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A non‑field analytical method 
for heat transfer problems 
through a moving boundary
Vladimir Kulish1* & Vladimír Horák2

This paper presents an extension of the non-field analytical method—known as the method of Kulish—
to solving heat transfer problems in domains with a moving boundary. This is an important type of 
problems with various applications in different areas of science. Among these are heat transfer due to 
chemical reactions, ignition and explosions, combustion, and many others. The general form of the 
non-field solution has been obtained for the case of an arbitrarily moving boundary. After that some 
particular cases of the solution are considered. Among them are such cases as the boundary speed 
changing linearly, parabolically, exponentially, and polynomially. Whenever possible, the solutions 
thus obtained have been compared with known solutions. The final part of the paper is devoted 
to determination of the front propagation law in Stefan-type problems at large times. Asymptotic 
solutions have been found for several important cases of the front propagation.
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Heat transfer in domains with a moving boundary is an important problem with various applications in different 
areas of science. Among these are, for instance, heat transfer due to chemical reactions, ignition and explosions, 
combustion, and many others.

It is known since long that finding closed-form solutions of the heat equation with the convective term is an 
extremely challenging task1. In some cases, these analytical solutions can be found by the use of thermal poten-
tials, but, even then, such an approach, in general, results into a set of integral equations rather than a single 
equation and worse still, requires additional auxiliary unknown functions (densities of the thermal potentials 
of the single and double layers) to be introduced2,3.

In most of the classical texts, theoretical investigations of the Stefan problem are focused on the situation, 
where the boundary moves with a constant speed4,5. The same situation exists in recent studies of advanced forms 
of the Stefan problem6–9. Even in the most recent study, in which the phase-change temperature is size or velocity 
dependent, the assumption of the boundary speed constancy has been made10. Thus, no theoretical investigations 
of the Stefan problem are known, in which the boundary speed would be arbitrary.

This paper presents an elegant single-formula solution of the heat equation with the convective term, in which 
the speed varies arbitrarily. This solution is obtained by the method nowadays known as the method of Kulish11. 
The method renders non-field solutions of partial differential equations. These solutions are so called, because 
they relate local values of temperature and the temperature gradient, and thus there is no need for determining 
the entire temperature field. Over the past 2 decades, the non-field method has been successfully applied for 
solving problems in different areas of science ranging from thermal-fluid sciences12–15 to biomedical engineering16 
and even econometrics17. In the most recent study, a theoretical justification of the method together with the 
general expression for the involved fractional operator has been provided18.

It has been shown18 that the non-field solution of the transport equation (the heat equation in this study)

is given in the form18

where ∂1−n/2 denotes fractional derivatives defined through the Riemann–Liouville integrals as18

Notice that not only Eq. (2) is valid within the entire domain but also remains valid on the domain boundary 
(surface), x = 0 , that is,

It is worth noting here that the non-field method, discussed in this study, yields the solution of Eq. (1) given in 
the form of Eq. (2) for any boundary conditions imposed on Eq. (1). Hence, there is no need to specify a set of 
boundary conditions for the said equation. Moreover, as can be easily seen from Eq. (4), the method can be used 
to transform the Direchlet boundary conditions into the Neumann ones and vice versa12,13.

Equations (2) and (4) can be obtained because the original transport Eq. (1) is reducible to the corresponding 
fractional partial differential equation

where the operator

is given as a series with respect to fractional derivatives.
It has been shown also that the recurrent expressions for the coefficients an in Eqs. (2), (4), and (6) are as 

follows:
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In the following sections, it is shown how the above results can be extended to some heat transfer problems in 
domains with a moving boundary.

The latter case is modelled by the heat equation, in which the coefficients α,β , and γ depend on time only. In 
such a case, the fractional operator can be expressed in an alternative form, which enables improved convergence 
of final results. Section “An alternative representation of fractional operators: improved convergence” discusses 
this alternative form of the fractional operator.

Section “Heat transfer through a moving boundary” is devoted to establishing the non-field solution of the 
heat equation, which models the process of heat transfer into a semi-infinite domain through the arbitrarily 
moving boundary. Some particular cases of the solution are considered in the end of the section. Among them 
are such cases as the boundary speed changing linearly, parabolically, exponentially, and polynomially.

In section “Determination of the front propagation law in Stefan-type problems at large times”, some Stefan-
type problems are considered. Most of this section is devoted to determination of the front propagation law at 
large times. Asymptotic solutions have been found for several important cases of the front propagation.

An alternative representation of fractional operators: improved convergence
First, consider the case, when all the coefficients in the original Eq. (1) are constant, that is, α = const , β = const , 
and γ = const . In this case, the solution, obtained by the non-field method can be compared with the exact solu-
tion found by means of Laplace transforms. Indeed, Eqs. (4) and (7) render

while the method of Laplace transforms yields

where � = Lt [T] denotes the Laplace transform of the temperature.
Notice that, in Eqs. (8) and (9), Ts = 1 for the sake of simplicity but without lose of generality.
Taking into account that Lt [tν ] = Ŵ(ν + 1)/pν+1 , Eqs. (8) and (9) are identical.
Upon invoking Eq. (3), the series in the right side of Eq. (8) can be summed up, that is,

In comparison with Eq. (8), the latter expression is much more convenient, especially for large values of t .
The latter result suggests that, in the case of α = const , β = const , and γ = const , the operator in the fractional 

representation of the transport equation, Eq. (2), can be written as

For Eq. (2) with the arbitrary coefficients, the corresponding fractional form is

where the coefficients a∗n differ from those in Eqs. (4) and (6) but can be determined by the same methods as the 
coefficients an . In the following sections, these coefficients are determined separately for each case considered.

As can be easily seen from Eq. (12), the corresponding non-field solution of the original transport Eq. (1) at 
the surface becomes
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It is worth noting here that, for practical purposes, convergence of the series in Eqs. (12) and (13) for large values 
of t  is better than in Eq. (6)—in particular, when α,β , andγ are slowly varying functions.

To conclude this section, it is worth noting that the result, presented above, is important from the meth-
odological point of view. This is so, because the alternative form of the fractional operator given by Eq. (12) 
is established here for the first time. In comparison with the generalisation of the method reported reported 
earlier18, the alternative form warrants improved convergence of the method. The latter is explored in the second 
part of sections “Heat transfer through a moving boundary” and “Determination of the front propagation law 
in Stefan-type problems at large times”.

Heat transfer through a moving boundary
Consider the process of heat transfer into a semi-infinite domain through the boundary, which moves arbitrar-
ily as l = x0 −

∫

t

0
β(ζ )dζ . Then, in the coordinate system related to the boundary, the heat transfer problem 

becomes identical to Eq. (1) with α = const , β = β(t) , γ = 0 . The latter problem is of great importance while 
modelling processes of propagation of the phase transition fronts, chemical reactions, or combustion.

If the coefficients in the original Eq. (1) depend on time only, as is the case for the problem in question, 
Eq. (5) reduces to

Consequently, the recurrent expressions given by Eq. (7) simplify into

Then, from Eqs. (4) and (15), the expression for the temperature gradient at the surface, qs = (∂T/∂x)x=0 , is 
in the form

where dots denote derivatives with respect to time.
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Taking into account that fractional derivatives of power functions have a very simple expression, namely19:

from (16), it follows that

As can be easily seen, in this case, all the terms in series (18) have the same power 1/
√
t.

To obtain solutions in more complicated cases, it is much more useful to look for these solutions in the form 
with improved convergence.

To find the corresponding alternative form of the fractional operator (12) in the case of α = const , β = β(t) , 
γ = 0 , substitute

(13)−qs
√
α =

[

exp

(

−
∫ t

0

δ(ζ )dζ

) ∞
∑

n=0

a∗n∂
(1−n)/2exp

(∫ t

0

δ(ζ )dζ

)

]

Ts = 0

(14)
[

∂

∂t
−

√
αD

(

1√
α
D

)

+
β√
α
D+ γ

]

T = 0.

(15)

∂ : a0 = 1

∂1/2 : −2a1 +
β√
α

= 0

∂0 : −2a2 − a21 +
β√
α
a1 + γ = 0

∂(1−k)/2 : −
n+2m
∑

n=0

≤k+1
∑

m=0

(

1−n
2
m

)

an
dm

dtm

(

ak+1−n−2m√
α

)

+
β√
α
ak = 0, k ≥ 2

(16)

−
qs

Ts

√
α = ∂1/2 +

β

2
√
α
+

β2

8α
∂−1/2 −

β

8
√
α
∂−1 −





β4

128α2
+

·
β β

16α



∂−3/2

+
�

β2β̇

32α3/2
+

β̈

16
√
α

�

∂−2 +
�

β6

1024α3
+

3β3β̇

128α2
−

β̇2

128α
+

ββ̈

32α

�

∂−5/2

−
�

β4β̇

128α5/2
+

ββ̇2

16α3/2
+

β2β̈

32α3/2
+

5
...
β

128
√
α

�

∂−3

−
�

5β8

215α4
+

15β5β̇

2048α3
+

β3β̈

64α2
+

13β2β̇2

1024α2
−

5β̇β̈

128α2
+

5β
...
β

256α

�

∂−7/2 + (· · · )∂−4 + · · ·

(17)∂ν tµ =
Ŵ(µ+ 1)

Ŵ(µ+ 1− ν)
tµ−ν

(18)
−qs

√
t =

1
√
π

+
C√
α

(

1

2
+

1

2
+

3

18
+

25

2048
+

245

32768
+ · · ·

)

+
C2

α
√
π

(

1

4
+

1

24
+

1

840
+

45

2048
+ · · ·

)

+ · · ·



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18968  | https://doi.org/10.1038/s41598-021-98572-x

www.nature.com/scientificreports/

into Eq. (5).
Transition from the operator D to the operator F corresponds to the change of variable � = Texp

[
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]

.
Then, the equation for the operator F becomes

where

Upon substituting Eq. (21) into (20), follow the recurrent expressions for the coefficients a∗n:

Hence, the solution is given by Eqs. (13) and (22).
To illustrate how the method works in practice, consider several particular examples.
First, consider the case β = bt + d . Assume α = 1 in the original heat equation (this is easily achieved by 
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where Fn are operators of the same type as D but with constant coefficients.
Recurrent expressions for Fn are obtained from substituting Eq. (28) into (27). It happens that F0 = ∂1/2 , 

while the other operators can be found in the form of convolution

where the kernels Kn can be found by Laplace transforms in the course of the solution procedure.
For the case given by Eq. (26), it is possible to find the first two terms in the series of Eq. (28) in a simpler 

way—directly from Eq. (16)—after noticing that, for c → ∞ , it is necessary to keep only those of them, which 
contain e−ct (except the first one). Thus,
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The latter formula allows one to find finite expressions for all Dn ( n > 1 ), if β(t) is a polynomial in t .

Determination of the front propagation law in Stefan‑type problems at large times
It is known that problems of finding the front propagation speed can be modelled by a functional equation, 
which relates the dependent variable (e.g., temperature, mass concentration), its gradient at the moving bound-
ary, and an auxiliary physical condition characterising the process under consideration3. For small and medium 
values of t  , such a relation is given by Eqs. (16) and (19). An approximate solution of the corresponding inverse 
problem—determining β(t)—can be found out by using finite intervals of series in the mentioned equations.

This section is devoted to determination of the front propagation law l =
∫

t

0
β(ζ )dζ for large values of t  . 

As will be seen from the following analysis, the asymptotic equations relating Ts , qs , and l are quite simple. The 
latter provides an efficient way to determine the front propagation speed for processes, which are characterised 
by a nonlinear boundary condition on the front of a phase or chemical change.

Consider Eq. (16) assuming that Ts(t) and l (t) are monotonically increasing functions—Ts(t) = const is also 
possible—and l (t) has all derivatives with respect to t  . Assume also that, for t → ∞ , the surface temperature 
increases not faster than tµ , 0 ≤ µ < ∞ ; the derivatives of Ts(t) increase not faster than a power function as well.

Assume now that, for t → ∞ , l (t)/
√
t → 0 (the front propagates slower than 
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as 
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heat transfer process at large t .
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the series of Eq. (16) increase with n . However, one of the terms in each multipliers at each fractional derivative 
∂(1−n)/2 dominates. Consequently, neglecting all non-dominant terms yields

The latter equation can be written in the finite form as

where the operators K1 and K2 are K1 = exp
[(

− β2

4α

)∗
t
]

∂1/2exp
[(

β2

4α

)∗
t
]

Ts and K2 =
·
β

8
√
α

∫ t
0
exp

[

−
(

β2

4α

)∗

(t − ζ )

]

Ts(ζ )dζ , respectively.
The symbol ()∗ means that, while calculating ∂1/2 by Eq. (3), β2/(4α) is to be treated as a constant independ-

ent of t .
Because, for t → ∞ , e−ct∂1/2ectTs =

√
∂ + cTs ≈ Ts

√
c if c = const and Ts(t) is a power function, it follows 

that K1 → β

2
√
α
Ts and, using the mean value theorem, K2 →

·
β
√
α

2β2 Ts .

Keeping the dominant terms only in Eq. (42) renders

which has the same form as the expression obtainable in the case of β = const 7.
In an intermediate case, when, for instance, the boundary moves by a parabolic law l (t)/

√
t → const for 

t → ∞ , all terms in the series of Eq. (16) are of the same order of magnitude. In this case, the relationship 
between Ts and qs can be written in the form similar to Eqs. (40) and (43)

The latter expression, in contrast with Eqs. (40) and (43) contains constant coefficients C1 and C2 , which can be 
found by the methods developed for the case β =

·
l∼ 1/

√
t

3.
Now assume that, for t → ∞ , Ts(t) increases exponentially as eαt or tµeαt , 0 ≤ µ < ∞.
First, consider the general case l (t)/t → 0 for t → ∞ (the front propagates slower than t  ). Upon substituting 

l = t
ν ( 0 ≤ ν < 1 ) into Eq. (16) and taking into account that ∂ν tµeαt → αν tµeαt , it follows that the first term 

dominates the entire series. Hence, the asymptotic solution is given by Eq. (40).
In the case when l (t)/t → ∞ for t → ∞ (the front propagates faster than t  ), analysis of Eq. (16) renders 

the asymptotic solution given by Eq. (43).

(39)F =
∑

ν

(

∂1/2
∫ t

0

β(ζ )dζ · ∂ν −
∫ t

0

β(ζ )dζ · ∂ν+1/2

)

(40)−qs
√
α ≈ ∂1/2Ts(t), t → ∞.

(41)−qs
√
α ≈





β

2
√
α
+

∞
�

n=0

�

1
2
n

��

β2

4α

�n

∂1/2−n −
·
β

8
√
α

∞
�

n=0

(−1)n
�

β2

4α

�n

∂−1−n



Ts

(42)−qs
√
α ≈

β

2
√
α
Ts + K1 − K1

(43)−αqs(t) ≈ β(t)Ts(t), t → ∞,

(44)qs
√
α ≈ C1∂

1/2Ts(t) ≈ C2

β√
α
Ts(t), t → ∞.
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In the intermediate case of l (t)/t → β = const for t → ∞ (the front propagates with a constant speed), the 
problem has the straightforward solution

The latter expression can be written in one of the forms given by Eq. (44), too.
Thus, the asymptotic expressions for the front propagation speed, for which the law relating Ts , qs and β 

changes its form, have been obtained. The regimes change for various values of ν depending on how the surface 
temperature Ts(t) increases.

To conclude this section, consider an illustrative example Ts = At with A = const and the auxiliary condition 
on the boundary in the form

where Q > 0 and k > 0 are both constants.
It is necessary to determine the front propagation law for t → ∞.
Consider two assumptions, l/

√
t → 0 and l/

√
t → ∞.

In the first case, combining Eqs. (46) and (40) yields

In the second case, from Eqs. (46) and (43) follows

Equation (47) cannot be valid, because from this equation it follows that, for t → ∞ , the front propagates faster 
than 

√
t . The latter contradicts the initial assumption. Equation (48) renders the solution of the problem.

In principle, one can arrive at the results similar to Eqs. (47, 48) by a laborious heat-balance integral method20. 
However, the latter requires solving multiple intermediate and auxiliary differential equations. And, which is even 
more important, the knowledge of the entire temperature field is needed. On the contrary, the way, proposed here, 
yields an identical result from a single formula. In this lies a great advantage of the method employed in this study.

It is worth noting, however, that the regimes logarithmically close to the critical ones, for instance, l ∼
√
tln

ε
t 

or l ∼ tln
ε
t for Ts ∼ tµ and Ts ∼ tµeαt , respectively, are not yet studied.

General discussion
The non-field solution to the problem of heat transfer through a boundary moving with a constant speed has 
been obtained by the method of Kulish earlier14. In a later study, the behaviour of this solution has been inves-
tigated to establish a set of conditions, under which chaotic solutions become possible15. However, the case of 
the boundary moving arbitrarily remained outside the study, mostly due to the fact that the series form of the 
fractional operator was not known until recently18.

Some attempts to apply the methods of fractional calculus to problems with phase change on the boundary21 
and combustion22 have also been made. But again, the cases, considered in those studies, are rather special and 
lack the generality presented in this work. In particular, the solutions, reported in the mentioned works, are 
approximate, because, to find them, non-compact fractional operators with slow convergence have been used.

The extension of the method of Kulish, presented in this work, allows not only to establish a compact form 
of the fractional operator, which ensures much faster convergence of results, but also obtain non-field solutions, 
which relate local values of the temperature and its gradient, in the case of the boundary moving arbitrarily. 
In most of the cases, these solutions either cannot be obtained by other analytical methods, or the procedures 
leading to these solutions are too laborious (e.g., involve a large volume of calculations), which makes them 
impractical.

Among the cases investigated in this study are such cases as the boundary speed changing linearly, paraboli-
cally, exponentially, and polynomially. Whenever possible, the solutions thus obtained have been compared with 
known solutions. In addition, section “Determination of the front propagation law in Stefan-type problems at 
large times” is fully devoted to determination of the front propagation law in Stefan-type problems at large times.

Last but not least, it has been shown that, for Stefan-type problems, where applications of the non-field 
method are practically impossible due to a large volume of necessary computations, it is still possible to analyse 
the solution behaviour at large times and, in many cases, find asymptotic solutions. Obviously, nowadays all nec-
essary computations can be fulfilled by built-in algorithms on public software (e.g., Matlab, Maple, Mathematica, 
Derive, etc.); however, in many practical engineering applications, the knowledge gained from asymptotic analysis 
is sufficient to provide desired estimates.
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