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Marine temperatures 
underestimated 
for past greenhouse climate
Madeleine L. Vickers1*, Stefano M. Bernasconi2, Clemens V. Ullmann3,4, Stefanie Lode5, 
Nathan Looser2, Luiz Grafulha Morales2,6, Gregory D. Price7, Philip R. Wilby8,9, 
Iben Winther Hougård1, Stephen P. Hesselbo4 & Christoph Korte1

Understanding the Earth’s climate system during past periods of high atmospheric CO2 is crucial for 
forecasting climate change under anthropogenically-elevated CO2. The Mesozoic Era is believed to 
have coincided with a long-term Greenhouse climate, and many of our temperature reconstructions 
come from stable isotopes of marine biotic calcite, in particular from belemnites, an extinct group 
of molluscs with carbonate hard-parts. Yet, temperatures reconstructed from the oxygen isotope 
composition of belemnites are consistently colder than those derived from other temperature proxies, 
leading to large uncertainties around Mesozoic sea temperatures. Here we apply clumped isotope 
palaeothermometry to two distinct carbonate phases from exceptionally well-preserved belemnites 
in order to constrain their living habitat, and improve temperature reconstructions based on stable 
oxygen isotopes. We show that belemnites precipitated both aragonite and calcite in warm, open 
ocean surface waters, and demonstrate how previous low estimates of belemnite calcification 
temperatures has led to widespread underestimation of Mesozoic sea temperatures by ca. 12 °C, 
raising estimates of some of the lowest temperature estimates for the Jurassic period to values which 
approach modern mid-latitude sea surface temperatures. Our findings enable accurate recalculation 
of global Mesozoic belemnite temperatures, and will thus improve our understanding of Greenhouse 
climate dynamics.

Accurately reconstructing the Earth’s climate through geological time is important for understanding Earth 
system feedbacks and for forecasting future climate change1. In particular, past periods of highly elevated atmos-
pheric CO2, where Greenhouse conditions prevailed, may provide important insights into climate processes oper-
ating under anthropogenically elevated CO2. The middle and late Mesozoic (Jurassic and Cretaceous; 201–66 Ma) 
saw such warm-climate processes, wherein polar temperatures were so high that polar ice-caps were absent 
most of the time2. Reconstructing sea and land temperatures during this interval remains challenging. Climate 
proxies applied to younger sediments (e.g. ice-core and tree-ring records, alkenone biomarkers) are unavailable 
this far back in time, and many Mesozoic sediments have undergone significant post-depositional thermal and 
diagenetic alteration, modifying the original composition of fossils. Nonetheless, biogenic calcite from organisms 
such as brachiopods, bivalves, and particularly belemnites is frequently preserved in such sediments, enabling 
the application of oxygen isotope thermometry for sea-water temperature reconstructions. Belemnites, emerg-
ing in the earliest Jurassic, were squid-like cephalopods (Mollusca) that built their internal skeleton from calcite 
and aragonite, and went extinct at the end of the Cretaceous. Their ubiquity within Jurassic and Cretaceous 
seas, and the high preservation potential of their low-Mg calcite skeleton (rostra), make them a favoured target 
for temperature reconstructions via oxygen isotope thermometry3–12. However, two major limitations to this 
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method have led to uncertainties in Mesozoic temperature reconstructions. The first is that the oxygen isotope 
composition of skeletal carbonates in marine systems vary as a function of both the ambient temperature and 
oxygen isotope composition of the seawater (δ18Osw). Mesozoic δ18Osw cannot be measured directly, and is usu-
ally assumed to be the average value for seawater in an ice-free world (-1‰ SMOW13) ; yet the δ18Osw value at a 
given locality and depth in the ocean may deviate from this average by as much as 4‰14,15. The second limitation 
is that numerous equations have been determined for the relationship between temperature and δ18O in differ-
ent calcite types, e.g. molluscan calcite16–18, brachiopod calcite19,20, foraminifera21,22, barnacle calcite23, meteoric 
speleothems and cements24–28, and synthetic calcite29,30. It is not known if belemnites fractionated 18O to the same 
extent as modern biotic carbonates, and therefore which equation, if any, is appropriate for belemnite calcite. 
The molluscan equation of Anderson and Arthur18 or the general synthetic calcite equation of Kim and O’Neil30 
are most commonly used for belemnite calcite temperature reconstructions, yet it is observed that belemnites 
often give similar, or, in many cases, lower temperatures (i.e. higher δ18Ocalcite) than co-occurring benthic biotic 
calcites3–6,8,11,31. It has been hypothesised that belemnites may have been migratory to areas of colder and/or 
isotopically distinct waters31,32, or that early diagenetic infill (i.e. as the belemnite skeleton lay on the seafloor) 
biases belemnite calcite to colder temperatures33, although this is disputed by other geochemical studies34,35. 
Furthermore, clumped isotope studies comparing the (visibly) porous apical area to the (less visibly porous) 
rest of the belemnite rostrum return colder temperatures for the apical area, contradicting a diagenetic cause35. 
Biomarker-based (TEX86) temperature reconstructions for shallow-buried (i.e. especially immature) Mesozoic 
sections similarly give much warmer temperatures than belemnite rostra7,36. As the TEX86 method is thought to 
record sea surface temperatures only, it was argued that the belemnites may have been nektonic or nektobenthic, 
living mostly below the thermocline in colder waters than the surface7,31. Yet this does not explain how belemnites 
may give colder temperatures than co-occurring benthic biotic calcites3,6,8,11,31. Clumped isotope thermometry 
reconstructs belemnite calcite temperatures closer to sea surface temperatures than bottom water temperatures, 
considerably warmer than oxygen isotope thermometry35,37–41. This suggests that either belemnites inhabited 
highly saline waters (with δ18Osw elevated by evaporation), or that the standard calcite thermometry equations 
are inappropriate for belemnite calcite35,37–41.

Here we present new clumped isotope data derived from co-occurring calcite and aragonite in individual 
exceptionally well preserved belemnites (Cylindroteuthis)42 from the Callovian-aged Christian Malford Lager-
stätte (Fig. 1). These samples are compared to other (non-belemnite) aragonites from the same horizon in order 
to evaluate the putative temperature record based upon the oxygen isotopic composition of well-preserved marine 
fossils, and thereby to resolve which oxygen thermometry equation is most appropriate for belemnite rostra in 
Mesozoic paleoclimate studies. In doing so, we highlight significant systematic underestimations of global sea 
temperature in Mesozoic reconstructions. Our warm temperatures are more in line with the geographical dis-
tributions of temperature-sensitive fossil flora and fauna, as well as the results of climate models with increased 
CO2 levels, and demonstrate that at least several common belemnite genera lived neither deep in the water 
column nor in hypersaline conditions.
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Figure 1.   (A) Sampling location (Christian Malford) in the U.K., denoted by star, with the outcrop of Callovian 
sediments indicated by grey band, after Price et al.42. (B) Palaeogeographic reconstruction of the Tethyan Realm 
during the Middle Jurassic, after Dera et al.63.
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Results
Preservation.  The Christian Malford Lagerstätte is known for its exceptional preservation of biomaterials 
in fossil marine organisms42–44. The host sediments have experienced minimal burial and thermal maturation 
as indicated by the immaturity of their organic matter43,45,46. Powder X-Ray diffraction (PXRD) confirms the 
preservation of original aragonite (Supplementary Fig. S3), which is uncommon in sediments this old due to 
the metastability of aragonite at Earth surface temperatures and pressures47, and further confirms the extremely 
low thermal maturity. Belemnite rostral calcite shows extremely low Mn/Ca and Fe/Ca values (Supplementary 
Fig. S12), in agreement with Price et al.42, and electron backscatter diffraction (EBSD) and scanning electron 
microscope (SEM) electron dispersive spectra (EDS) element maps show that no perceptible diagenetic altera-
tion occurred in the non-apical areas of the belemnite rostra (Supplementary Figs. S7, S8, S9, S10, S11).

Whilst the aragonite and calcite appear texturally and geochemically pristine, studies have shown that 
clumped isotope (Δ47) temperatures may be increased by re-ordering of the 13C-18O bonds (‘solid state reor-
dering’), a process by which no minor element or visible change, even at the microscopic level, occurs in the 
carbonate48–50. For calcite formed at ambient temperatures, this re-ordering may occur where the samples experi-
ence temperatures above 80–100 °C over geological timescales (millions of years)49–51. Aragonite is much more 
prone to alteration and its reordering kinetics are much faster than those of calcite48; e.g. Ritter et al.52 showed 
that such reordering may occur after 20 weeks of the aragonite being held at 100 °C. However, for the Callovian 
sediments at Christian Malford, burial estimates, maturity indices and diagenetic carbonate clumped isotope 
data suggest that such temperatures were not reached43,45,46, negating this effect. In combination, these conditions 
provide a unique opportunity to determine the accuracy with which belemnite rostra record original calcification 
temperatures and can be relied upon to faithfully record ambient marine conditions in the Mesozoic. If aragonite 
and calcite from the same organism yield the same temperature, we can be very confident that they represent true 
original temperatures, as any alteration would preferentially disrupt the values for the aragonite over the calcite.

Clumped isotope palaeothermometry.  Clumped isotope compositions for the analysed calcites and 
aragonites range from 0.580 to 0.609 (I-CDES53; excluding separated diagenetic calcites from the apical area and 
spar cements), which correspond to temperatures ranging from 20.0 to 29.5 °C based on the Anderson et al.54 
equation. Anderson et  al.54 found that inorganic, and most biogenic, carbonates (including aragonite) show 
the same temperature dependence; thus, their equation can confidently be applied to reconstruct palaeotem-
peratures for aragonites and calcites. Reconstructed aragonite and calcite Δ47 palaeotemperatures from the same 
belemnite are consistently within error of each other, and are in agreement with other biotic aragonites from the 
sample (Fig. 2A). This supports that the observed Δ47 temperatures are pristine. This is therefore the first study 
that provides seawater temperatures and oxygen isotope compositions which are proven to be unaffected by 
reordering.

Discussion
This study, along with other clumped isotope studies of belemnites35,37–41 finds that belemnites grew in much 
warmer (i.e. near-surface) waters than previous stable isotope studies have suggested3–12. Clumped isotope 
records show that belemnites record warmer temperatures than early (seafloor) diagenetic cements35 (Fig. 2A), 
consistent with recent palaeontological work that shows that some belemnites lived in the top 200 m of the 
water column55.

Traditional stable oxygen isotope thermometry (e.g. Anderson and Arthur18 equation, assumed δ18Osw = − 1 
‰ for an ice-free world13) consistently returns temperatures for rostral calcite that are, on average, 9 °C colder 
than for phragmocone aragonite (using the Grossman and Ku56 aragonite equation) from the same individual 
belemnite (Fig. 2). Whilst this phenomenon has previously been observed42, it was not possible to determine if 
the aragonite temperatures were too warm or if the Anderson and Arthur18 equation gives temperatures that are 
too cold. It is believed that belemnite calcite precipitated near Δ47 isotopic equilibrium41,57, and the consistency 
between belemnite calcite and aragonite clumped isotope temperatures (Fig. 2) suggests that belemnite aragonite 
also does not exhibit strong kinetic disequilibrium effects with respect to Δ47, despite this phenomenon having 
been observed in modern cephalopod aragonite58,59. In modern cephalopods, disequilibrium effects lower Δ47 
values, i.e. yielding temperatures that are warmer than the true growth temperature, by as much as 8 °C58,59, yet 
belemnite aragonite in this study does not yield warmer temperatures than the rostral calcite (Fig. 2A). Thus we 
proceed under the assumption that both calcite and aragonite from belemnites precipitated in Δ47 equilibrium.

Several more recent studies present equations determined for natural calcite δ18O grown in equilibrium. Two 
studies present equations derived from very slow-growing subaqueous calcites26,28. Daëron et al.28, being the most 
recent, is given below (Eq. 1). Another stable isotope equation derived for fast-growing travertines, is believed to 
reflect (near) equilibrium conditions27, yet differs from Daeron et al.28 in having a slightly steeper slope (Eq. 2):

where α is the calcite/water oxygen-18 fractionation factor and T is the absolute temperature in Kelvin.
We do not know the δ18O aragonite-water fractionation for belemnite phragmocone, yet for modern arago-

nitic cephalopods this effect is negligible, and closely approximates both the equilibrium calibration of Daëron 
et al.28, and the biogenic calibrations of White et al.60 and Grossman and Ku56,58,59. However, calcites may show 
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near-equilibrium Δ47 yet far-from-equilibrium δ18O61, and as there are no studies on calcifying cephalopods, we 
do not know if the biotically-mediated precipitation of rostral calcite may have been fractionated with respect 
to seawater. As clumped isotope thermometry gives both the temperature and δ18Ocarbonate, these can be used 
together to back-calculate the δ18Osw, using one of the stable isotope equations. It is hard to reconcile two car-
bonate phases from the same organism growing in different δ18Osw; thus, we can select the equations that yield 
the most similar δ18Osw for belemnite calcite and aragonite pairs (Fig. 2D). The closest matches are between 
the Kele et al.27 equation for the rostra and any of the aragonite equations28,56,60 (Fig. 2D) for the phragmocone; 
closely followed by Daëron et al.28 for the rostral calcite with Grossman and Ku56 for aragonite (Fig. 2D and 
Supplementary data). Interestingly, applying Daëron et al.28 to both calcite and aragonite gives a significant 
offset between reconstructed δ18Osw—the aragonite is c. 1.5 ‰ lighter than the calculated calcite average δ18Osw 
(Fig. 2D and Supplementary data). The Kele et al.27 equation, derived for fast-growing travertines, is believed to 
reflect (near) equilibrium conditions, yet differs from Daëron et al.28 in having a slightly steeper slope (Eq. 2). 
Kele et al.27 could not explain the different slope of the travertine curve by any physical or chemical parameter 
(including growth kinetics). For belemnite calcite, the close fit to the Kele et al.27 equation may imply that some 
biotically-driven fractionation of 18O occurred during precipitation of the calcite from the belemnite body fluid 
(since the aragonite was precipitated from body fluid in equilibrium with seawater28).

At Christian Malford (Phaeinum subzone), it happens that the δ18Osw average that is calculated for both 
aragonite and calcite is approximately − 1‰, the average expected ocean value for an ice-free world13. When 
using clumped temperatures and measured δ18O carbonate at other sites (Fig. 3 and references therein), we see 
greater deviations from this global average value, indicating that using a global average value is not representa-
tive of all localities, particularly at high and low latitudes and in semi-enclosed basins. Indeed, if another stable 
isotope equation is used for the belemnite calcites, we still see the large spread in reconstructed δ18Osw (as great 
as 7‰35,38,40, Fig. 3). It is clear from the present variation in oxygen isotope composition of surface waters, and 
from GCM models of δ18Osw, that applying a global average is unlikely to be representative of a particular location 
or water depth14,15. Alberti et al.62 proposed using an empirically derived equation for modern oceans, − 1‰ to 
account for the absence of Polar ice, to estimate latitudinal δ18Osw trends. However, as highlighted by Alberti 
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et al.62, this does not take into account paleogeography, therefore it is unlikely to capture local δ18Osw variations, 
particularly for the semi-enclosed basins that characterised the Mesozoic of Europe during the Jurassic (Fig. 1B). 
Using clumped isotopes temperatures to back-calculate δ18Osw reveals that there are large variations in local 
δ18Osw that are not captured using either a global average or empirical gradients based on modern geography 
(Fig. 3). The studies of Wierzbowski et al.38 (Russian Platform) and Vickers et al.35 (Hebrides Basin) span broad 
age ranges and encompass changes in circulation patterns, as reflected in their very large ranges in δ18Osw values 
(Fig. 3). The study of Price et al.40 demonstrates that for a single time-slice, latitudinal δ18Osw as reconstructed 
by clumped isotope thermometry does show higher values at the equator than the poles (i.e. more similar to 
that proposed by Alberti et al.62), yet there is a broad and varied spread in the mid-latitudes. In the study of 
Price et al.40 some of the spread may arise from analysing different belemnite genera and species, which may 
have inhabited different depth habitats. Yet, since large ranges are observed in studies that use only one or two 
belemnite genera or families35,38,39, we believe that a significant portion of the variation arises from local δ18Osw 
fluctuations. Thus, we anticipate that the majority of published values are still likely to under- or over-estimate 
local δ18Osw, leading to an over- or under-estimation in seawater temperatures, even if using the Kele et al.27 
equation to calculate sea temperatures.

To conclude, we provide the first seawater Δ47 temperatures for the Jurassic based on samples that most likely 
have not been modified by diagenetic processes nor by 13C-18O bond reordering. We show that the palaeother-
mometry equations that have traditionally been applied to belemnite calcite are inappropriate, and, therefore, 
that reconstructions based on them grossly underestimate palaeotemperatures for the Mesozoic. The present 
study implies that ca. 11–12 °C needs to be added to the temperature estimates for the Jurassic and Cretaceous 
that were based on belemnites4–12 taking the average δ18Ocalcite of combined belemnite datasets and the 2 standard 
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deviation range12. This has substantial implications for our understanding of the Mesozoic world and Green-
house Earth-system states. It raises some of the lowest temperature estimates for the Jurassic period (such as the 
Bajocian “cold mode”; ~ 7 °C) to values which approach modern mid-latitude sea surface temperatures, thereby 
undermining previously speculated “icehouse” phases9. The warm belemnite temperatures do not contradict 
cooler temperature estimates from co-occurring benthic organisms; rather, they may be used to understand 
vertical temperature profiles in the oceans.

Methods
The carbonate material used in this study all comes from a 2 m thick interval in the Callovian-aged Peterbor-
ough Member of the Oxford Clay Formation (Athleta Zone, Phaeinum subzone). The Peterborough Member 
consists of alternating organic-poor, shell-rich massive clay and organic-rich, variably shelly, fissile clay42,66 All 
material was collected from an excavation site at Christian Malford, Wiltshire, U.K. (Fig. 1). Published ICP-MS, 
SEM and CL work on selected Cylindroteuthis belemnite aragonite and calcite material indicates the exceptional 
quality of preservation of these carbonates42, as does the PXRD, ICP-OES, SEM, EBSD and EDS element maps 
presented in this study (Supplementary material Figs. S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12). Estimates 
suggest a maximum burial depth of only c. 500 metres45, indicating that significant post-depositional heating 
did not occur. Due to the limited amount of some of the aragonitic material (particularly phragmocones) it was 
not possible to analyse all samples for ICP-OES, SEM and PXRD, yet it is assumed that the analysed samples are 
representative for all samples used in this study because minimal variability was observed.

PXRD.  Powder X-ray diffraction (PXRD) was carried out using a Stoe StadiP transmission (capillary) dif-
fractometer with a copper anode at 30 mA, 40 kV and a germanium 111 monochromator to produce Kα1 X-rays. 
The diffracted beam was collected by an 18° 2θ Dectris Mythen1K silicon strip detector. Samples were loaded in 
0.3 mm borosilicate glass capillaries, mounted and aligned on the goniometer head and set to spin continuously 
during data collection. Both data sets were scanned from 10 to 55° 2θ stepping at 0.5° and 5 s/step. The result-
ant raw data has a step of 0.015° 2θ. Machine alignment was monitored using an NBS silicon standard. Phase 
analysis was done using Bruker’s “Eva” program67 interfaced with the Powder Diffraction File provided by the 
International Centre for Diffraction Data.

Microscopy.  Scanning electron microscopy was undertaken on selected samples, in order to assess whether 
the original biomineral crystal habits are preserved, and to identify the best-preserved regions within the belem-
nite rostra. Analyses were performed using secondary electrons on an FEI Quanta Inspect 250 Scanning Elec-
tron Microscope under a high vacuum of 2.40 to 2.93·10–4 Pa and an electron beam of 95–97 μA at the Geologi-
cal Museum in Copenhagen, out on selected aragonites from phragmocones, ammonites and bivalves analysed 
in this study.

For SEM–EDS and EBSD analysis, cross- and longitudinal- sections of a selected rostra were mounted in 
epoxy and mechanically polished down to a 0.25 µm diamond solution grain size, followed by chemical–mechani-
cal polishing using an alkaline solution of colloidal silica in a neoprene substrate. EBSD orientation mapping 
was performed on the coated sample (~ 2.5 nm carbon) in a Thermo Fischer—FEI Quanta 200F equipped with 
an EDAX Hikari EBSD camera and TEAM software for data acquisition at the Scientific Center for Optical and 
Electron Microscopy (ScopeM) at ETH Zurich. Acquisition was performed with an accelerating voltage of 20 kV, 
beam current of 8 nA, working distance of 17 mm, and mapping step size of 1 µm. Post-acquisition cleaning 
included grain confidence index (CI) standardization followed by one step of grain CI correlation. All points 
with CI < 0.1 and grains with less than 10 pixels were removed to prevent artifacts in the calculations.

The SEM–EDS element maps were undertaken at the SEM laboratory at the Geological Survey of Denmark 
and Greenland (GEUS), which hosts a ZEISS sigma 300VP field emission scanning electron microscope that 
is equipped with 2 Bruker Xflash 6|30 129 eV EDS detectors and a Bruker e-Flash FS EBSD detector. Element 
maps were acquired from infilled apical area to the outermost pyritised rim of the rostrum, covering the changes 
of growth ring density and mineralogical changes. The sets of transect section were obtained for the cross- and 
the longitudinal-section. Elements mapped (Ca, Mg, Fe, Mn, O) cover the range of possible carbonates, with 
aragonite distinguished by trace Sr; the potential occurrence of apatite (P), pyrite (Fe, S), clays (Al, Si, Ba, K) 
and quartz (Si) was also tested.

ICP‑OES.  Minor element analyses were performed using an Agilent 5110 VDV ICP-OES at the Camborne 
School of Mines, University of Exeter, following methods laid out in detail in Ullmann et al.68. The minor ele-
ment data are expressed as ratios to Ca. Fossil samples were dissolved in 2% v/v HNO3 with a dilution factor 
of ~ 16,000, yielding a nominal Ca concentration of 25 µg/g in solution. Signal quantification was carried out 
using a four point calibration using a blank solution and three matrix matched calibration solutions made up 
from certified single element standards mixed to match the chemical composition of the analysed samples. 
Accuracy and precision of the analyses was controlled by multiple measurements of interspersed international 
reference materials (JLs-1 and AK) and a quality control solution (BCQ2). Repeatability of the measurements 
is generally better than 1% (2 relative standard deviations) unless affected by limited count rates (el/Ca < c. 100 
times the quantification limit). Repeatability of element/Ca ratios in the latter case are 1 µmol/mol for Mn/Ca, 
3 µmol/mol for Fe/Ca, 0.3 mmol/mol for S/Ca and 0.2 mmol/mol for P/Ca. Quantification limits for the meas-
urements computed as six times the standard deviation of the measurement blank are 9 µmol/mol for Mg/Ca, 
0.2 µmol/mol for Sr/Ca, 1 µmol/mol for Mn/Ca, 4 µmol/mol for Fe/Ca, 0.4 mmol/mol for S/Ca and 0.2 mmol/
mol for P/Ca. Due to the generally limited quantity of phragmocone material available, it was not possible to 
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analyse all phragmocone samples for ICP-OES. ICP-OES data are reported and plotted in the Supplementary 
Material.

Clumped isotope thermometry.  Powdered homogenized rostrum samples were collected from across 
the middle chambers (apex and outer edge avoided), away from the tip of the rostrum, using a Dremel drill. For 
the aragonitic material (phragmocones and ammonites), small pieces were picked off using tweezers, and pow-
dered using an agate mortar and pestle. With the phragmocones, it was not possible to select specific chambers 
or homogenize across many chambers, due to limited aragonitic belemnite material remaining.

Clumped isotope measurements were carried out at the ETH Zurich using a ThermoFisher Scientific MAT253 
mass spectrometer coupled to a Kiel IV carbonate preparation device, following the methods described in Müller 
et al.69. The Kiel IV device included a PoraPakQ trap kept at -40 °C to eliminate potential organic contaminants. 
Samples were measured between May 2019 and December 2020 by measuring maximum 3 replicates of each 
sample per run which consists generally of 24 samples of 130–150 µg interspersed with 20 replicates of each of the 
three carbonate standards ETH-1, ETH-2 and ETH-370. The samples were analysed in LIDI mode with 400 s of 
integration of sample and reference gas. The calculations and corrections were done with the software Easotope71 
using the revised “Brand parameters” for 17O correction as suggested by Daëron et al.64. The data are reported 
with respect to the Intercarb carbon dioxide equilibration scale (I-CDES)53. Temperatures were calculated using 
the Anderson et al.54 calibration which is based on the re-measurement of a series of samples that were used 
for previous calibrations. Their consistency with calibrations based on biogenic carbonates72–74 suggest that it is 
appropriate for marine biogenic carbonates. Corrections for aragonite were the same as for calcite except that 
we used the phosphoric acid oxygen isotope correction for aragonite of 1.0090975.
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