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TP53 mutants and non‑HPV16/18 
genotypes are poor prognostic 
factors for concurrent 
chemoradiotherapy in locally 
advanced cervical cancer
Ikumi Kuno1,2, Daisuke Takayanagi2, Yuka Asami2, Naoya Murakami3, Maiko Matsuda2, 
Yoko Shimada2, Sou Hirose2, Mayumi Kobayashi Kato1,2, Masaaki Komatsu5,6, 
Ryuji Hamamoto5,6, Kae Okuma3, Takashi Kohno2, Jun Itami3, Hiroshi Yoshida4, 
Kouya Shiraishi2* & Tomoyasu Kato1*

Targeted sequencing for somatic mutations across the hotspots of 50 cancer-related genes was 
performed using biopsy specimens to investigate whether clinicopathological factors and genomic 
alterations correlated with prognosis in locally advanced cervical cancer. Seventy patients diagnosed 
with International Federation of Obstetrics and Gynecology (FIGO) stage III to IVA cervical cancer 
underwent radiotherapy or concurrent chemoradiotherapy at the National Cancer Center Hospital 
between January 2008 and December 2017. Mutations were detected in 47 of 70 [67% of cases; 
frequency of genetic alterations was as follows: PIK3CA (51%), FBXW7 (10%), PTEN (7.1%), and 
TP53 (5.7%)]. The Cancer Genome Atlas (TCGA) datasets showed a similar distribution of somatic 
mutations, but PIK3CA mutation frequency was significantly higher in our cohort than in TCGA 
datasets (P = 0.028). Patients with TP53 mutation were significantly related to poor progression-
free survival (PFS) (hazard ratio [HR] = 3.53, P = 0.042). Patients with tumor diameters > 70 mm were 
associated with poor prognosis (HR = 2.96, P = 0.0048). Patients with non-HPV16/18 genotypes had 
worse prognosis than those with HPV16/18 genotypes (HR = 2.15, P = 0.030). Hence, patients with 
locally advanced cervical cancer, TP53 mutation, large tumor diameter, and non-HPV16/18 genotype 
were independently correlated with poor PFS, despite concurrent chemoradiotherapy.

Cervical cancer is the fourth most commonly diagnosed cancer, and the fourth leading cause of cancer-related 
deaths in women worldwide1. Cervical cancer is often caused by sexually transmitted infections with most 
human papillomavirus (HPV) types, especially high-risk HPV 16 and 182. Although screening for cervical cancer 
has improved over the past decade, more than 20% of cervical cancer patients were identified as International 
Federation of Obstetrics and Gynecology (FIGO) stage III–IV at initial diagnosis3. Most patients with locally 
advanced cervical cancer are treated with concurrent chemoradiotherapy (CCRT)4. Recently, the response rate 
for CCRT has increased due to the progress of irradiation technology, and complete response has been achieved 
in approximately 75% of patients5. However, some patients have a poor response to CCRT​6; therefore, they 
relapse early after treatment and have a poor prognosis7. Clinical trials for providing additional treatment after 
CCRT to verify the increment of treatment effect, aiming to improve the prognosis in these patients, are currently 
underway8. Additionally, therapeutic drugs have been approved by the US Food and Drug Administration (FDA) 
for advanced cancer that use an immune checkpoint inhibitor, such as pembrolizumab9,10, and an angiogenesis 
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inhibitor, such as bevacizumab11,12. However, the potential of benefiting from such molecular-targeting drugs is 
not well evaluated for patients with locally advanced cervical cancer.

In addition to tumor volume, performance status, treatment received, and prognostic factors for locally 
advanced cervical cancers, such as age, race, stage, histological type, grade, lymph node enlargement, and loca-
tion, are associated with poor outcomes4. Several studies have focused on the prognostic factors for patients 
receiving CCRT in locally advanced cervical cancer, and it has been reported that larger tumor size and high-risk 
HPV were correlated with prognosis13,14. However, most studies have targeted operable cases. It is necessary to 
conduct a study on inoperable cases of locally advanced cervical cancer of FIGO stages III to IVA.

Comprehensive profiles of genomic alterations in cervical cancer have been published by The Cancer Genome 
Atlas (TCGA)15. PIK3CA mutations are one of the most frequently detected mutations in cervical cancer regard-
less of ethnicity15–17. Several studies have reported that cervical cancer patients with PIK3CA mutations are associ-
ated with worse prognosis than those without the mutation17–19. However, the results of some reports differ from 
these findings16,20, necessitating further discussion. In addition, most studies have focused on the association of 
single or multiple genetic mutations with prognosis using surgical specimens9,17,19–21; there are only a few reports 
on targeted sequencing using biopsy specimens from inoperable advanced cervical cancer22. Further studies are 
needed to elucidate the distribution of genomic alterations in locally advanced cervical cancer in order to iden-
tify novel therapeutic targets and biomarkers associated with prognosis. If poor prognostic factors or actionable 
mutation frequency are well understood, patients may opt for additional treatment after CCRT. Many previous 
studies have investigated the association of somatic mutations or clinicopathological factors, including high-risk 
HPV genotypes, with prognosis or response to adjuvant CCRT in early-stage cervical cancer patients receiving 
surgical operation. Only a few studies have suggested that these clinicopathological factors are associated with 
response to chemoradiotherapy in patients with locally advanced cervical cancer receiving CCRT.

In this study, we evaluated the pattern of genomic or actionable mutations in patients with FIGO stage III 
to IVA cervical cancer who received CCRT. We examined whether clinicopathological factors, including HPV 
genotypes and genomic alterations, were associated with prognosis in patients receiving CCRT.

Results
Patient characteristics.  The selection flowchart for the 70 patients used in this study is shown in Fig-
ure S1, and the patient characteristics are summarized in Table 1. Of the 70 patients, 65 (93%) were diagnosed 
with squamous cell carcinoma (SCC), and 68 cervical tissue samples (97%) were HPV-positive. Thirty-three 
patients (47%) had lymph node enlargement, and were suspected to have pelvic and/or para-aortic lymph node 
metastases. Fifty-five (79%) patients underwent CCRT, and the standard concurrent chemotherapy regimen 
was cisplatin-based. Patients over seventy-five years of age or those who had difficulty receiving chemotherapy 
according to the physician’s choice only underwent RT. The median tumor size was 52.5 mm (range, 30–100 mm). 
The tumor diameter was over 70 mm in 16 (23%) patients. The median follow-up period was 54 months (range, 
6–135 months). Two-year overall survival (OS), progression-free survival (PFS), and locoregional relapse-free 
survival (LRFS) were 77.1% (95% confidence interval [CI], 65.4–85.3), 60.0% (95% CI, 47.6–70.4), and 71.2% 
(95% CI, 58.9–80.3), respectively.

Correlation between clinicopathological factors and prognosis.  We examined whether previously 
reported clinicopathological factors were correlated with prognosis in locally advanced cervical cancer. Univari-
ate and multivariate analyses revealed that a tumor diameter larger than 70 mm was an unfavorable prognostic 
factor, especially for PFS (HR = 2.96, P = 0.0048) (Table 2, Table S1).

Comparison of somatic mutation patterns in locally advanced cervical cancer using the pre‑
sent and TCGA datasets.  Targeted sequencing for the 70 specimens of locally advanced cervical cancer 
revealed pathogenic/oncogenic mutations in 47 cases (67%). PIK3CA was the most frequent genomic alteration 
detected in this study, with a frequency of 51%, followed by FBXW7 (10%), PTEN (7.1%), RB1 (13%) and TP53 
(5.7%) (Fig. 1). There was no association between genomic mutation frequency and tumor size or lymph node 
enlargement. Twelve patients had local recurrence, ten of whom (83%) had pathogenic/oncogenic mutations. 
Further, the frequency of genomic alterations in patients with stage III to IVA cervical cancer in TCGA dataset 
was as follows: PIK3CA (30%), FBXW7 (15%), PTEN (15%), and TP53 (11%) (Figure S2). The mutation rates 
were 65% (42 of 65) in SCC and 100% (5 of 5) in non-SCC cases. The somatic mutations of locally advanced cer-
vical cancer in TCGA datasets are summarized in Figure S2. There was no statistical difference in the distribu-
tion of somatic mutations between our cohort and TCGA datasets, except for the frequency of PIK3CA mutation 
in our cohort, which was higher than that in TCGA datasets (P = 0.028, Table S2).

Actionable mutation in locally advanced cervical cancer.  Actionable mutations registered with evi-
dence levels of 1–3B in OncoKB were detected in 35 of 70 (50%) patients (Figure S3). Most somatic mutations 
were dominated by PIK3CA mutation, which is similar to TCGA datasets (Figure S3). These results indicated that 
30–51% of patients with locally advanced cervical cancer may have benefited from mTOR/AKT/PI3K inhibitors.

Correlation between genomic alteration and prognosis.  Genomic alterations in PIK3CA, FBXW7, 
and PTEN were not significantly correlated with PFS (Table  S3). Although all patients with TP53 mutation 
(n = 4) received CCRT, and the tumor diameter was less than 70 mm in three out of four cases, TP53 mutants 
were independently correlated with poor survival (Fig. 2A). Most patients experienced recurrence within one 
year after the start of RT. Multivariate Cox proportional regression analysis indicated that patients with TP53 
mutations were associated with poor PFS (HR = 3.53, P = 0.042, Table 3A, Table S4).
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Table 1.   Characteristics of locally advanced cervical cancer patients.

Variable n (%)

Total patients 70

Age, median years [range] 63.5 [32–89]

FIGO stage (2018)

IIIA 6 (8.6)

IIIB 26 (37.1)

IIIC1r 18 (25.7)

IIIC2r 9 (12.9)

IVA 11 (15.7)

Histology

Squamous cell carcinoma 65 (92.9)

Adenocarcinoma 3 (4.3)

Adenosquamous carcinoma 1 (1.4)

Neuroendocrine carcinoma 1 (1.4)

HPV genotype

Positive 68 (97.1)

 HPV16 22 (31.4)

 HPV18 17 (24.3)

 HPV31 10 (14.3)

 HPV33 2 (2.9)

 HPV45 1 (1.4)

 HPV52 8 (11.4)

 HPV58 3 (4.3)

 HPV59 1 (1.4)

 HPV82 1 (1.4)

 HPV genotype not identified 3 (4.3)

Negative 2 (2.9)

Lymph node enlargement

No 37 (52.9)

Yes 33 (47.1)

Treatment

Radiation therapy 15 (21.4)

Concurrent chemoradiotherapy 55 (78.6)

Tumor size (mm) (median [range]) 52.5 [30–100]

< 70 54 (77.1)

≥ 70 16 (22.9)

Median follow-up period, month [range] 53.5 [6–135]

Table 2.   Correlation between clinico-pathological factors and progression free survival in locally advanced 
cervical cancer patients. *Cox proportional hazards regression analysis, **Radiation therapy, ***Concurrent 
chemoradiotherapy.

Variable

Univariate Multivariate*

Hazard ratio P value Hazard ratio P value

Age (≥ 60/< 60) 1.08 (0.54–2.15) 0.84 0.92 (0.43–1.98) 0.84

FIGO Stage (IV/III) 0.74 (0.29–1.90) 0.53 0.59 (0.22–1.60) 0.30

Histology (non-SCC/SCC) 3.38 (1.29–8.88) 0.013 2.70 (0.97–7.50) 0.057

Lymph node enlargement (positive/negative) 1.56 (0.82–2.99) 0.18 1.36 (0.68–2.74) 0.38

Treatment (RT**/CCRT***) 1.48 (0.73–2.99) 0.28 1.83 (0.84–3.97) 0.13

Tumor size (≥ 70 mm/< 70 mm) 2.49 (1.24–5.00) 0.01 2.96 (1.39–6.29) 0.0048
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Association of p53 status with poor outcomes.  We investigated the protein expression of p53 by 
IHC staining of the specimens of 70 patients. Representative results of IHC staining are shown in Figure S4. 
Five specimens presented with mutant p53 staining patterns, including three with TP53 mutations. p53 mutant 
staining patterns tended to be associated with poor survival of patients when compared with wild-type staining 
patterns (Fig. 2B).

Non‑HPV16/18 patients had poorer survival than HPV16/18 patients.  Sanger sequencing iden-
tified 65 cases of HPV genotypes, and we divided the HPV-positive patients into two groups—HPV16 or 18 
(HPV16/18) group and non-HPV16/18 group. We investigated the correlation of the HPV16/18 and non-
HPV16/18 groups with prognosis. Univariate and multivariate analyses showed that the non-HPV16/18 group 
had lower PFS compared with the HPV16/18 group (HR = 2.15, P = 0.030; Fig. 2C, Table 3B, Table S5). The non-
HPV16/18 group was older than the HPV16/18 group, and the percentages of people over the age of 60 in both 
were 81% and 51% (P = 0.020), respectively. Owing to older age, more patients without HPV16/18 only received 
RT (15% vs. 31%, P = 0.22). Tumor diameter in the non-HPV16/18 group was higher than that in the HPV16/18 
group; however, the difference was not significant. The percentage of patients whose tumor diameter was greater 
than 70 mm was 15% in the HPV16/18 group and 35% in the non-HPV16/18 group (P = 0.13).

Discussion
In this study, we identified the mutation profile and prognostic factors in patients with inoperable locally 
advanced cervical cancer who received CCRT or RT. Thirty to fifty percent of patients with locally advanced 
cervical cancer might have benefited from molecular-targeting drugs. Further, TP53 mutation, large tumor size, 
and non-HPV16/18 genotypes were indicative of poor prognosis.

In line with previous reports5,23, patients with tumor diameters over 70 mm had poor PFS in our cohort. 
In a phase II study of CCRT with brachytherapy in Japanese patients with locally advanced cervical cancer 
(JGOG1066)5, tumor diameter was correlated with PFS. In a prospective study, it was reported that a tumor 
diameter of ≥ 60 mm was an independent poor prognostic factor23. In our cohort, tumors ≥ 60 mm and ≥ 70 mm 
had an HR of 2.46 (95% CI, 1.28–4.71) and 2.49 (95% CI, 1.24–5.00) in univariate analysis, respectively. This 
suggests that the therapeutic effects of CCRT in patients with locally advanced cervical cancer are limited when 
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Figure 1.   Clinicopathological factors and mutation profile (more than 5% frequency) in our cohort. (A) 
Clinical factors, histological types, and recurrence status; (B) HPV genotype and IHC staining pattern; and (C) 
mutation profile of the seventy patients with cervical cancer. Mutated genes are color-coded according to their 
mutation type. Data analysis was carried out using the Torrent Suite Software v5.0.4 (Thermo Fisher Scientific).
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Figure 2.   Kaplan–Meier survival curves according to TP53 status and HPV genotypes. (A) Progression-
free survival between TP53 wild-type (black line) and TP53 mutants (red line), (B) Progression-free survival 
between TP53 wild-type of IHC (black line) and TP53 mutant of IHC (red line), and (C) Progression-free 
survival between HPV16/18-positive (black line) and non-HPV16/18 (red line) patients.

Table 3.   Correlation between TP53 mutation or HPV genotypes and progression-free survival in locally 
advanced cervical cancer patients. *Stepwise multiple regression analysis, **Radiation therapy, ***Concurrent 
chemoradiotherapy.

Variable

Univariate Multivariate*

Hazard ratio P value Hazard ratio P value

(A) TP53 mutation (n = 70)

Lymph node enlargement (Positive/negative) 1.56 (0.82–2.99) 0.18 –

Treatment (RT**/CCRT***) 1.48 (0.73–2.99) 0.28 –

Tumor size (≥ 70 mm/< 70 mm) 2.49 (1.24–5.00) 0.01 2.69 (1.33–5.44) 0.0060

TP53 mutation (n = 4) 2.85 (0.86–9.44) 0.061 3.53 (1.05–11.92) 0.042

(B) Non-HPV16/18 (n = 65)

Lymph node enlargement (positive/negative) 1.56 (0.82–2.99) 0.18 –

Treatment (RT**/CCRT***) 1.48 (0.73–2.99) 0.28 –

Tumor size (≥ 70 mm/< 70 mm) 2.40 (1.17–4.96) 0.018 2.37 (1.14–4.93) 0.021

HPV genotype (non HPV16 or 18/HPV16 or 18) 2.17 (1.10–4.29) 0.026 2.15 (1.08–4.27) 0.030
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the tumor diameter exceeds 60–70 mm. Therefore, these patients need additional treatments, such as molecular-
targeting drugs based on actionable mutations.

In the past decade, next-generation sequencing has been performed for operable cervical cancer in patients 
receiving adjuvant CCRT or RT, and many genomic alterations have been identified. Although some genomic 
alterations, such as PIK3CA17,19,21, KRAS24, ERBB225, and STK1116, have been reported to correlate with prognosis, 
these mutations were not statistically associated with prognosis in our cohort of patients with locally advanced 
cervical cancer. In our cohort, among the somatic mutations identified in more than 5% cases, patients with 
TP53 mutation showed poor prognosis. Three out of four patients with TP53 mutation showed recurrence after 
CCRT within 10 months, and the tumors with this mutation were aggressive. Many studies suggest that TP53 
regulates malignant phenotypes by gain-of-function mutations, including mutations detected in this study. A 
previous report showed that TP53 mutants had the worst OS when compared with wild-type or deletion-type 
TP53 variants26. Further, E6 and E7 oncoproteins secreted by high-risk HPV were expressed consistently. E6 
and E7 proteins form complexes with p53 and retinoblastoma (Rb), respectively, and inhibit the activation of 
proteins in cell cycle regulation27. Interpretation of p53 IHC staining in cervical carcinoma has not been formally 
established26,28. In this study, we evaluated p53 IHC staining patterns as wild-type or mutant patterns using the 
p53 IHC staining patterns previously reported for vulvar SCC29. Three out of four patients with TP53 mutations 
had mutant type IHC staining pattern; patients with p53 IHC mutant type tended to be associated with poorer 
survival than the wild-type. These results indicate that p53 IHC staining can be used to evaluate cervical cancer. 
Although the correlation between TP53 mutation and radiosensitivity in patients with cervical cancer has not 
been fully studied, some studies have shown that TP53 mutation is correlated with poor prognosis after RT in 
SCC of the head and neck30–32. TP53 is the most frequently mutated gene across all cancer types33. TP53 mutation 
may also be associated with radioresistance or poor prognosis in cervical cancer.

In our study, patients without HPV16/18 had poorer PFS than those with HPV16/18. Many previous stud-
ies have shown that early-stage cervical cancer patients with HPV16 and HPV18 have worse prognosis than 
patients without HPV16/1834. On the other hand, there are several conflicting results regarding the association 
between HPV type and survival due to differences in radiotherapy. Recent studies have reported better survival 
of patients with HPV16-positive or HPV16/18-positive genotypes who were administered CCRT for FIGO stage 
III/IV tumors35–37. Therefore, non-HPV16/18 status might be a poor prognostic factor, as it changes the response 
to chemotherapy. Although few reports have focused on the correlation between HPV genotypes and p53 sta-
tus, non-HPV16/18 status might affect prognosis by exhibiting marked alterations in p53. It is also important 
to prevent cervical cancer caused by high-risk HPVs other than HPV16/18. A 9-valent HPV vaccine has been 
developed, which will provide protection against non-HPV16/18 infection and advanced tumors.

Using targeted sequencing, genomic alterations, such as PIK3CA, linked to molecular-targeting drugs were 
detected in locally advanced cervical cancer in both our cohort and TCGA dataset. PIK3CA is the most frequently 
mutated gene, playing a key role in the growth and differentiation of HPV-immortalized cells38. In addition, 
activation of the PI3K/AKT/mTOR pathway through PIK3CA regulates various transformed phenotypes38. The 
PI3K inhibitor alpelisib has been approved for treatment of hormone receptor-positive and human epidermal 
growth factor receptor 2-negative breast cancer by the US FDA39. Notably, therapeutic benefit from this drug has 
been observed in three of five cervical cancer patients harboring PIK3CA mutation in a phase I trial40. Therefore, 
this drug is a promising therapeutic option for locally advanced cervical cancer. There are several limitations in 
our study. First, this study was a single institution retrospective study and the number of cases participating this 
study was limited. Second, targeted sequencing for mutation analysis was performed in this study; therefore, we 
could analyze only hotspot mutations in 50 cancer-related genes. We will further perform genomic analysis for 
predicting prognosis of cervical cancer patients and outcomes of targeted therapies.

In conclusion, we presented the profile of genomic alterations of locally advanced cervical cancer in both our 
cohort and TCGA dataset. We identified that TP53 mutants were correlated with poor PFS in locally advanced 
cervical cancer. In addition, tumors with diameter greater than 70 mm and non-HPV16/18 genotype were asso-
ciated with poor survival. Actionable mutations for molecular-targeting drugs were detected in more than half 
of our cohort. These prognostic factors may lead to the development of novel treatment approaches for patients 
with locally advanced cervical cancer.

Materials and methods
Patients and tumor samples.  One hundred and thirteen patients underwent RT or CCRT at the National 
Cancer Center Hospital, Tokyo, between January 2008 and December 2017 (Figure  S1). Seventy of the 113 
Japanese patients had locally advanced cervical cancer with FIGO stage IIIA to IVA, and these patients were 
recruited for this study. Patients received external beam RT and brachytherapy41, and most of the chemotherapy 
regimen was cisplatin-based. Clinicopathological data, including age at histological diagnosis, FIGO stage, his-
tological subtypes, status of pelvic/para-aortic lymph nodes, tumor size, treatment, and follow-up, were obtained 
from the electronic medical records. Cervical tumor specimens were collected by punch biopsy of the tumor 
before CCRT. The specimens were fixed in 10% neutral buffered formalin and embedded in paraffin (FFPE).

Treatment regimens for CCRT and RT.  All patients, except one, received both external beam RT and 
brachytherapy (intracavitary brachytherapy or intracavitary/interstitial brachytherapy). The initial 20–40 Gray 
(Gy) was delivered to the whole pelvis using the 4-field box technique, followed by a 40 mm-wide midline block 
until pelvic side wall dose of 50 Gy. If enlarged lymph nodes were present, an additional 6–10 Gy was delivered 
with smaller fields. After the initiation of the midline block, a total of 3–4 sessions of brachytherapy were per-
formed in 1–2 sessions per week, and the dose per fraction was 6 Gy. All brachytherapy was performed by an 
192Iridium remote afterloading system (RALS, MicroSelectron, HDR™, Elekta, Veennendaal, The Netherlands). 
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The concurrent chemotherapy regimen was usually 40 mg/m2/week of cisplatin, whereas some patients received 
other regimens, such as carboplatin, cisplatin plus tegafur, gimeracil, oteracil, and cisplatin plus fluorouracil.

DNA preparation and next‑generation sequencing.  Genomic DNA was extracted from FFPE tumor 
tissues using the QIAamp DNA FFPE tissue kit (Qiagen, Hilden, Germany), according to the manufacturer’s 
instructions. Purified genomic DNA (50  ng) obtained from tumor tissues was used for library construction 
using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Thermo Fisher Scientific, Waltham, MA, USA), which tar-
gets approximately 2800 COSMIC mutational hotspot regions of 50 cancer-related genes. An Ion AmpliSeq™ 
Custom Panel, designed for the TP53 gene (coverage: all coding regions) using Ion AmpliSeq™ Designer (https://​
www.​ampli​seq.​com), was also used. Sequencing was performed on the Ion Proton platform (Thermo Fisher Sci-
entific). For quality control, samples with a mean read depth of coverage over 1000 and a base quality score of 20 
(with ≤ 1% probability of being incorrect), which accounted for 90% of the total reads, were selected.

Locally advanced cervical cancer in TCGA database.  We selected 54 cases with locally advanced cer-
vical cancer registered in TCGA database. Somatic mutations called from whole genome sequencing and whole 
exome sequencing data available in TCGA database were downloaded as a mutation annotation format (MAF) 
file via the cBioPortal for Cancer Genomics (http://​www.​cbiop​ortal.​org).

Classification of oncogenic/pathogenic mutations.  Data analysis was carried out using the Torrent 
Suite Software v5.0.4 (Thermo Fisher Scientific). We selected mutations that met the following criteria: the fre-
quency of variant alleles was more than 4% in tumor tissues; single nucleotide polymorphisms were excluded if 
they showed a threshold allele frequency ≥ 0.01 in either the National Heart, Lung, and Blood Institute (NHLBI) 
Grand Opportunity Exome Sequencing Project (ESP6500; http://​evs.​gs.​washi​ngton.​edu/​EVS/) or the integrative 
Japanese Genome Variation Database (iJGVD, 20181105; https://​ijgvd.​megab​ank.​tohoku.​ac.​jp/). The variants 
have been registered as “pathogenic/likely pathogenic variants” in ClinVar42 or “oncogenic/likely oncogenic vari-
ants” in OncoKB (http://​oncokb.​org) databases using the OncoKB annotator commit 8910b65 (accessed on June 
29, 2019). All selected variants were validated using the Integrative Genomics Viewer (IGV; http://​www.​broad​
insti​tute.​org/​igv/).

Definition of actionable mutations.  OncoKB is a precision oncology knowledge database that contains 
information on the effects and treatment implications of specific genomic alterations in cancer patients. Somatic 
mutations and copy number alterations have been categorized into four evidence levels. In the present study, 
genetic aberrations with evidence levels 1–3B according to OncoKB level of evidence V2 were designated as 
actionable mutations for molecular-targeting drugs43.

Immunohistochemical (IHC) staining of p53.  IHC staining was performed on FFPE specimens. Rep-
resentative whole 4 μm-thick sections were analyzed. After deparaffinization, the protein expression of p53 was 
evaluated using a monoclonal antibody against human p53 protein (clone DO-7, Dako, Glostrup, Denmark). 
IHC staining was performed using a Dako autostainer (Dako, CA, USA) and visualized using EnVision Detec-
tion System (Dako), according to the manufacturer’s instructions. The slides were counterstained with hema-
toxylin. Staining for p53 expression was evaluated as wild-type or mutant29. Scattered, mosaic, mid-epithelial 
p53 expression was considered to represent the wild-type staining pattern. Mutant staining pattern was charac-
terized by diffuse strong nuclear positivity in the basal and upper layers of the tumor cells, or complete absence 
of p53 staining with appropriate positive internal control.

Identification of HPV genotyping by Sanger sequencing.  HPV genotyping was performed for the 
70 cases. Genomic DNA (10 ng) was amplified via polymerase chain reaction (PCR) using TaKaRa Taq DNA 
polymerase (Takara Bio Inc., Shiga, Japan) for two distinct HPV genomic regions. The HPV E6/E7 homolo-
gous region was amplified using the pU-1M/pU2R (HPVpU-1M: 5′-TGT​CAA​AAA​CCG​TTG​TGT​CC-3′, and 
HPVpU-2R: 5′-GAG​CTG​TCG​CTT​AAT​TGC​TC-3′) primer set, and the region containing the HPV L1 gene was 
amplified using the GP5+/GP6+ (GP5+: 5′-TTT​GTT​ACT​GTG​GTA​GAT​ACTAC-3′, and GP6+: 5′-GAA​AAA​
TAA​ACT​GTA​AAT​CAT​ATT​C-3′) primer set. PCR reactions were performed using the TaKaRa PCR Human 
Papillomavirus Typing Set (TakaRa Bio Inc.). PCR products were purified using the NucleoSpin Gel (Takara 
Bio Inc.) or PCR Clean-up kit (Takara Bio Inc.). Sanger sequencing was performed using an ABI 3130xl DNA 
Sequencer (Applied Biosystems, Foster City, California, USA), according to the manufacturer’s instructions. 
Similarity between the obtained sequences and various HPV genotypes in the GenBank database was deter-
mined using Basic Local Alignment Search Tool (BLAST) (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi).

Detection of high‑risk HPV types in cervical cancer tissues.  To clarify the frequency of HPV-pos-
itive results in these samples, we performed in situ hybridization assay for HPV detection (HPV-ISH) using 
HPV-III High Risk probes (Roche Diagnostics, Mannheim, Germany), according to the manufacturer’s instruc-
tions. This assay can detect high-risk HPV genotypes, including HPV-16, 18, 31, 33, 35, 45, 52, 56, 58, and 66, 
in cervical cancer specimens16.

Statistical analysis.  The Kaplan–Meier method was applied to estimate survival, PFS, and LRFS. Differ-
ences in outcomes were compared using the log-rank test. PFS was defined as the interval from the start of the 
first RT to either disease progression or death. OS was defined as the interval from the start of the first RT to 

https://www.ampliseq.com
https://www.ampliseq.com
http://www.cbioportal.org
http://evs.gs.washington.edu/EVS/
https://ijgvd.megabank.tohoku.ac.jp/
http://oncokb.org
http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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death. LRFS was defined as the interval from the start of first RT to either locoregional disease progression or 
death. PFS, OS, and LRFS were determined at the last contact date for each patient. Cox regression analysis was 
used to assess the univariate prognostic significance of survival. Using multivariate Cox proportional-hazards 
models, we considered each mutation status, histological subtype, para-aortic lymph node metastasis, and tumor 
size. The data cut-off date was January 29, 2020. Statistical analyses were performed with EZR version 1.3744, 
which is based on R and R commander.

Ethics declarations.  This retrospective study was approved by the Institutional Review Board of National 
Cancer Center Hospital (approval number 2017-136) and follows the ethical standards laid down in the Declara-
tion of Helsinki. Informed consent was obtained from all patients.
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