEDI‑1 HPS. The 
combination of MEDI‑1 and MEDI‑2 achieved a recall of 0.95. In updating MEDI, we present a more 
comprehensive medication‑indication knowledgebase that can continue to facilitate applications and 
research with EHRs.

Medications and diagnoses are key components of clinical data. Linking medications and diagnoses can broadly 
facilitate clinical research such as evaluation of the quality of care and drug  repurposing1–5. However, medications 
and diagnoses are recorded using different clinical terminologies in electronic health record (EHR), e.g., RxNorm 
and International Classification of Diseases (ICD). The lack of explicit medication-indication linkage between 
these terminologies hampers our ability to synthesize these valuable data for healthcare improvement. Indication 
and adverse effect are the two major relationships between medications and diagnoses: a medication’s intended 
treatment target is its indication, and an unexpected medical problem that happens during treatment with the 
medication is its adverse effect. Additionally, there are both on-label and off-label indications; on-label indications 
are those approved by the U.S. Food and Drug Administration (FDA) through clinical trials, whereas off-label 
indications are based on scientific evidence and collective physician experience after the FDA approval  process6.

There have been several efforts to detail the relationships between medications and indications. Several 
resources, such as Side Effect Resource (SIDER), DrugBank, and LabeledIn, extracted indication from FDA’s 
structured product  labels7–10. While these approach provides a robust source of on-label indications, these 
resources are unable to capture off-label  indications11. Additionally, these resources only includes indications 
from currently FDA approved drug  products10, which may leave out valuable information about no longer 
prescribable medications when researching with historical EHR data. Another resource, Chemical Entities of 
Biological Interests (ChEBI) includes indications in free unstructured text from Wikipedia, which is less readily 
applicable for EHR research than structured medication-indication  relationships12. Some studies identified on-
label and off-label indications by using frequently co-occurring medication-indication pairs in clinical  notes13,14. 
However, differences across institutions, such as cohort demographics and provider diagnostic patterns, may 
affect the generalizability of these  resources15–18. There are also several resources that focus primarily on adverse 
effects and not indications, including the “Large-scale Adverse Effects related to Treatment Evidence Standardi-
zation (LAERTES)”  knowledgebase19.
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In 2013, we introduced the publicly available MEDication-Indication (MEDI) knowledgebase that integrates 
information from four public medication resources (RxNorm, SIDER 2, MedlinePlus, and Wikipedia) to identify 
relationships between medications and their indications, including both on-label and off-label  indications20. 
MEDI described medications with RxNorm concept unique identifiers (RxCUIs) and indications with ICD-
9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) codes. Our original study 
demonstrated that the combination of resources could provide a more comprehensive coverage of indications 
than any single resource alone without compromising  precision20. This observation was supported by the devel-
opment of Drug Evidence Base (DEB), a medication indication knowledgebase which took a similar approach 
to aggregating both indication and adverse effect information from several  resources21.

The first version of MEDI, which we will henceforth refer to as MEDI-1, has been well-utilized in pharma-
ceutical and clinical  research5,8,22–24. However, the resource has become progressively outdated over the past 
seven years, limiting its  usefulness11. For instance, some drugs are no longer commercially available in the U.S., 
and the FDA approved 220 novel drugs between 2015 and  201925. The adoption of ICD Tenth Revision, Clinical 
Modification (ICD-10-CM) has also made MEDI-1 less applicable to modern EHRs. Furthermore, a number of 
the resources used to build MEDI-1 have been updated, such as SIDER 2, which has been updated to SIDER 4.17.

In this paper, we present MEDI-2, an updated medication indication knowledgebase for biomedical research 
with modern EHRs. We built MEDI-2 with information from six public medication resources, including updated 
versions of the four original resources. With an updated manual review design, we evaluated the current release 
MEDI-2 and compared the precision and recall of MEDI-1, MEDI-2, and a combined MEDI-1 and MEDI-2 
resource (MEDI-C).

Results
Summary of MEDI‑2. A flowchart outlining the construction of MEDI-2 from the six resources is shown 
in Fig. 1. Briefly, medications from the resources were mapped to RxCUIs and indications were mapped first to 
United Medical Language System concept unique indentifiers (UMLS CUIs) and subsequently to ICD-9-CM 
and ICD-10-CM codes. The overlap between the six resources can be visualized in Fig. 2. Information was avail-
able from at least two resources for 2168 (71.6%) of these medications. Of note, 553 medications were found 
only in WebMD. However, many of these unique medications were traditional remedies, extracts, or oils such 
as coconut oil (RxCUI 1309239), Asian ginseng extract (RxCUI 1370774), or soy isoflavones (RxCUI 1807769).

Of the 3031 medications included in MEDI-2, we identified 4323 unique UMLS CUIs related to indications, 
giving 36,348 UMLS CUI medication-indication pairs. After mapping to ICD codes, there were 3072 unique 
ICD-9-CM codes and 5373 ICD-10-CM codes, resulting in 74,971 ICD-9-CM indications pairs and 111,093 
ICD-10-CM indications pairs (Table 1). One medication can be paired with in an indication in both ICD-9-CM 
and ICD-10-CM. As shown in Fig. 3, a large proportion (77.8%) of these indication pairs were identified from 
only a single resource.

Figure 1.  Flowchart outlining the process of building MEDI-2 and quantifying the medication and indications 
identified at each major step. RxCUI = RxNorm concept unique identifiers; HPS = high precision subset.
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Evaluation of MEDI‑2. A summary of the estimated precision of different resource combinations is shown 
in Table 2. Medication-indication pairs extracted from the six resources had precisions ranging from 0.74 (Wiki-
pedia) to 0.93 (RxNorm). While highly precise, RxNorm occasionally identifies false-positive indications when 
extracting indications from published abstracts of studies on cell lines or non-human subjects. For instance, 
RxNorm included the medication-indication pair amiloride and ‘disease of pancreas, unspecified’ (ICD10CM 
K86.9), where amiloride has been tested only in pancreatic cancer cell  lines26.

Using a combination of resources excluding RxNorm, precision improved as we increased the threshold for 
the number of resources that contain the medication-indication pair. We selected the high-precision subset for 
MEDI-2 to include all medication-indication pairs from RxNorm or ≥ 3 resources. Therefore, MEDI-2 high 
precision subset (HPS) is composed of 2000 medications and 34,448 indication pairs, including both ICD-9-CM 
and ICD-10-CM indications.

Comparison of MEDI‑1, MEDI‑2 and MEDI‑C. In our original study, MEDI-1 included 3112 medica-
tions and 63,343 medication-indication  pairs20. After regrouping MEDI-1 using the same generic ingredient 
groupings that we used for MEDI-2, there were 2701 unique medications and 56,550 medication-indication 

Figure 2.  Weighted Venn diagram of distribution of medications within the six resources for MEDI-2. Each 
colored area represents a different resource. The larger number in each colored area represents the number 
of medications found in the combination of resources labeled by the smaller numbers in the parenthesis. 
The numbers in the parenthesis correspond with the numbers in the color legend. The circle area sizes are 
proportional to the number of medications–indications that were found within the corresponding resource(s).

Table 1.  Summary of counts of medications, ICD codes, and indications for MEDI-2.

Resource Medications (% of total) ICD-9-CM (% of total) ICD-10-CM (% of total)
ICD-9-CM Indications (% of 
total)

ICD-10-CM Indications (% of 
total)

RxNorm 1922 (63.4) 1302 (42.4) 2125 (39.5) 10,221 (13.6) 14,830 (13.3)

Mayo Clinic 1696 (56.0) 1305 (42.5) 2137 (39.8) 14,027 (18.7) 20,193 (18.2)

MedlinePlus 1273 (42.0) 1270 (41.3) 2095 (39.0) 15,631 (20.8) 22,692 (20.4)

SIDER 4.1 1042 (34.4) 1833 (59.7) 3206 (59.7) 15,765 (21.0) 23,351 (21.0)

WebMD 2289 (75.5) 1484 (48.3) 2500 (46.5) 32,408 (43.2) 44,627 (40.2)

Wikipedia 1999 (66.0) 2417 (78.7) 4143 (77.1) 20,624 (27.5) 31,704 (28.5)

Union of all resources 3031 3072 5373 74,971 111,093
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pairs remaining in MEDI-1. The decrease in number of medication and medication-indication pairs was likely 
due to changes in RxNorm relationships. For example, ‘morphine sulfate’ (RxCUI 30236) and ‘morphine hydro-
chloride’ (RxCUI 235751) in MEDI-1 were both mapped to ‘morphine’ (RxCUI 7052) in MEDI-2, reducing the 
number of medication-indication pairs from 33 to 20 for this drug.

A Venn diagram illustrating the overlap and differences between the medications included in MEDI-1 and 
MEDI-2 is shown in Fig. 4. There were 721 medications found only in MEDI-1 and not in MEDI-2, of which 
254 (35.2%) are multi-ingredient medications, which we did not compare directly with MEDI-2 due to lack of 
standardization. Of the remaining 467 single-ingredient medications found only in MEDI-1, 79 medications 
were flagged by RxNorm as prescribable. In contrast, MEDI-2 has 1051 additional prescribable medications than 
MEDI-1, including 93 multi-ingredient medications and 652 (62.0%) prescribable single-ingredient medications 

Figure 3.  Weighted Venn diagram of distribution of medication-indication pairs within the six resources 
for MEDI-2, stratified by ICD-9-CM (left) and ICD-10-CM (right). Each colored area represents a different 
resource. The larger number in each colored area represents the number of medications found in the 
combination of resources labeled by the smaller numbers in the parenthesis. The numbers in the parenthesis 
correspond with the numbers in the color legend. The circle area sizes are proportional to the number of 
medications–indications that were found within the corresponding resource(s). ICD International Classification 
of Diseases.

Table 2.  Estimated precision of MEDI-2 for different resource combinations. a Indications that the reviewers 
deemed were too ambiguous were excluded from analysis (e.g., ICD10CM R69 = Illness, unspecified). b HPS: 
High precision subset = indications from RxNorm or ≥ 3 resources.

Resource Medications Indications pairs Total reviewed a True positive Precision

RxNorm 1922 25,051 91 85 0.93

Mayo Clinic 1696 34,220 106 86 0.81

MedlinePlus 1273 38,323 105 82 0.78

SIDER 4.1 1042 39,116 102 78 0.76

WebMD 2289 77,035 126 95 0.75

Wikipedia 1999 52,325 111 82 0.74

Excluding RxNorm

1 resource 2892 135,787 174 87 0.50

2 resources 1517 15,789 88 65 0.74

3 resources 939 5863 63 56 0.89

4 resources 510 2451 60 56 0.93

5 resources 233 1123 57 52 0.91

 ≥ 1 resource 2899 161,013 0.55

 ≥ 2 resources 1621 25,226 0.80

 ≥ 3 resources 1066 9437 0.90

 ≥ 4 resources 602 3574 0.92

MEDI-2 (any resource) 3031 186,064 0.60

MEDI-2 HPS b 2000 34,488 0.92



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18953  | https://doi.org/10.1038/s41598-021-98579-4

www.nature.com/scientificreports/

that are unique to MEDI-2. Thus, for prescribable single-ingredient medications, MEDI-2 adds a significant 
number of medications (652) compared to MEDI-1, and only misses a small portion of medications (79) that 
were captured in MEDI-1.

For the high precision subsets, MEDI-1 HPS included 1764 medications and 11,552 indication pairs. There 
were 359 drugs identified in MEDI-1 HPS and not in MEDI-2 HPS, of which 152 (42.3%) are multi-ingredient 
medications. Within the 207 single-ingredient medications found only in MEDI-1 HPS, only 22 were prescrib-
able. For MEDI-2 HPS, there are an additional 464 prescribable single-ingredient medications and 4 multi-
ingredient medications.

In a review of 50 medication-indication pairs found in MEDI-1 HPS but not MEDI-2 HPS, we observed that 
10 (20%) of the reviewed pairs were found to be invalid. Additionally, 32 (64%) of the reviewed pairs had related 
or better indications in MEDI-2 HPS. For example, although the medication-indication pair ‘albuterol’ (RxCUI 
435) and ‘Acute bronchospasm’ (ICD-9-CM 519.11) was found only in MEDI-1, MEDI-2 identified similar 
indications for albuterol including ‘Acute bronchospasm’ (ICD-10-CM J98.01) and ‘Exercise induced bronchos-
pasm’ (ICD-9-CM 493.81). Of the remaining 8 pairs that were valid only in MEDI-1 HPS, 5 of the 8 medications 
are not currently prescribable in the U.S., including cefamandole, chlorphenesin, streptokinase, pemoline, and 
valdecoxib. Therefore, we also grouped the indications from both MEDI-1 and MEDI-2 into MEDI-C since the 
combination will provide a higher recall for research with historical clinical data.

The estimated precision and recall for MEDI-1, MEDI-2, and MEDI-C (the combination of MEDI-1 and 
MEDI-2) is shown in Table 3. The reported number of indication pairs for MEDI-2 are markedly greater than 
MEDI-1 since it includes both ICD-9-CM and ICD-10-CM indications. Both MEDI-2 and MEDI-2 HPS have 
similar precision and improved recall compared to MEDI-1 and MEDI-1 HPS, respectively. MEDI-C, the com-
bined version of MEDI-1 and MEDI-2, has a much higher recall (0.95) compared to MEDI-1 (0.79) and MEDI-2 
(0.89) alone. Similarly, we observed that MEDI-C HPS has improved recall (0.67) compared to MEDI-1-HPS 
(0.55) and MEDI-2-HPS (0.65) alone. These observations suggest there are medications or indications identified 
in MEDI-1 that are not available in MEDI-2, likely because some medications have been commercially withdrawn 
from U.S. as observed in our reviews.

Figure 4.  Weighted Venn diagram of the differences and overlap of medications included in MEDI-1, MEDI-1 
HPS, MEDI-2, and MEDI-2 HPS. Each colored area represents a different resource. The larger number in each 
colored area represents the number of medications found in the combination of resources labeled by the smaller 
numbers in the parenthesis. The numbers in the parenthesis correspond with the numbers in the color legend. 
The circle area sizes are proportional to the number of medications found within the corresponding resource(s). 
HPS high precision subset.

Table 3.  Estimated precision and recall of MEDI-1 and MEDI-2. a Indication pairs for MEDI-2 include both 
ICD-9-CM indications and ICD-10-CM indications, which may include some overlap. b Estimated precision 
for MEDI-1 and MEDI-1-HPS from Wei et al.20.

Resource Medications Indications pairs a Precision b Recall

MEDI-1 2701 56,550 0.60 0.79

MEDI-1 HPS 1764 11,552 0.92 0.55

MEDI-2 3031 186,064 0.60 0.89

MEDI-2 HPS 2000 34,488 0.92 0.65

MEDI-C (MEDI-1 + MEDI-2) 3752 223,153 0.60 0.95

MEDI-C HPS (MEDI-1 HPS + MEDI-2 HPS) 2359 39,100 0.92 0.67
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Discussion
MEDI-2 is a comprehensive medication-indication knowledgebase prepared for biomedical research with mod-
ern EHRs. Leveraging information from six publicly available medication resources allows MEDI-2 to capture 
a broad range of medications and indications, improving precision and recall over any one resource  alone20. 
Moreover, indications in MEDI-2 are represented with the widely-used ICD-9-CM and ICD-10-CM billing 
codes, allowing MEDI-2 to be easily utilized for research in many EHR systems.

Compared to MEDI-1, MEDI-2 captures many more medications and indications, and also modernizes MEDI 
by capturing ICD-10-CM indications. Despite the sharp increase in medication-indication pairs in MEDI-2, 
our review showed that MEDI-2 has an overall improved performance compared to MEDI-1, improving recall 
(0.89 vs. 0.79) without sacrificing precision. Similarly, MEDI-2 HPS also increased the overall number of covered 
medications (2000 vs. 1764) with improved recall (0.65 vs. 0.55) compared to MEDI-1 HPS.We also observed 
that the precision for individual resources was better in MEDI-2 compared to MEDI-1. For instance, the preci-
sion for Wikipedia improved from 0.56 in MEDI-1 to 0.74 in MEDI-2. This may be due to improvements in the 
resources themselves or in our pipeline for extracting and mapping indications.

Our review showed that a significant portion of medication-indication pairs (64%) found only in MEDI-1 
HPS had a similar or better indication in MEDI-2 HPS and an additional 20% found only in MEDI-1 HPS were 
invalid pairs. Notably, the review identified five drugs that are no longer prescribable in the U.S., which may still 
be valuable when conducting research with longitudinal and historical EHR data. Therefore, we are also releasing 
MEDI-C, which will incorporate MEDI-1 into MEDI-2 with a flag to indicate which resource the medication-
indication pair is from. Our reviews found that MEDI-C achieved a much higher recall of 0.95 than MEDI-1 
(0.79) and MEDI-2 (0.89) alone.

A notable obstacle for MEDI-2 was the mapping of indications from free text in the articles to ICD. When 
rebuilding MEDI, we observed that the UMLS CUIs that were extracted by natural language processing (NLP) 
for indications did not always map to ICD codes. For instance, a free text mention of ‘breast cancer’ would be 
extracted by NLP as ‘Breast Carcinomas’ (CUI C067822), which only maps to Systematized Nomenclature of 
Medicine Clinical Terms (SNOMED CT) concepts for breast cancer through the UMLS. We were able to recapture 
some ICDs by mapping the SNOMED CT concepts to ICD, but it is possible some indications were overlooked. 
We also observed that ICD-10-CM indications were more easily captured than ICD-9-CM indication, which 
are still useful for research with older EHRs. This was likely due to updates in the UMLS concept tables that 
were used to map the UMLS CUIs extracted from the articles to ICDs. By integrating MEDI-1 into MEDI-2 for 
MEDI-C, we are able to keep more ICD-9-CM indications, but further work is needed to refine the mapping 
of free-text indications to ICD. Additionally, we provide the indications represented in UMLS CUIs alongside 
ICDs for MEDI-2, which can be useful for NLP tasks with free-text clinical notes.

Several limitations to MEDI-2 should be acknowledged. First, MEDI-2, like MEDI-1, is limited to medica-
tions and indications found in the public resources. Public resources are not perfect; we observed lower precision 
from indications extracted from < 3 resources. While most of the publicly available medication resources had 
significant overlaps with each other, there were 553 medications identified only in WebMD. As a consumer-based 
resource, WebMD often includes supplements and alternative/homeopathic medicines that were not found in 
the other resources. In particular, WebMD discusses many extracts or essential oils where the benefits may have 
limited evidence.

Concept extraction via NLP still remains a challenge with potential misrecognitions or mixing with adverse 
effects. MEDI-2 is primarily focused single-ingredient medications and likely excluded some prescription or 
branded medications that include a combination of medications. There is less naming standardization for multi-
ingredient medications, which causes difficulty when mapping to RxCUIs. Additionally, the reported precisions 
and recalls in this study are imperfect estimates, but the lack of a gold standard makes it difficult to efficiently 
assess resources as large as MEDI without estimation from manual review. However, the similar precision cal-
culated from manual reviews for both MEDI-1 and MEDI-2 supports our precision estimation. Lastly, MEDI 
only reports the binary relationships for medications-indications pairs and does not include more granular detail 
about the relationships for each pair, such as distinguishing between preventative or therapeutic indications. 
Additionally, we made no judgements on the strength of evidence for off-label indications. Indications mapped 
from SIDER 4.1, which is derived directly from the Food and Drug Administration’s structured product labels, 
may be considered as plausible evidence for ‘on-label’  indication7. Further work is needed to capture more 
detailed information in an automated manner.

In summary, MEDI-2 marks a significant improvement and expansion over our original medication-indi-
cation knowledgebase. Our results showed that incorporating new and updated resources enabled MEDI-2 to 
capture many additional medications and indications with greater recall. As a freely available and comprehensive 
resource, MEDI-2 can continue to enable in pharmaceutical and clinical research with EHRs.

Methods
Rebuilding MEDI with updated publicly available resources. We derived medication information 
from six publicly available resources: RxNorm, SIDER 4.1, Mayo Clinic, WebMD, MedlinePlus, and Wikipedia. 
Detailed descriptions of these resources are provided in Supplementary Table 1. RxNorm and SIDER 4.1 main-
tain medication-indication information in a structured table, while the other four resources are free-text based 
and are primarily focused on consumer health information.

For RxNorm, we retrieved all medication concepts and their associated RxCUIs from the prescribable sub-
set of  RxNorm27. Using the UMLS, we mapped the medications from RxNorm to indications represented by 
UMLS CUIs with the UMLS relationships ‘may_be_treated_by,’ ‘may_be_prevented_by,’ and ‘may_be_diag-
nosed_by. The ‘may_be_diagnosed_by’ relationship flag was included as it captured some true indications such 
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as “levothyroxine” and “disorder of thyroid gland” or “papaverine” and “erectile disorder.” SIDER 4.1 provided 
medication names as free text and indications as UMLS  CUIs7. We mapped the SIDER 4.1 medication names to 
RxCUIs by string matching with the UMLS.

Mayo Clinic, WebMD, and MedlinePlus all maintain directories of articles describing medications. We wrote 
a Python bot that automatically scraped the article titles and body text from these directories, excluding article 
subsections that were related to side effects or contraindications. We mapped the article titles to RxCUIs and 
combined articles with the same RxCUI. Articles that mapped to several RxCUIs contribute the same indications 
to each of the mapped medications. For Wikipedia, we extracted articles by querying Wikipedia’s application pro-
gramming interface using the RxCUI concept names (i.e., medication name). We used KnowledgeMap Concept 
Indexer to identify medical concepts defined by UMLS CUIs in each medication  document28. KnowledgeMap 
Concept Indexer is a locally developed NLP pipeline that has been shown to effectively extract medical concepts 
in medical documents and online  resources20,28,29, outperforming the National Library of Medicine’s MetaMap 
NLP tool in precision and  recall28,30. Medical concepts that were negated were excluded. We filtered the UMLS 
CUIs for the following semantic types: Disease or Syndrome, Congenital Abnormality, Acquired Abnormality, 
Anatomical Abnormality, Neoplastic Process, Virus.

The final version of MEDI-2 includes separate medication-UMLS CUI and medication-ICD code relation-
ships. The identified UMLS CUIs from each resource were mapped to ICD-9-CM and ICD-10-CM codes with 
the UMLS concept tables. For CUIs that did not directly map into ICD but mapped to SNOMED-CT concepts, 
we used SNOMED-CT to ICD mappings from the National Library of Medicine (https:// www. nlm. nih. gov/ healt 
hit/ snome dct/ archi ve. html; accessed January 2020). For instance, the UMLS does not map ‘Breast Carcinomas’ 
(CUI C067822) to ICD codes but does map to the SNOMED CT concepts for breast cancer. For UMLS CUIs 
that mapped to several ICD codes, each ICD code was considered as unique indications. Based on relationships 
within RxNorm, all medication concepts were grouped by their generic ingredient when possible (e.g. ‘tylenol’ 
is in group ‘acetaminophen’). Medications that included multiple active ingredients were mapped to a combined 
multi-ingredient generic when possible (i.e., ‘tylenol with codeine’ mapped to ‘acetaminophen / codeine) or to 
their single-ingredient components if not. We additionally regrouped MEDI-1 to generic ingredients using the 
same groupings for MEDI-2 for consistency.

Evaluating MEDI‑2. For MEDI-1, we demonstrated that combining multiple independent resources 
improved the precision of the medication-indication  pairs20,31, We created a high-precision subset for MEDI-1 
(MEDI-1 HPS) of medication-indication pairs that were either extracted from RxNorm, which already had high 
precision alone, or two or more other resources.

We estimated the precision of MEDI-2 to evaluate whether adding two additional resources would affect 
our threshold for the high-precision subset. First, an author with clinical background (NSZ) evaluated ran-
domly selected subsets of 50 medication-indication pairs from each of the six resources used to build MEDI-2. 
The positive predictive value (PPV) for each resource was calculated by dividing the number of true positive 
medication-indication pairs by the total number of pairs reviewed. Reviewed medication-indication pairs that 
were found in more than one resource were included in the respective PPV calculation for each of the over-
lapping resources. Then, excluding RxNorm, we had two authors with a clinical background (VB and HNE) 
evaluate additional subsets of 50 medication-indication pairs derived from two, three, four, and five resources, 
respectively. Medication-indication pairs were deemed ‘true’ if the reviewers found evidence for the indication 
in UpToDate, clinical trials, or peer-review studies. Ambiguous indications, namely ICD codes that are too 
broad (e.g., ICD-10-CM R69 = ‘Illness, unspecified’), were excluded from analysis. The reviewers used studies 
published in peer-reviewed journals and UpToDate (https:// www. uptod ate. com), an evidenced-based clinical 
resource commonly used by practicing clinicians, in their evaluation.

We estimated the precision of a combination of resources (R) with the following equation:

where R is the set (combination) of reviewed resources r , size(r) is the number of medication-indication pairs in 
resource r , and PPV(r) is the estimated positive predictive value for resource r from the reviews.

Comparison of MEDI‑1, MEDI‑2, and MEDI‑C. We estimated the precision of MEDI-1, MEDI-2, and 
MEDI-C (the combination of MEDI-1 and MEDI-2) using the above-defined precision equation. A board-cer-
tified physician clinician (VEK) also reviewed 50 medication-indication pairs that were found in MEDI-1 HPS, 
but not in MEDI-2 HPS. For each medication-indication pair in the review subset, the clinician also indicated 
whether a similar or better indication was in MEDI-2 HPS.

In this update, we also designed an experiment to estimate the recall. We pre-selected five common medica-
tions that have multiple indications which span several domains: propranolol, methotrexate, sildenafil, gabap-
entin, and estradiol. A physician with board-certification in internal medicine (VEK) used UpToDate to curate a 
list of clinically-accepted on-label and off-label indications for the five medications. Then, the clinician reviewed 
the medication-indication pairs for the five medications from the three resources and indicated whether indica-
tions from their initial list were found in each resource.

Data availability
MEDI is made freely available for download at https:// www. vumc. org/ wei- lab/ medi. Code and scripts used to 
construct MEDI are made available upon request (wei-qi.wei@vumc.org).

Precision(R) =

∑
r∈R

size(r)× PPV(r)
∑

r∈R
size(r)

https://www.nlm.nih.gov/healthit/snomedct/archive.html
https://www.nlm.nih.gov/healthit/snomedct/archive.html
https://www.uptodate.com
https://www.vumc.org/wei-lab/medi
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