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Propagatory dynamics 
of nucleus‑acoustic waves excited 
in gyrogravitating degenerate 
quantum plasmas electrostatically 
confined in curved geometry
Sayanti Dasgupta & Pralay Kumar Karmakar*

A theoretic model to investigate the dynamics of the longitudinal nucleus‑acoustic waves (NAWs) in 
gyrogravitating electrostatically confined degenerate quantum plasma (DQP) system in spherically 
symmetric geometry is constructed. The model setup consists of non‑degenerate heavy nuclear 
species (HNS), lighter nuclear species (LNS), and quantum degenerate electronic species (DES). It 
specifically considers the influences of the Bohm potential, Coriolis rotation, viscoelasticity, and 
electrostatic confinement pressure (ECP, scaling quadratically in density). A standard normal spherical 
mode analysis gives a generalized dispersion relation (septic). It highlights the dependency of various 
atypical instability response on the equilibrium plasma parameters. A numerical illustrative platform 
portrays that the relative nuclear charge‑to‑mass coupling parameter ( β ) acts as a destabilizing 
agency and the heavy‑to‑light nuclear charge density ratio ( µ ) acts as a stabilizing agency in both 
the non‑relativistic (NR) and ultra‑relativistic (UR) limits. Another interesting conjuncture is that the 
Coriolis rotation introduces a destabilizing influence on the system in both the limits. The progressive 
analysis presented herein has correlations and consistencies in the dynamic growth backdrop of 
various compact astro objects and their circumvent atmospheres, such as white dwarfs, neutron stars, 
etc.

The area of quantum plasmas is one of the most rapidly evolving research fields due to its large scale interdisci-
plinary scope of potential applications extensively ranging from nanoscales to astrocosmical scales of space and 
 time1–4. Such quantum plasmas are widely characterized by very high particle number density (~ 1029–1036  m−3), 
and extremely low temperature scales (T ~  TF), in contrast to the conventional classical plasmas, usually charac-
terized with low density, and high  temperature1,2,4. Quantum degenerate matter is found to exist naturalistically 
in diversified compact astrophysical objects, such as stellar cores, white dwarfs, black dwarfs, neutron stars, 
and interiors of giant planets in the solar  system4,5, where the constitutive particles form a degenerate system 
under the extreme conditions of high density and low  temperature4. In quantum systems, the mean interparticle 
distance (mean free path) becomes comparable to or smaller than the de-Broglie wavelength associated with 
the constituent particles. The de-Broglie wavelength gives a rough representation of the spatial expansion of 
the particle wave function, indicating that the electrons will exhibit the quantum behaviour with much more 
prominence as compared to the ions, on account of their large mass  difference6.

The degeneracy of these extraordinarily dense quantum plasmas can be traced back to the combined action 
of the Pauli exclusion principle and the Heisenberg uncertainty  principle7,8. The particles are highly uncertain 
in their momenta, as a result of the high compression by virtue of their location in an extremely confined space. 
The particles travel very fast, in spite of being extremely cold, thus giving rise to a very high pressure, termed as 
the degeneracy  pressure9,10. A general expression of this pressure in the case of electron fluid is given with the 
help of the polytropic pressure law given  as9,10: Pe = Ke n

γe
e  ; where, the polytropicity constant, Ke = 3�c�c

/

5 
(with �c = π �

/

mec ), and the polytropicity exponent, γe = 5
/

3 , for the NR limit. This is in contrast with the 
UR corresponding counterparts, given as, γe = 4

/

3 and Ke = 3�c
/

4 9,10.
It has been confirmed with the help of astronomical observations that the white dwarfs basically constitute 

the quantum mechanical tiny DES, weakly coupled LNS (hydrogen (H) and helium (He)), and strongly coupled 
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HNS (carbon (C) and oxygen (O))11–13. The electrons are relativistically degenerate within the inner core and 
non-relativistically degenerate in the outer mantle of the white dwarf  stars1,2. A significantly large number of 
investigations have been made to analyze mostly the various nonlinear structures associated with the nucleus-
acoustic wave (NAW) mode, in both the planar and nonplanar  geometry14–18. Such NAWs are the propagatory 
longitudinal oscillations triggered due to the interplay between the inertia (by heavy nuclei) and the non-thermal 
elasticity (by degenerate electrons). The dynamics of the corresponding nucleus-acoustic shock structures formed 
in strongly coupled self-gravitating DQPs has been analyzed in the recent  past14. Again, reductive perturbation 
method has been employed to study the naturalistic features of the nucleus-acoustic double layers and solitary 
waves in magnetized  DQP8. Heavy nucleus-acoustic spherical solitons in a self-gravitating degenerate quantum 
plasma have been theoretically  investigated15. The basic properties of nucleus-acoustic shock structures have also 
been investigated in both the planar and nonplanar geometrical construct with the help of the modified Burgers 
 equation7. Besides, the existence of the NAWs in a cold DQP system has also been  addressed16.

The cubic nonlinear Schrodinger (NLS) equation has been used to investigate the nonlinear dynamics of the 
heavy NAWs and nucleus-acoustic envelope solitons for both modulationally stable and unstable  regimes17,18. 
The influential role of the oblique magnetic field has also been analyzed in the formation of the nucleus-acoustic 
solitary  structures19. Again, the properties of the nucleus-acoustic solitary-shock waves originating in white 
dwarf system have been theoretically  analyzed20,21. It has also been found that the nucleus-acoustic eigen modes 
exist with positive electrostatic and negative self-gravitational potential in self-gravitating degenerate  DQP22. 
A systematic study of the excitation, propagation and stability of the same has been done in both the linear and 
nonlinear  regimes1,2. The basic properties of the subsonic and supersonic nucleus-acoustic shock structures 
have been studied by employing the pseudo-potential  approach23. It can be clearly seen that their excitation and 
propagatory dynamics in a gyrogravitating degenerate electrostatically confined quantum plasma system has 
hitherto been remaining an unaddressed problem, yet to be investigated both theoretically and numerically.

In our semi-analytic theoretic study, we investigate the excitation and propagatory dynamics of the NAWs 
in the linear regime in a gyrogravitating DQP system in a spherically symmetric geometrical configuration. We 
consider the conjoint complex effects of the Bohm potential, Coriolis rotation,  ECP24,  viscoelasticity25,26, and 
self-gravity25,26 simultaneously in three-component DQP system. The main novelty of the proposed model lies in 
the consideration of the ECP, Coriolis rotation, and the multi-component degenerate plasma system, which are 
indeed found to exist in diversified compact astroobjects, such as white  dwarfs11–13. Out of all these well-known 
factors, it is only the ECP which scales quadratically with number density, which is included in such situations 
for the first time. This nonlinear quadratic contribution is much larger than the linear thermal pressure on the 
population  density24. The system comprises of strongly coupled HNS (classical), weakly coupled LNS (classical), 
and NR-UR DES (quantum). It is needless to mention further that the proposed model very closely mimics the 
compact environment of the white dwarfs. The importance of the ECP term can be realized from the fact that in 
white dwarfs, the heavy and LNS are usually confined in a cloud within the core by their auto-generated electric 
fields. In such circumstances, there are large-scale mean electric fields present within the system, contributing 
appreciably to the resultant pressure associated with both the heavy and the LNS. The inclusion of the Coriolis 
rotation makes it more realistically resemble with the gyrogravitating white dwarf  environments27,28. It may be 
worth mentioning that the angular momentum associated with the white dwarfs has a primordial origin in the 
life of the stars. It plays a significant role to boost their modified phase transitions in the Hertzsprung–Russel 
 diagram29 during the numerous evolutionary stages leading to their ultimate diversified  fates27,28. The simultane-
ous realistic effects considered here are mainly applicable to the rapidly rotating collapsing white  dwarfs30 and the 
viscous evolution of remnants of white dwarf mergers, leading to the detonation of their helium (He)  envelopes31. 
Thus, the proposed model should have extensive applicability to demonstrate the realistic astronomical modal 
excitation dynamics in dwarf family stars, other degenerate stars, and their internal environments in correlative 
consistency with the previously predicted astronomical stability  observations30–32.

Physical model and formalism
We consider a gyrogravitating degenerate electrostatically confined quantum plasma system consisting of strongly 
coupled HNS (classical), weakly coupled LNS (classical), NR-UR DES (non-classical) in a curved (nonplanar) 
geometry. The dynamics of the complex plasma system is modelled with the help of the generalized hydrody-
namic (GH) formalism under a quasi-classic approximation of spherically symmetric geometry free from polar 
and azimuthal counterparts. The main advantage of the assumed spherical symmetry is in the geometric reduc-
tion of the three-dimensional problem into a one-dimensional radial one for the sake of analytic simplicity. The 
practical realization of such a correlated physical plasma system could be achieved in the interiors of white dwarf 
stars, particularly the C-O white dwarfs, having the asymptotic mass scaling in the range 0.25M� < M < 8M� ; 
where, M� = 1.989 × 1033 g is the mass of the  Sun33.

The basic set of the governing equations include the flux conservation continuity equation, force-balancing 
momentum equation, and supplementary equation of  state1,2,7,24. It is systematically closed with the gravitational 
and electrostatic Poisson equations depicting the potential distributions arising from the heterogeneous density 
 fields1,2,7.

The dynamics of the DES is accordingly described with the help of the continuity equation for flux density 
conservation, momentum equation for force density conservation, and equation of macroscopic state for the 
sensible pressure-density correlation in the customary  notations1,2,7,9,10 given respectively as

(1)
∂ne

∂t
+ 1

r2
∂

∂r

(

r2neue
)

= 0 ,
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The dynamics of the  LNS1,2,7,24,34 can analogously be cast as

Similarly, the dynamics of the  HNS1,2,7,24,34,35 can be expressed as

The Poisson equations describing the electrostatic and gravitational potential distributions originating from 
charged matter density fields are respectively given in generic  notations1,2,7 as

The notation ns stands for the population density associated with the sth species; s being e for the electrons, l 
for LNS, and h for HNS. Zs , ms, Ps , us signify the charge state, mass, pressure and flow speed of the sth species 
(s = e, l, h). T signifies the temperature of the system (in K). Bl and Bh are the electrostatic confinement con-
stants associated with the LNS and HNS,  respectively24. The azimuthal component of the angular velocity and 
polar component of the rotational velocity are respectively denoted as �ϕ and vθ . � represents the electrostatic 
potential. ψ is the gravitational potential. kB = 1.38× 10−16 erg  K−1 is the Boltzmann constant signifying the 
energy-temperature coupling. G = 6.67× 10−8  cm3  g−1  s−2 is the universal gravitational constant through which 
gravitating matter interacts. ζ and η are the bulk viscosity (resistance to transverse flow) and shear viscosity 
(resistance to longitudinal flow) coefficients, respectively. τm is the viscoelastic relaxation time of the strongly 
coupled heavy nuclear fluid.

A number of noteworthy points regarding the above viscoelastic fluid picture are in order. The system is 
composed of strongly coupled HNS, weakly coupled LNS, and DES (both NR and UR)1,2,7. In simple terms, the 
Coulomb coupling parameter, that is Ŵ , is defined as the ratio of the mean potential energy per particle to the 
mean kinetic energy per  particle36. For classical ions, Ŵ =

(

Ze2
)/

akBT ; where, a ∝ n−1/3 is the interparticle 
 separation7,37. It is evident that Ŵ > 1 for the HNS due to their high charge and low  temperature36. Thus, the HNS 
are strongly  coupled7. The fact that kinetic energy of the HNS is comparatively low owing to their higher mass 
also adds to the reasons behind the HNS for being strongly coupled. Similarly, Ŵ < 1 for the LNS on account 
of their higher kinetic energy than the HNS. In other words, the LNS are weakly coupled. However, when the 
density becomes too high, i.e., when the interparticle separation becomes of the order of de-Broglie wavelength of 
electrons, classical treatment falls short. In these cases, we have the degeneracy parameter θDP which is defined as 
the ratio of the thermal energy to the Fermi  energy36. For the electrons, θDP << 1 making the species degenerate 
where the quantum–mechanical effects play an important  role36.

Equations (1), (4) and (7) are the equations of continuity for the DES, LNS, and HNS, respectively. It is seen 
from Eq. (2) that the forces arising due to the electrostatic pressure, degenerate quantum pressure, and quan-
tum–mechanical Bohm potential pressure exactly balance each other to form a hydrostatic equilibrium system, 
at least initially. The inertial force has been ignored owing to the extremely small mass of the electrons. The effects 
of viscoelasticity become prominent only when the particles are strongly coupled (Coulomb coupling parameter 
exceeding unity)37, i.e., only for the HNS. Also, the Coriolis rotational force with all the usual  notations35 is given 
as FCo = 2m |(�v × �ω)| . Clearly, the rotational part, |(�v × �ω)| , is constant for a uniformly rotating plasma system. 
Thus, the effect of the Coriolis rotation becomes extremely small for the tiny electrons with negligible mass. It 
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(3)Pe = Ke n
γe
e .
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2
h .
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= 4π e(ne − Zlnl − Zhnh) ,
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= 4π G(mlnl +mhnh) .



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19126  | https://doi.org/10.1038/s41598-021-98543-2

www.nature.com/scientificreports/

shows why the viscoelastic and rotational terms are not included in the momentum equation of the DES (Eq. 2). 
Due to similar reasons, the viscoelastic and rotational terms have been neglected in the momentum equation of 
the LNS (Eq. 5) as well. Equation (5) for the LNS is the analog of Eq. (2), where the forces due to their motion, 
electrostatic potential, gravitational potential, and pressure exactly balance each other. The force-balancing condi-
tion for the HNS is given by Eq. (8) 1,2,7,35, where the various forces on the HNS exerted by virtue of their inertia, 
electrostatic potential, gravitational potential, composite pressure, and Coriolis rotation are exactly balanced by 
the dissipative viscoelastic forces. The main reason for the difference in the momentum equations of the classical 
LNS (Eq. 5) and HNS (Eq. 8) lies in the difference of their coupling parameter regimes (weak LNS and strong 
HNS). It is to be noted that when τm = 0 , Eq. (8) reduces to the Navier–Stokes hydrodynamic equation. In the 
limit τm → ∞ , the species shows solid-like behaviour. Thus, our region of interest here is the viscoelastic fluid 
region existing in the parametric window defined by 0 < τm < ∞  regime37. Rapidly rotating collapsing white 
dwarfs are highly viscous in  nature30. Thus, the effects of the Coriolis rotation and viscoelasticity become relevant 
for a rapidly rotating contracting white dwarf in the stage of shedding its  mass30. Also, both the viscoelasticity 
and rotation play an important role in the evolution of white dwarf merger  remnants31.

Besides, the equations of macroscopic state describing the constitutive species are respectively represented 
by Eqs. (3), (6) and (9). Both Eqs. (3) and (6) give the effective pressure acting on the DES and the LNS in our 
model set up, respectively. Equation (6) gives the effective pressure acting on the LNS, i.e., the sum of the thermal 
pressure and ECP. In contrast, in dwarf plasmas, the degenerate pressure of the electrons far exceeds all other 
pressures acting on the species, such as the electron thermal pressure, ECP, etc. It hereby makes the degenerate 
electron pressure significantly prevail only on the quantum DES. Thus, Eq. (3) gives the non-thermal degenerate 
pressure operating most significantly on the DES in our dwarf plasma system. Similarly, Eq. (9) is the classical 
analog of Eq. (3), but for the HNS. The electro-gravitational Poisson equations, as given respectively by Eqs. 
(10) and (11), may look to be time-stationary in nature because of the conservative nature of the long-range 
electro-gravitational force fields. Clearly, the self-interactions of matter relative to the electric and gravitational 
fields remain always invariant in the classical NR regime.

In order for a scale-invariant stability analysis of the proposed model, we apply a standard scheme of astro-
nomical  normalization1,2,7,24. As a result, the scale-invariant dimensionless set of the basic governing equations 
(Eqs. 1 and 11) describing our model read respectively in the customary  notations1,2,7,24 as

where, ξ = r
/

�Dl is the normalized radial coordinate with the normalization parameter given as 
�Dl =

(

mec
2
/

4π nl0Zle
2
)1/2 . τ = t

/

ω−1
pl  is the normalized time coordinate. τ ∗m = τm

/

ω−1
pl  is the normalized 

viscoelastic relaxation time. The time normalization factor is the light nuclear plasma oscillation time scale given 
as: tpl = ω−1

pl =
(

ml

/

4π nl0Z
2
l e

2
)1/2 . Z′ = Zh

/

Zl denotes the ratio of the heavy-to-light nuclear charge number. 
µ = Z′nh0

/

nl0 stands for the ratio of the charge densities of the heavy-to-light nuclear species. The relative 
nuclear charge-to-mass coupling parameter is denoted by β = Z′ml

/

mh . The population densities of the con-
stitutive particles have been normalized by their equilibrium number density as Ns = ns

/

ns0 . The squared Fermi 
Mach number is given by M2

Fe = v4Fe
/

C2
l c

2 . Likewise, the normalized form of the fluid flow velocity is given by 
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Ms = us
/

Cl , where Cl =
(

Zl mec
2
/

ml

)1/2 gives the rescaled light nuclear transit speed. H ′ = �ωpl

/

mev
2
Fe 

denotes the quantum parameter signifying the ratio between the plasmon energy associated with the light nucleus 
and the Fermi energy associated with degenerate electrons. The ratio between the square of the Jeans frequency 
to that of the light nuclear plasma oscillation frequency is given as σ = ω2

Jl

/

ω2
pl , where ωJl =

√
4π Gnl0ml  . 

A′
l = mec

2
/

mlC
2
l  stands for the ratio of the relativistic electronic energy to the LNS energy. A′

h = mec
2
/

mhC
2
l  

is the analogous term for the HNS. The constants B∗l  and B∗h have been normalized as B∗l = Blnl0
/

mec
2 and 

B∗h = Bhnh0
/

mec
2 , respectively. T∗ = kBT

/

mec
2 stands for the normalized isothermal nuclear plasma tempera-

ture of the bulk plasma fluid. The effective generalized viscosity given by χ =
(

ζ + 4η
/

3
)

 has been normalized 
as χ∗ = χ

/

mhnh0Cl�Dl . The polytropic constant for the electronic dynamics in the normalized form is given as 
K ′
e = Ke n

γe−1
e0

/

mec
2 . The normalized Coriolis force is denoted as C∗

F = �∗
ϕMhθ , where the azimuthal component 

of angular velocity and polar component of the rotational velocity are normalized as �∗
ϕ = �ϕ

/

ωpl and 
Mhθ = vθ

/

Cl , respectively. �E = e�
/

mec
2 gives the normalized electrostatic potential arising due to local 

plasma polarization effects. The normalized gravitational potential is given as � = ψ
/

C2
l .

Three appendices are concisely added at the last to depict the entire scheme of abbreviations (ESM Appendix-
A), symbolic normalization (ESM Appendix-B), and point-wise difference between ion-acoustic waves (IAWs) 
and the NAWs (ESM Appendix-C) for the sake of instant reference of the readers of this contribution.

Perturbation analysis. We linearly perturb the relevant physical fluid parameters appearing in Eqs. (12)–
(19), which govern the complex system dynamics under consideration, using a standard spherical wave  analysis1 
in a self-consistently auto-normalized Fourier form as

Here, F1 denotes the perturbations evolving radially about their corresponding hydrostatic homogeneous equi-
librium values F0. The perturbed set of equations, after linearization relative to the defined equilibrium, are 
given in ESM Appendix-D. Application of Eq. (20) results in a Fourier wave space (� , k∗) ; where, the linear 
spatio-temporal operators transform as ∂

/
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(

ik∗ − 1
/

ξ
)

 and ∂
/

∂τ → (−i �) , respectively. In the new 
wave space (� , k∗) , the linearly perturbed parametric quantities from Eqs. (12) to (19) can respectively be 
given in an algebraic form as
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where,

Applying a standardized analytical method of substitution, elimination, and decomposition in the linearized 
set of equations (ESM Appendix-D), we obtain a generalized linear dispersion relation (septic) of a unique shape 
given as

where, the different atypical coefficients in an extended form are respectively given as

In the ultra-low frequency limit ( �a = 0 ∀ a > 1 ), Eq. (34) gets reduced to
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(
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,
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,
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,
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(
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σ
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(
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,
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[
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(
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(
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{
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(
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(
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(
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(
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(
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)
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(
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.
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(
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(
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}

− τ ∗mP
]−1

.

(44)F = (1+ µ)

(

1

4
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∗2 − K ′γe

)−1
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It is now quite evident that the proposed dispersion analysis has multiparametric dependencies through the 
coefficients (Eqs. 35–42) on the proposed plasma model configuration, intercoupled via the explicit parametric 
functional forms (Eqs. 44–46).

Results and discussions
The semi-analytic study proposed here puts forward a theoretic model to investigate the excitation and propaga-
tory dynamics of the NAWs in a rotating, self-gravitating, electrostatically confined DQP system. The considered 
model is set up in the light of a spherically symmetric geometric construct. The concurrent influence of the 
Bohm potential, ECP, Coriolis rotation, self-gravity, and viscoelasticity is appropriately included. A linear nor-
mal mode analysis over the perturbed DQP system yields a generalized dispersion relation (septic) of a unique 
pattern, characterizing the NAWs excitable in the system. A numerical illustrative platform is provided to reveal 
the microphysical dynamics of the derived dispersion law, which is, in fact, validated in the ultra-low frequency 
approximation. The growth rates of the model system fluctuations with variation in the normalized wavenum-
ber, with minor differences for both the NR, and UR limits, are illustrated pictorially in Figs. 1, 2, 3, 4, 5 and 6.

In Fig. 1, we depict the profile structures of the growth rate with variation in the wavenumber for differ-
ent values of the charge density ratio of the heavy-to-light nuclear species ( µ = Zhnh0

/

Zlnl0 ). The different 
subplots link to the (a) pure NR limit, (b) pure UR limit, (c) conjoint NR-UR limit, respectively. The different 
multiparametric input values used here are taken from the  literature1,2,7,24,28,34 given as: σ = 10−2 , ξ = 1 , A′

l = 10 , 
A′
h = 102 , τ ∗m = 10−2 , H ′ = 0.1 , MFe = 1 , χ∗ = 10−3 , C∗

F = 400 , B∗l = 4 , B∗h = 4 , β = 1 . As clearly visible from 
the distinct coloured lines (Fig. 1), µ acts as a stabilizing agency for the fluctuations. It can be physically attributed 
to the dominancy of the inertial force imposed by the HNS over the elasticity contributed jointly by the LNS and 
DES. Our model mimics the environ of a rapidly rotating contracting white dwarf star. If the contraction is large 
enough to increase the number density of heavy nuclei (number of nuclei present per unit volume), the value 
of µ gradually increases. The heavier nuclei are larger in size as compared to the lighter nuclei. It is because the 
nuclear size goes as, R = f (A) = R0A

1/3 , where R0 = 1.2× 10−17 cm and A is the mass number of the nucleus. It 
is to be noted that the contraction in the dwarf plasma volume results in an increase in the number density of the 
lighter nuclei. It, however, results in more closeness of heavy nuclei (bigger) than that of lighter nuclei (smaller). 
It increases the inertial action of the HNS, thereby suppressing the instability growth rate. Thus, µ introduces 
a stabilizing influence on the growth. For a better confirmatory visualization on a colour phase space ( k∗, ξ ), 
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[
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(
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ξ
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+
(
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)(

σµ
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(
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)
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,
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µ

β

(
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(
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Figure 1.  Profile of the normalized growth rate ( �i ) with variation in the normalized angular wavenumber 
( k∗ ) for different values of the charge density ratio of the heavy-to-light nuclear species ( µ = Zhnh0

/

Zlnl0 ). The 
different subplots link to the (a) NR limit, (b) UR limit and (c) NR and UR limits conjointly, respectively.
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Figure 2.  Colourspectral profile for the normalized growth rate for µ = 0.5 in the (a) NR and (b) UR limits, 
respectively.
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Figure 3.  Same as Fig. 1, but for different values of charge-to-mass coupling parameter ( β = Zhml

/

Zlmh ) in 
the (a) NR limit, (b) UR limit, (c) NR and UR limits, respectively.

Figure 4.  Same as Fig. 2, but for β = 0.5 in the (a) NR limit and (b) UR limit, respectively.
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Fig. 2 shows the colour spectral profiles of the growth rate with variation in the radial distance and wavenumber 
for µ = 0.5 in the (a) NR limit and (b) UR limit.

As in Fig. 3, we show the same as Fig. 1, but for different values of the charge-to-mass coupling parameter 
( β = Zhml

/

Zlmh ). It is clearly seen that the growth rate increases gradually with β . Thus, it can be fairly con-
cluded that β introduces a destabilizing influence on the system. An increase in Zl

/

ml ( ∼ β−1 ) gradually increases 
the elastic effects provided conjointly by the DES and LNS. Thus, decreasing β should increase the NAW growth 
and vice-versa. But, a reverse is observed in both the NR (Fig. 3a) and UR (Fig. 3b) limits. It can be ascribed to 
ECP effects, dominating more in weakly coupled  plasmas24,34. Higher the Zl

/

ml-value, higher is the  ECP24,34 (due 
to higher Bl ); and vice-versa. Thus, an enhanced ECP suppresses the instability growth (higher-Zl

/

ml , lower-
β ); and vice-versa. Similarly, Fig. 4 depicts the colour spectral profiles of the growth rate as Fig. 2 for β = 0.5.

In a similar manner, Fig. 5 shows the same as Fig. 1, but for different values of the Coriolis rotation force. 
The distinct coloured lines clearly indicate that an increase in the Coriolis force results in an enhanced growth 
rate, in both the NR (Fig. 5a), and UR (Fig. 5b) limits. The Coriolis rotation destabilizes the system subject to the 
conjoint action of the concurrent effects of the considered factors simultaneously. The physical insight behind 
this is grounded on the fact that, greater the mass of the system, greater is the angular momentum, thereby 
leading to a higher degree of the Coriolis rotation. It is a well established dynamical reality in the diversified 
astrocosmical scenarios that heavier objects gravitationally collapse faster, and vice-versa. It hereby enables us 
to infer that the Coriolis rotational force plays an active role in the destabilization process of the system against 
the non-local long-range gravity. Lastly, Fig. 6 depicts almost the same features as Fig. 4, but for C∗

F = 400 . It is 
noted that there exists some minor quantitative disparities ascribable to the parametric domains under analysis.
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Figure 5.  Same as Fig. 1, but for different values of the Coriolis force (C∗
F
) in the (a) NR limit, (b) UR limit, (c) 

NR and UR limit, respectively.

Figure 6.  Same as Fig. 2, but for C∗
F
= 400 in the (a) NR limit and (b) UR limit, respectively.
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The obtained results, mainly on the Coriolis rotational role as a destabilizing agency, are fairly correlative 
and consistent with the previous astronomical findings on the gyratory compact astroobjects, as widely evident 
in the  literature28. In fact, it has been practically found in the case of a white dwarf stars, like SS Cygni, CM Del, 
and so forth that its rotational speed fairly increases during the unstable outburst  phase32, which reliably hints 
at the concretized accuracy of our proposed model analysis depicting rotation-induced destabilizing effects in 
such astrocompact circumstances.

The above analysis is restricted to the excited wave instability features just in the core and mantle of a rapidly 
rotating collapsing white dwarf stellar configuration, where the dominance of the three considered species (DES, 
LNS, HNS) indeed  prevails11–13. The crust and atmosphere of the white dwarfs consist of alkali metals, mainly 
lithium (Li) and potassium (K)38, where our analysis would not be so appropriate to apply. It may be pertinent 
to add furthermore that the composition of the crust and atmosphere of degenerate white dwarfs can similarly 
be mapped to that of rocky planets, such as the Earth, Mars, and so  forth38. Thus, the main limitation of our GH 
model-based study is the fact that the model analysis cannot be applied to the classical crust and atmosphere of 
a white dwarf star due to the postulated compositional disparity. Besides, the adopted idealized consideration of 
a spherically symmetric geometry with the polar and azimuthal wave-kinetic aspects completely ignored gives 
a clear indication for the future scope of a judicious model refinement in this direction. A further extensive 
applicability of the analysis, despite the above facts and faults, may also be relevant in the viscous evolution of 
white dwarf merger remnants and associated complex wave  dynamics31.

Conclusions
The presented analysis puts forward a theoretic model formulation to study the excitation and propagation 
dynamics of the NAWs in a compact astrophysical fluid system. The model is founded in a GH fabric practically 
resembling white dwarf interior environs. It considers a three-component plasma system composed of HNS, LNS 
and tiny quantum DES. It is interestingly under the concurrent action of the Bohm potential, Coriolis rotational 
force, ECP, self-gravity, and viscoelasticity. A standard normal spherical mode analysis over the perturbed DQP 
system yields a generalized dispersion relation (septic). It highlights the explicit dependency of various atypi-
cal parametric constants on the diversified equilibrium plasma properties. A numerical illustrative platform is 
provided to explore the multiparametric influential dependencies of the DQP fluctuation dynamics in detail. 
It presents different relevant two-dimensional growth-damping profiles (Figs. 1, 3, 5) and the corresponding 
colourspectral profiles (Figs. 2, 4, 6) with some minor quantitative differences in the NR limits and UR limits 
of the astrocosmic relevance.

It may be noteworthy that, Figs. 2, 4 and 6 as discussed above, are the colour spectral profiles obtained by 
changing the Matlab camera’s line of sight (i.e., orientation or projection) of the three-dimensional surface plots 
(with the wavenumber, distance, growth rate taken in three mutually independent perpendicular axes with a 
common origin). The actual three-dimensional surfaces are developed methodologically by executing the full 
numerical simulation of the generalized linear dispersion relation (septic in degree), given by Eq. (34), which is 
reduced in the low-frequency regime as Eq. (43), in the real platform of the Matlab programming. More techni-
cally, these three-dimensional figures are developed with the azimuthal and the elevation angles set equal to 0 and 
90, respectively. Against this backdrop, it is already evident that Figs. 1, 3 and 5 are simply the two-dimensional 
spectral profiles obtained by the same dispersion analysis (with the wavenumber and growth rate taken in two 
independent perpendicular axes with a common origin).

The main conclusions drawn from this study include the fact that, in both the NR and UR limits, the charge 
density ratio of the heavy-to-light nuclear species ( µ ) introduces a stabilizing influence on the system (Fig. 1). 
The charge-to-mass coupling parameter ( β ) destabilizes the system (Fig. 3). It can be further inferred from the 
proposed model analysis that the Coriolis rotation destabilizes the system (Fig. 5). The physical insights respon-
sible behind are concisely illuminated in the relevant perspectives. It is substantiated fairly by the observed 
astronomical  data27,28,32, which, reinforcingly, hint at the same Coriolis rotational effects, as investigated here.

White dwarfs are extremely compact astrophysical objects where the gravitational attraction is balanced by 
the non-thermal degenerate electronic pressure. Thus, degenerate electronic pressure plays a significant role 
throughout the life of a white dwarf star. The effect of viscoelastic dissipation is mainly visible for strongly coupled 
HNS in the parameter space defined by 0 < τm < ∞ 37. Also, for a rapidly rotating contracting white dwarf star 
approaching collapse, material in the envelope is shed when v2c

/

2 = (GM∗M�)
/

Rc ; where, M∗ is the normal-
ized mass of the star on the M�-scale, Rc is the equatorial radius of the white dwarf star, and vc is the equatorial 
 velocity30. At this stage of collapse, the material in rapidly rotating white dwarf stars is highly  viscoelastic30. A 
significant fraction of mass of white dwarf merger remnants is initially supported by rotation. Post merger vis-
cous phase causes detonation of the helium (He) envelope in white dwarf  mergers31, thereby acting as potential 
triggering agents of Type-Ia supernovae. Thus, the obtained results may prove to be beneficial in understanding 
the diversified wave features in astrophysical compact objects, interiors, and correlated surroundings, especially 
white dwarfs, where the effects of viscoelastic dissipation, degenerate electron pressure, and strongly coupled 
inertial HNS play an important role.

It has been reported that there exist a rich plethora of more than hundred oscillation (pulsation) modes, both 
in pre-white dwarf stars, such as PG1159-03513, and in variable white dwarf stars, such as GD-35813. It has left 
behind an interesting scope for the future discovery of different collective waves, instabilities, and their saturation 
structures in such plasma media, with the proposed NAWs and propagatory dynamics as their special cases in 
extreme conditions as proposed herein. Lastly, it is reiterated that our results may have concrete and promising 
applications in understanding the evolution, excitation, and propagation dynamics of the NAWs and similar 
normal acoustic modes widely supported in compact correlated astroobjects and their interiors, such as white 
dwarfs, brown dwarfs, red dwarfs, neutron stars, etc.
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