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Free versus bound entanglement, 
a NP‑hard problem tackled 
by machine learning
Beatrix C. Hiesmayr

Entanglement detection in high dimensional systems is a NP‑hard problem since it is lacking an 
efficient way. Given a bipartite quantum state of interest free entanglement can be detected efficiently 
by the PPT‑criterion (Peres‑Horodecki criterion), in contrast to detecting bound entanglement, 
i.e. a curious form of entanglement that can also not be distilled into maximally (free) entangled 
states. Only a few bound entangled states have been found, typically by constructing dedicated 
entanglement witnesses, so naturally the question arises how large is the volume of those states. We 
define a large family of magically symmetric states of bipartite qutrits for which we find 82% to be 
free entangled, 2% to be certainly separable and as much as 10% to be bound entangled, which shows 
that this kind of entanglement is not rare. Via various machine learning algorithms we can confirm 
that the remaining 6% of states are more likely to belonging to the set of separable states than bound 
entangled states. Most important we find via dimension reduction algorithms that there is a strong 
two‑dimensional (linear) sub‑structure in the set of bound entangled states. This revealed structure 
opens a novel path to find and characterize bound entanglement towards solving the long‑standing 
problem of what the existence of bound entanglement is implying.

Entanglement is known to be the resource to outperform algorithms running on classical physical systems. 
 Entanglement1 has been shown to exists in many physical systems at low and high  energies2–4 and for instance 
is also currently explored for its potential to detect cancer in human  beings5–7. Even given the full available 
information, i.e. the quantum state of a bipartite system, no general efficient method is known to detect entangle-
ment except for low-dimensional system such as 2⊗ 2 and 2⊗ 3 . Only in these dimensions can entanglement 
be faithfully detected by the Peres–Horodecki  criterion8,9, also known as the Positive Partial Transpose (PPT) 
criterion, which states that if the partial transpose of a given bipartite state has at least one negative eigenvalue, 
the state is entangled. More precisely, entanglement detected by the PPT-criterion is often called free entangle-
ment since this entanglement can be  distilled10, i.e. via local operations and classical communications (LOCC) 
two parties can generate maximally entangled states, so called Bell states. For those states that are entangled, but 
the PPT criterion fails, Bell states cannot be distilled that are therefore called bound entangled states or PPT-
entangled states. Let us remark, it has not yet been proven, if there exists non-distillable states that have some 
strictly negative eigenvalues after partial  transpose11. So curiously, states exists that can be produced by mixing 
maximally entangled Bell states, but those states kind of absorb the entanglement in an irreversible way, i.e. the 
process cannot be reversed. Up to now it is not yet fully understood why those kind of states, being not free, exist 
and what role they play with respect to quantum information theoretic tasks.

The first example of a bound entangled state was found by the Horodecki family in the year  199810. Most 
 works12–27 construct carefully non-decomposable entanglement witnesses (decomposible witnesses do not break 
the PPT criterion) or use other sophisticated  constructions28–34 and apply them to exemplary states employing 
additional symmetries. Some works have focussed on the usefulness in quantum information tasks such as 
whether bound entangled states can violate a Bell  inequality35 or its usefulness in quantum key  generation36. In 
2013 the first successful experimental observation of bipartite bound entanglement was realizes with two twisted 
photons, i.e. two physical photons entangled in three degrees of their orbital angular  momentum37.

In this paper we exploit magically symmetric states, i.e. states that are convex combinations of a complete set 
of Bell states and its Hilbert space is equivalent to a d2 − 1-dimensional simplex in the real space. Within this 
state space in dimension d = 3 we are able to classify iteratively the states according to free, bound, separable 
states or states for which all our exploited methods fail, denoted as UNKNOWN. Via the help of machine learn-
ing algorithms we can show that the remaining UNKNOWN states are more consistent in being separable states 
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than bound entangled states. Anyhow, the volume occupied by bound entangled states is larger than the one for 
separable states which was not to be expected from the known examples within the magic  simplex38–40 analysed 
via dedicated entanglement witnesses.

Entanglement witnesses are observables that can detect entanglement, including bound entanglement. They 
are usually constructed by human intuition exploiting symmetries allowing the proof that they are bounded by 
all separable states. Such examples are e.g. witnesses based on mutually unbiased bases (MUBs)51, which exploits 
Bohr’s complementarity, or the quasi-pure  approximation51 of a state, i.e. looking for the closed pure state for 
which the entanglement can be derived. Those witnesses detect successfully bound entanglement also within 
the magic simplex, however, for one family of states within the simplex one witness is successful, the other fails 
and vice versa, which shows one of the main difficulties in detecting entanglement: witnesses have only limited 
range. Moreover, the witnesses have to be carefully adapted to the symmetry of the considered family, which 
causes huge problems in praxis. Consequently, given a family of states it needs a lot of human manpower and 
human intuition to adapt or generate a successful entanglement witness for a given family of states. To overcome 
this limiting factor one can generate via the known symmetries sets of equivalent families or/and witnesses but 
by that one generates a lot of data sets.

On the other hand machine learning (ML) algorithms are known to be powerful tools to analyse huge data 
sets. Therefore, to generate the ground truth we lay a grid over the magic simplex and store for all vectors their 
labels: FREE, BOUND, SEP or UNKNOWN if all methods fail. In addition machine learning algorithms are 
in general powerful tools to reveal unknown structures. Indeed, the ML algorithms find in our case a strong 
structure within the set of detected bound entangled states. This paves a novel way to tackle the detection of 
bound entangled states also for d > 3.

The paper is organized as follows: We start by defining the magic simplex and its most important symmetries. 
For two families, corresponding to different slices via the eight-dimensional magic simplex, we show the power 
of different analytical entanglement witnesses to detect bound entanglement and show the exemplary region 
of states that are certainly separable and those that are certainly free entangled. Between those two regions the 
states can be either free, bound or separable. Then we lay a grid over the simplex and in applying different ana-
lytical methods to detect entanglement/separability we can label the vectors according to FREE, BOUND, SEP 
or UNKNOWN. We show that the analytical methods leave too many vectors to be UNKNOWN rendering a 
further discussion meaningless. Therefore, numerical entanglement witnesses are generated exploiting the group 
structure within the magic simplex, which leaves finally only 6% of the simplex to be UNKNOWN. Exploiting 
machine learning methods we show that those states are more likely to be separable states. This ground truth 
is employed for supervised machine learning methods and applied to our test families. In a last step we applied 
dimension reduction algorithms, unsupervised ML algorithms, and found a curious quantization in the first and 
second principal component for the data labelled BOUND, in contrast to the other ones, which leaves us with a 
recipe to construct extremal bound entangled states.

Methods
Here we introduce the state space under consideration and methods to detect entanglement and separability 
and introduce important test families.

Definition: magic simplex. In mathematics a k-simplex is a k-dimensional polytope which is composed of 
the convex hull of its k + 1 vertices. More formally, given the k + 1 points p0, . . . , pk ∈ R

k are affinely independ-
ent, which means p1 − p0, p2 − p0, . . . , pk − p0 are linearly independent, then the simplex is defined by

Thus a 0-simplex is a point, a 1-simplex a line, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and so 
on. This idea has been transferred to quantum mechanics by the authors of Refs.38–40 for bipartite qudit states 
and for multipartite qudit  states41,42. A simplex for bipartite qudit systems is defined by

and referred to as the magic simplex since in dimension d = 2 it utilizes the magic state basis introduced by 
Wootters and  Hill43 allowing the analytical computation of entanglement of formation. Here the Pk,l form an 
orthonormal basis of Bell states, generated by the arbitrary choice of one Bell state, e.g. P0,0 = 1

d

∑d−1
i,j=0 |ii��jj| , 

and applying in one subsystem the Weyl operators Wk,l =
∑d−1

j=0 ωj·k |j��(j + l) mod d | with ω = e
2π i
d  (d root of 

unity), namely Pk,l = Wk,l ⊗ 1d P0,0 W
†
k,l ⊗ 1d . All states are locally maximally mixed, namely the partial trace 

results in the total mixed state, differently stated all correlations are in the joint system. The only pure states in 
this family of states are the d2 maximally entangled Bell states Pk,l . Except for d = 2 it does not include all locally 
maximally mixed  states38. Let us also remark that the magic simplex is well defined for an orthonormal set of 
Bell states, however, different sets do not always form unitary equivalent magic  simplexes39 for d > 2 (Fig. 1).
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The Hilbert space of those magically symmetric states can be visualized as a simplex in the real space Rd2−1 , 
in particular for d = 2 it forms the famous magic tetrahedron visualized in Fig. 2. All points within the tetrahe-
dron correspond to a locally maximally mixed state and the vertices correspond to the four Bell states. Via the 
PPT criterion one finds all points within the double-pyramid to be separable and thus all states outside to be 
entangled. This solves the separability problem fully for this case.

Figure 1.  This shows the final result of occurrences of states based on the chosen grading of � = 1
18

 for the 
simplex W and polytope P and � = 1

72
 for the family A.

Figure 2.  Simplex of two qubits ( d = 2 ): the positivity relation requires all points representing states to be 
within the (green) tetrahedron. The vertices correspond to the four Bell states Pk,l , the origin to the totally 
maximally mixed state and all 6 lines states ρlines α (blue dots) form a double pyramid. The PPT criterion 
detects all entangled states to be outside the double pyramid, which represents the kernel polytope K as well as 
the enclosure polytope P since there exists no bound entanglement in d = 2 . Note that 4 out of the 8 surface 
planes of the double pyramid, correspond to the optimal entanglement witnesses, while the remaining ones 
overlap with the tetrahedron (positivity condition). The right hand side shows a two-dimensional slice of the 
three-dimensional simplex. The green-black dotted line corresponds to one of the four famous isotropic lines, 
ρiso = (1− p) 1

4
1+ pPk,l , for which the back part represents separable states (within P ≡ K ) and the green 

part entangled states (PPT criterion fails). Fig. 3a shows a similar slice via the eight-dimensional simplex of two 
qutrits ( d = 3).
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Structures in the magic simplex: the kernel and enclosure polytope. Obviously, concerning the separa-
bility or entanglement property any of the d2 Bell states are equivalent and, subsequently, certain mixtures of Bell states 
are with respect to entanglement equivalent. For example in dimension d = 2 the equal mixture of any two Bell states 
results in an separable state, thus the middle of the line connecting two vertices ( ≡ Bell states) has to represent a separa-
ble state (in Fig. 2 those six separable states are marked by blue dots and correspond to ρlinesα defined below). In general, 
for d = 2 the PPT criterion is necessary but also sufficient to detect entanglement, there exists only free entanglement. 
For all points within the simplex it corresponds to a sign change of y-coordinate, i.e. it forms a double pyramid within 
the tetrahedron as depicted in Fig. 2, where the vertices are the equal mixtures of two Bell states ( ρlines α).

For dimensions d > 2 the set of separable states is no longer a simple polytope within the magic simplex, however, in 
Ref.39 it has been proven that two polytopes can be constructed, the so called kernel polytope K and the enclosure polytope 
P , for which the authors proved that states within are separable and outside free entangled, respectively:

Thus in the region between K and P states can be either separable, bound or free entangled. The free entangled 
region can be detected by the PPT criterion, which does not in general form a polytope. The remaining states are either 
bound or separable. The kernel polytope K relies on the structure of so called “lines” in the momentum-position space. 
The Weyl operators generating the maximal entangled Bell states Pk,l imply a group structure within the magic simplex 
W such that the classical phase space {k, l} forms a two dimensional torus with a “linear” structure—multiplication by 
constants and additions always done with the ring Zd . Therefore, each cyclic subgroup is a line in the phase space, i.e. 
starting with a point (p, q) a line is defined by the set {p+ nk, q+ nl} with n being an integer; for instance,

Note that in higher dimensions there are also sublattices. The number of lines (or sublattices) with d points is given 
by N(d) = d(d + 1+

∑

b) where the sum runs over all b that are proper divisors.
Thus for the case d = 3 considered mostly in this contribution all convex combinations of three out of nine Bell 

states form the polytope P with 
(

9
3

)

= 84 vertices. Among those 12 vertices correspond to line states forming the 

kernel polytope K . Consequently, we know that states within K are separable and those outside of P are free entangled 
and therefore the unknown region within the magic simplex is between the kernel and enclosure polytope, here the 
states may be separable, bound or free entangled.

Examples: two families. For illustration of the very problem and how ML algorithms can tackle the problem, let 
us define two families, particular slices via the magic simplex, which we study by means of analytical entanglement wit-
nesses. As we show here entanglement witnesses that are successful for the first family A fail for family B and vice versa, 
illustrating the very crux of entanglement detection. In the following we use those families for a check of the reliability 
of the ML algorithms.

Family A, is defined by the mixture of 3 Bell states that form a line in the simplex with the maximally mixed state, i.e. 
a chosen Bell state and a chosen Weyl operator to generate the remaining two Bell states. This state has a high symmetry 
and therefore with a couple of developed  tools38,50 a witness has been constructed that detects all bound entangled states 
in this family. Thus the separability versus free/bound entanglement problem can be (analytically) fully solved for this 
family (by the quasispin criterion defined in Appendix B). Let us parameterize this family by {ckl} ≡ c
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For all those vectors we can label cA by {SEP,BOUND, FREE} , which is visualized in Fig. 3a for γ = 0 . It was 
the first state family for which a volume of bound entanglement was found and as the picture already suggests 
the volume of bound entangled states seems very small compared to the volume of free entangled and separable 
states. In the next section we provide a more quantitative statement underpinning this statement. Let us remark 
here, it is important to distinguish between the symmetry in the Hilbert space (8-dimensional simplex) and the 
geometry (9-dimensional sphere) of the normalized vectors c.

Totally different entanglement detection methods have shown to be successful in detecting bound entangle-
ment for the family B (defined in Appendix C), however, for this family we do not know everything by means of 
analytical tools, i.e. we have the labelling {FREE,BOUND, SEP,UNKNOWN} . Figure 3b, ( B1 : γ = − 1√

3
, δ = 0 ), 

illustrates the region of the greatest value violating the upper bound on a MUB-witness (defined in the Appen-
dix C). This witness is from the experimental point of view very attractive since it contains a simple recipe of 
how to realize it, i.e. it needs only projections onto MUB-vectors of Alice and Bob, where a particular combina-
tion reveals entanglement. Therefore, this particular family triggered an experiment for two photons entangled 
in their orbital angular momentum (3 degrees of freedom) and therefore provided the first proof for an experi-
mental detection of the bound entangled  states37. The next slice, Fig. 3c ( B2 : γ = 0.83, δ = 0 ), shows a slice 
inside P for which also a MUB-witness not based on a complete MUB set successfully detects bound entangle-
ment. Thus fewer measurement settings are enough to detect bound entanglement. Last but not least, Fig. 3d, 
( B3 : α = 5

3 (−1+
√
3),β = − 1

10 ), shows a slice where two different MUB witnesses detect bound entangled 
states (a third one not depicted is equivalent to the polytope boarder, showing that the symmetry has be carefully 
taken into account.

Detecting entanglement within the magic simplex: analytical methods. Since we know that all 
states outside of the enclosure polytope P are free entangled we only need to consider states within this polytope. 
The cyclic subgroups within the simplex are further crucial ingredients in exploiting entanglement since having 
found one state implies that one has found it for 4 states in the case of d = 2 and for 12 states in the case of d = 3 . 
This is geometrically obvious for d = 2 since each vertex has the same geometry with respect to the origin ( = 
maximally mixed state), see Fig. 2.

Free entanglement is efficiently detected via the PPT criterion, to test whether a simplex states belongs to 
the kernel polytope K , and thus is certainly separable, needs to solve the linear equations defining K with 12 
unknown variables, which is quite time consuming and needs a careful programming. In Fig. 3 all points failing 
the PPT criterion are colored “green” and those passing the kernel test are within the white dotted area. BOUND 
entangled states can be detected by suitable entanglement witnesses, i.e. Hermitian observables, where we applied 
two different ones (defined in Appendix B and C), those states are colored “red”. Note that the first criterion 
is a non-linear witness, whereas the MUB-witness is a linear one. Note also that e.g. if bound entanglement is 
detected, not necessarily all free entanglement is automatically detected.

Results
Now we proceed by discretizing the simplex to compute for each vector the label FREE, BOUND, SEP or 
UNKNOWN if any of our above described methods fail. In the case of d = 2 the simplex fills a volume of 16 ( 17% ) 
of the enclosing cube. And the enclosure polytope equals the kernel polytope, P = K , and fills half of the volume. 
This is unfortunately very different to the case of d = 3 . The simplex fills only about 0.009% of the cube and the 
polytope about 58% of the simplex, which means that without the need of checking the PPT criterion 42% are 
certainly free entangled. Consequently, for the generation of data vectors for the machine learning algorithms 
we can concentrate on data vectors that are within the polytope P (in Fig. 3 depicted by a dashed (black) lines).

Figure 3.  These graphics show slices through the 8-dimensional magic simplex: (a) shows an example for 
Family A, where the non-linear entanglement witness (quasipure approximation) is successful but the MUB 
witness fails. (b–d) show examples for Family B where the linear MUB witnesses are successful, but the 
quasipure approximation fails. The colors indicate if the corresponding state is FREE entangled (green), PPT 
(blue and red) or BOUND entangled (red). The red lines (with arrows) represent one MUB witness and the 
arrow indicates which states are detected as entangled. The black dashed lines correspond to the enclosure 
polytope P , whereas the white dotted lines correspond to the kernel polytope P , i.e. states within the white 
dotted area are certainly SEP.
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Reducing to the enclosure polytope P. As for most of the cases the ground truth, i.e. the generation of 
the data (or its selection) is crucial for the success of any machine learning algorithm and it is usually the most 
time consumption process, which was here the case and was performed with the help of a supercomputer. The 
first crucial questions is the stepsize � , if it is too big none or too less bound entangled states are detected, if it is 
too small the computation times exceeds to several months.

Therefore, our general strategy is to generate vectors c where 8 out of 9 components are varied in the inter-
val [0, 13 ] with a certain stepsize � (the 9th component is given by the normalization |c| = 1 ). Checking of each 
point ( 1

�
+ 1)8 the positivity results in the set of magic states within the enclosure polytope P . The next step is 

to check for those vectors the PPT—criterion (defined in the Appendix A), thus to separate the set into those 
that are free entangled (labelled by FREE) or not. If the state was not labelled FREE, we performed the kernel 
test (if passing labelled by SEP), which is unfortunately not always reliable since the programm has to check for 
solutions of a system of equations which depends strongly on the input form. Here we had to post-check data 
vectors. The states failing the kernel test could be either BOUND entangled if one of the entanglement witness 
tests (analytical and numerical tests described later) passed or as UNKNOWN if not.

Thus in summary we generated magic simplex states within the enclosure polytope P which are labelled by 
FREE, SEP, BOUND or UNKNOWN. One strategy is to remove the UNKNOWN states and let the machine 
learning algorithms learn from the remaining states or if one is confident to have found close to all bound 
entangled states, to label the UNKNOWN states as SEP states. Labeling the opposite (UNKNOWN→ BOUND) 
and comparing the machine learning solutions over consistency checks may give a check whether all bound 
entangled states where found. Generally, to characterize the performance of the machine learning besides the 
typical parameters as accuracy, the confusion matrix plot, the feature scores,..., we apply them to the examples 
states (Family A, Family B), see Fig. 3.

In the following two sections we present the solution of the above procedure for a sub-state space in the 
magic simplex, for which we know everything and then proceed to the complete magic simplex state for d = 3.

Solution for Family A. Let us consider all states of Family A, e.g. explicitly given by (note 
∑

Pk,l = 1)

Since all Bell states lie on a line, this exhibits a high symmetry such that an optimized witness can be guessed 
and, subsequently, its optimality in detection all existing bound entanglement could be  proven38,40. Later on it 
was found that this non-linear witness is equivalent to the quasi-pure approximation (see Appendix B). This 
result presented the first volume of bound entangled states in the Hilbert space and opened the possibility of a 
potential experimental observation, however the volume was found to be too small as can be directly deduced 
from Fig.3a by eye. Moreover, it is not clear, how this non-linear entanglement witness should be experimentally 
realised. This is very different to linear MUB witnesses that contain a rather simple protocol of how to realize 
them experimentally.

To quantify the volume of bound entangled states within the 3–dimensional simplex spanned by any three 
Bell states on a line, we vary the three parameters α,β , γ by a stepsize � = 1

72 , i.e. testing 614.125 vectors for 
which we find 95.455 (15%) satisfying the positivity condition (spanning a 3–dimensional simplex). Out of those 
states 78.042 (81.8%) are free entangled, from which 74418 (78.0%) are outside of the polytope, thus those are 
certainly free entangled. From the remaining 18.2% states 17.317 (18.1%) are separable and only 96 (0.1%) are 
bound entangled.

In summary, only 3.8% within this enclosure polytope PA are free. Thus for these 12 subspaces of the 8–dimen-
sional simplex the enclosure polytope PA is a quite good separability border in contrast to the kernel polytope 
KA . This is in strong contrast to the result of the full magic simplex that we present in the following.

The full magic simplex (based on analytical witnesses). Finally, we were able to scan the enclo-
sure polytope P , which covers about 58% of the total simplex, by a stepsize of 118 , big enough to detect bound 
entangled states, but small enough to limit the computing time on a supercomputer to about two weeks in 
total. This corresponds to 78 = 5.764.801 vectors that had to be checked for positivity, resulting in a subset 
of 899.857 (15.6%) magic simplex states. Those states we checked via the PPT criterion allowing for labelling 
620.406 (69%) as FREE entangled states within P , which is in strong contrast to the subspace solution of Family 
A, i.e. less than ∼ 1

3 states are either separable or bound entangled.
For the remaining states we check for whether they belong to the kernel K which is not computationally 

simple since a system of 12 equations have to be tested for a possible solution. We found only 27.055 (3%) meet 
the condition for being within K . For the remaining states ( 28% ) we checked for bound entanglement via two 
different entanglement witnesses classes. The quasipure criterion detects 37% of all BOUND states, the MUB 
criteria 2% of all BOUND states and 0.9% are detected by both criteria. This means that as much as 24% of the 
data vectors are UNKNOWN exploiting those known sets of witnesses. This renders the problem as not very 
suitable for a successful application via ML algorithms.

The full magic simplex (based on additional numerically generated witnesses). There-
fore, we exploited the recently discovered fact that an entanglement witness has an upper bound (the very 
definition of a witness) and in general often also a non-trivial lower  bound44. Furthermore, we exploited the 
structure of the magic simplex by noting that an effective witness in the magic simplex can have the form 
W =

∑

k,l κk,l Pk,l . We generated over 9000 witnesses by random number κk,l and computed via the help of 

(7)ρA =
1− α − β − γ

9
19 + α P00 + β P0,1 + γ P0,2 ⇔ cA .
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a proper parametrization of  unitaries45 the upper and lower bounds given by the optimum over all separable 
states: minρSEP Tr(WiρSEP) ≤ Tr(Wiρ) ≤ maxρSEP Tr(WiρSEP) . Those witnesses we applied to the remaining 
set generating new witnesses until no further bound entangled state was detected via this method. This is a very 
time consuming process and was undertaken by the Vienna super-computers. By this method we could detect 
further 142.011 states to be bound entangled.

In summary, via this procedure we find 70% to be free entangled, as much as 17% to be bound entangled and 
3% to be certainly separable in P (see also Fig. 1). Thus 10% remain as UNKNOWN. Assuming that we found all 
bound entangled states, those states should be separable due to the convexity argument, namely that the set of 
separable states is convex. As we show in the following we can test whether those UNKNOWN vectors are more 
consistent with being SEP or BOUND via ML algorithms. Let us emphasize that irrespective of the labelling of 
the remaining states, we find surprisingly more bound entangled states than separable states which was not to 
be expected and shows for the first time that bound entangled states are not negligible (only difficult to detect).

Now we utilize machine learning  algorithms46,47 for different purposes. Firstly, we investigate the question of 
whether the remaining states labelled as UNKNOWN are more likely to be separable or entangled. Secondly, we 
investigate the question how good machine learning can learn from the data by testing its prediction for some 
slices in the magic simplex. Thirdly, we ask whether ML can reveal novel unknown structures.

Are the remaining UNKNOWN states SEP or BOUND? Since we know that the set of separable states 
has to form a convex set in the Hilbert space, we assume that any classification algorithm based on a particular 
distance definition would learn exactly this feature. For this purpose we exploited a “nearest neighbor” algo-
rithm, classifying a class by k-nearest neighbours, first for labelling all UNKNOWN as SEP ( 15% ) and secondly 
as BOUND (only 3% (kernel) are now SEP). We expect, if our witnesses have detected all bound entangled states, 
that the first case should give a better solution in terms of fitting parameters as we know that the set of separable 
states is convex and there are more separable states expected than those in the kernel K . Indeed, the accuracy for 
the first scenario is 94% with probabilities 97%/82%/93% of detecting FREE/BOUND/SEP, whereas the second 
scenario result in a quite lower accuracy of 84% and the probabilities 97%/60%/30% , i.e. no change for FREE 
but a significant drop in the detection probability of the two other classes. This signature becomes even stronger 
for another ML algorithms “gradient boosted trees”, which is a machine learning technique for regression and 
classification problems that produces a prediction model in the form of an ensemble of trees, which are trained 
sequentially with the goal of compensating the weaknesses of previous trees. The confusion-matrix plots are 
presented in Fig. 4. Those suggests that the first scenario is the more consistent one with the assumption outlined 
above. In the following we assumed that the UNKNOWN states are indeed SEP.

ML algorithms for SEP versus BOUND (without FREE). Assuming that we found all bound entan-
gled state and guided by the considerations of the last sections, we label all UNKNOWN as SEP. Furthermore, we 
are only interested in distinguishing SEP from BOUND since free entanglement can be faithfully detected by the 
PPT criterion if the full knowledge of the physical state is available. Now we train different ML algorithms and 
apply them to our exemplary slices of family A and family B. Note that those slices are not necessarily the ground 
truth, i.e. only a few points of the slices may be within the ground truth. Furthermore, we know from geometry 
considerations that the results for our exemplary slices have to be identical for all 12 geometrical equivalent 
representations. This fact was not learnt efficiently by our ML algorithms, therefore to find a definite solution, 
whether the ML algorithm labels geometrically identical points as SEP or BOUND, we introduce a “majority 
vote’, i.e. if the label BOUND is more than 5 the result is labelled as BOUND. Exemplary results are visualized 
in Fig. 5. Here we show the solution for two ML algorithms (“random forest”,“nearest neighbour”) applied to 
our four slices in the magic simplex. The accuracy is quite hight ( ≈ 90% ), though both algorithms are either 
overshooting or undershooting for the families A, B. Interestingly, the ML results would suggest that for families 
B2,B3 we should expect more bound entanglement than detected by the analytical methods.

Figure 4.  Here the matrix confusion plots are presented for the two scenarios, UNKNOWN → SEP and 
UNKNOWN → BOUND. (a,c) present the result for the “nearest neighbour” and the “gradient boosted trees” 
ML algorithm for the first scenario and (b,d) for the second scenario. One observes that for both ML algorithms 
the second unexpected scenario the SEP labelled points are mostly confused with the BOUND labelled points, 
but not with FREE, i.e. those points are in average closer to the the set of BOUND than FREE.
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Dimension reduction algorithms. A standard method in ML is to reduce the dimension and possibly 
noisy data. We know that our data has in the Hilbert space a strong eminent symmetry connected with 3, the 
dimension of the two quantum subsystems. Therefore, applying dimension reduction algorithms seems fruit-
ful since the characteristic features may be compressed in some principal components due to the geometrical 
constraints (simplex, polytope,. . .).

One of the most popular dimension reduction algorithms is based on the Principal Component Algorithm 
(PCA). It works by taking all data vectors, de-meaning it, and computing all co-variances. From this covariance 
matrix the eigenvectors and eigenvalues are computed and ordered by the largest one. Note that other dimension 
reduction algorithms gave similar results for our data, for simplicity we show only the results obtained by the 
method PCA. Moreover, the results depend on the ordering of the input data, so we tried different approaches 
which give in total similar results, particularly for the most important set of states, the bound entangled states 
(Fig. 6d).

In Figs. 6 and 7 we have displayed our various results. Let us start with Fig. 6a where the results after a dimen-
sion reduction to two dimensions are shown for the full simplex. Here the letters mark the nine Bell states (“B”), 
the 12 states of the kernel vertices (“K”) and the remaining 72 vertices of the polytope (“P”) and are given for 
a better orientation of the kind of “projection”. One can clearly observe that the “projection” is chosen by the 
specific ML algorithm to present some Bell states in the corner of a triangle. Furthermore, one clearly observes 
the spacing due to the step choice of � = 1

18 since there are 19 “lines”. The polytope vertices are projected onto 
two “lines”.

In Fig. 6b the result is displayed for the full data of the polytope P with the color marking (FREE = green, 
BOUND = red, SEP = black, UNKNOWN = grey). One observes that the FREE vectors occupy the full space 
whereas the BOUND, SEP, UNKNOWN vectors populate in this ordering less and less space as we would expect 
from the known structure within the simplex W . In more details, the mean length of FREE is 1.47± 0.55 , of 
BOUND is 1.22± 0.42 and of SEP including UNKNOWN is 0.99± 0.37 , hence there is significant difference 
visible.

As a next step we solely considered the vectors labelled by FREE, Fig. 6c. The procedure finds a square where 
the vertices of P populate with different occurrence the corners. Again our grading is clearly visible.

Figure 5.  These graphics show slices through the 8-dimensional magic simplex including results from two ML 
algorithms based on PPT states: “Random Forest” (accuracy 91.51± 0.13% , SEP score: 90% ; BOUND score 
92% ) and “Nearest Neighbours” (accuracy 90.64± 0.14% , SEP score: 90% ; BOUND score 90% ) . Color coding 
is as in Fig. 3. The light pink area shows the region found by the ML algorithm as BOUND by the majority 
vote over all 12 possible realizations, consequently the remaining PPT region is detected as SEP. (a–c) show the 
results for “Random Forest” and (d,e) for “Nearest Neighbours” algorithm.

Figure 6.  These graphics present results of a two-dimensions reduction based on PCA for (a) the full data set of 
the simplex and (b) for the polytope P , (c) for the set of FREE vectors, (d) of BOUND vectors. The color coding 
is FREE = green, BOUND = red, SEP = black and UNKNOWN = grey. The letter K (blue) denotes the results 
of the kernel polytope K , whereas the P’s (magenta) denote the remaining vertices of the enclosure polytope P 
and B denote the nine Bell states. Those points give a good orientation of the resulting projection view, however, 
note that those are not necessarily included into the data set. In the graphic (d) all bound states reduce to 133 
points, where the states that are red&black or red&white correspond to states which are detected by the quasi-
spin criterion and the MUB criterion, respectively.
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The most exciting result is obtained, also very independent of the ordering of the vectors, for the set of 
BOUND entangled vectors, Fig. 6d. All 156.600 states “project’ to only 133 points forming a triangle without 
vertices. For better orientation we put there also the results for the 84 vertices of P , which are of course not 
BOUND entangled states, which themselves show a nice geometry: forming a triangle and the origin for the 
12 kernel vertices and a hexagon with the origin for the remaining 72 vertices of P . Moreover, we marked the 
points by white and black colors if they were detected also by the MUB criterion and the quasispin criterion, 
respectively. One observes, three rings for each of the three symmetric parts of the triangle and that the MUB 
criterion, in contrast to quasipin criterion, detects the extremal, i.e. outermost states. The numerical witnesses 
cover the full space.

Firstly, this is of course an unexpected substructure that has been revealed by the ML algorithms, 
and secondly, this allows us to construct novel extremal states. Let us take two of the outmost states, e.g. 
ρextremal 1 = 5

18 (P0,2 + P1,2 + P2,2)+ 2
18P0,0 +

1
18P1,1 and ρextrema 2 = 5

18 (P0,2 + P1,2 + P2,2)+ 1
18P0,0 +

2
18P1,1 . 

We expect that we can move the state until the line state ρline = 1
3 (P0,2 + P1,2 + P2,2) in the cor-

ner (denoted by “K”). Indeed, the state ρextremal 1 = ( 13 − x)(P0,2 + P1,2 + P2,2)+ 2xP0,0 + xP1,1 or 
ρextremal 2 = ( 13 − x)(P0,2 + P1,2 + P2,2)+ 2xP1,1 + xP0,0 approaches the vertex of the triangle as depicted in 
Fig. 8a for x = 1

18 ,
1
36 , . . . , for which the value of the positive eigenvalue approaches zero and the MUB-witness 

is violated by exactly 1x . Moreover, we find that the states approaching the maximal violation of the MUB-witness, 
while still being PPT, are states towards the polytope vertices that are entangled (“green dot” in Fig. 8a). Those 
states correspond to the point with the greatest distance from the MUB witness of family B2 (also displayed in 
Fig. 8b as a “green dot”).

Figure 7.  These graphics present results of a two-dimensional reduction based on PCA for (a) kernel and 
UNKNOWN vectors, (b) for the kernel vectors, (b) for the set of UNKNOWN vectors, (c) of BOUND and 
UNKNOWN vectors. The color coding is FREE = green, BOUND = red, SEP = black, UNKNOWN = black/gey. 
The letter K denotes the results of the kernel polytope K , whereas the P’s denote the remaining vertices of the 
enclosure polytope P . Those points give a good orientation of the resulting projection view, however, note that 
those are not necessarily included into the data set.

Figure 8.  In the graphic (a) the result of the dimensional reduction of the BOUND vectors are shown and 
how via the construction more bound entangled states can be deduced that converge to a vertex of P , which is 
separable (denoted by “K”). The rings show the states detected by the MUB witness. The green dot corresponds 
to the maximal violation of the MUB-witness for the set of bound entangled states within the simplex, which is 
found in the direction towards a vertex of P , which is entangled (denoted by “P”). The graphic at the left hand 
side (b) corresponds to the slice (family B2 ), where the purple area shows which states are detected to be bound 
entangled for the set of training data after a three dimensional dimension reduction based on PCA.
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A second question concerns whether we have found all bound entangled states within our grading. For 
that we have applied a dimension reduction, Fig. 7, to the set of kernel and UNKNOWN states (a), kernel (b), 
UNKNOWN (c) vectors, independently, and in (d) to the UNKNOWN and BOUND vectors. Though per con-
struction the UNKNOWN states are outside of the K in the projection the appear inside of K and seem to be 
quite homogeneous spread. Most important, we do not obtain the strong structure, Fig.6d, if the UNKNOWN 
states are added to those labelled BOUND, thus this is a further hint that we found all bound entangled states 
within our grading.

Dimension reduction followed by classification. A frequent method in ML is to reduce data by their 
principal components and then to apply classification methods. We have plugged in three principal component 
vectors into ML algorithms. For example, employing next-nearest algorithm we find an accuracy of 83% and with 
the score probabilities FREE → 91%,BOUND → 55% and SEP → 72% , which is lower than without reduction 
(Fig. 8b). The result also suggests that there should be more bound entangled states than those detected by the 
analytical methods, however, also within the kernel region (“white dotted area”) which we know is wrong.

Discussions
We discretized the Hibert space spanned by a complete set of maximally entangled bipartite states, the so called 
Bell states. We focussed on physical states with three degrees of freedom, i.e. bipartite qutrits. Those states are 
maximally mixed, meaning that tracing over one of the two subsystem results in a maximally mixed state, i.e. 
all results are equally probable independently of the measurement choices of Alice and Bob. Those magically 
symmetric states exhibit various symmetries, namely with respect to positivity it forms a simplex in Rd2−1 . With 
respect to separability/entanglement one can construct a kernel polytope K for which every state inside has to 
be separable and an enclosure polytope P for which every state outside is FREE entangled. Then we applied 
analytical and numerical entanglement witnesses, which let us finally label the vectors as FREE (free entangled), 
BOUND (bound entangled), SEP (separable) or if all methods failed as UNKNOWN, summarized in Fig. 1. In 
Ref.48 a general study is performed to estimate the volume of separable states for low dimensions including our 
case of 3× 3 , for which the author finds the probability to find a PPT state is 16.6% over a unitary measure which 
is comparable with our result, but we considered a restricted set of states.

Taking those results as the ground truth we investigated supervised and unsupervised ML algorithms with a 
threefold aim: (i) to recover new unnoticed symmetries (ii) to predict for a given state its probability of a certain 
label and (iii) to find out whether the UNKNOWN state are more likely separable or bound entangled.

Via clustering algorithms we find that assuming that the UNKNOWN states are SEP is more consistent than 
the assumption BOUND (Fig. 4) underpinning the fact that the set of separable states has to form a convex set, 
i.e. any convex combination of two separable states has to result in only separable states. Also the investigation of 
dimension reduction algorithms supported that we found all BOUND entangled states in the set (Figs. 6 and  7).

The dimension reduction algorithms revealed a strong correlation in the set of BOUND vectors. All 156.600 
states are “projected” to 133 points forming a triangle without vertices. This strong symmetry allowed us to 
construct novel bound entangled states in a systematic way, which are approaching the vertices belonging to 
the kernel. It will be interesting to see if this construction appears also in higher dimensions and if it depends 
on the explicit dimension.

Furthermore, we have chosen exemplary state families which turned out to be fruitful in developing the 
analytical methods due to particular properties. We used those data vectors, which are not necessarily those 
of our chosen exemplary families, to train various ML learning algorithms, which had quite high accuracies, 
however, they did not accurately produce the known symmetries nor always give reliable results in those chosen 
examples. We conclude from that more data vectors are needed for ML algorithms to classify better the simplex. 
Last but not least, we have combined the dimension reduction algorithms with the classifiers with a similar result.

It is often stated that only free entangled states are meaningful resources for quantum information tasks, which 
is certainly the case, when its performance relies on a good purity of the state under investigation. Therefore, a 
distillation protocol is often needed to compensate for experimental errors such as in long distant communica-
tions. Since only free entangled states are distillable, it is important to investigate decoherence channels that 
avoid a transformation of free entangled states into bound entangled states or separable states, such states have 
been named sudden death of distillability  free49. With our achieved knowledge of the substructures in the magic 
simplex we can immediately deduce which “trajectories” lead to bound entangled regions and thereby single out 
the unital decoherence channels with and without sudden death.

In summary, we estimated the volumes of different entanglement types covered by a well defined family of 
states. Bound entangled states occur more often than separable states, even if the data vectors with the label 
UNKNOWN are all separable states. This simplex construction works in any dimension, thus the next steps are 
to discretize those in the same manner as presented in this contribution and in comparison with the results of 
this paper, one may disentangle effects from the dimension, the implied symmetries and by that the ML learn-
ing algorithms may come up with a general novel method in detecting bound entanglement without explicit 
constructions of entanglement witnesses.

Appendix

A PPT criterion. A state ρ is called PPT (positive partial transpose) iff the eigenvalues of the partial trans-
pose with respect to one subsystem, A or B, of a bipartition is  positive8,9:
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If one or more eigenvalues are negative the state is (free) entangled. Only in low dimensions, i.e. 2⊗ 2 and 
2⊗ 3 , the PPT criterion is necessary and sufficient in detecting entanglement. Bound entangled states are PPT 
states and since the distillation is connected with the property of  PPT10, those states cannot be distilled into pure 
maximally (free) entangled states with local operations and classical communications.

B Quasipure criterion. One idea to approach the detection of entanglement of mixed states is to look for 
the closed pure state in the convex decomposition, a “quasi-pure” approximation, and apply the generalized con-
currence, which is certainly a lower bound on the total density  matrix50. A non-zero value detects entanglement. 
In detail, given a matrix ρ =

∑

i pi|ψi��ψi| the concurrence

with A = 4
∑

i<j,k<l(|ikjl� − |jkil� − |iljk� + |jlik�).(�ikjl| − �jkil| − �iljk| + �jlik|) is bounded from below

where Si are the singular values of Tij =
√
µiµj �ψiψj|A|ψ0ψ0� and |ψ0� is the dominant eigenvector. For our 

magic simplex states, the dominant vectors are one of the Bell states, however, note that this criterion also some-
times fails, in particular if there is not a dominant eigenvector, e.g. for an equal mixture of two Bell states. The 
explicit non-linear witnesses for the family A are published in Ref.50.

C MUB‑witnesses. Two orthonomal bases Bk = {|ik�}d−1
i=0 ,Bl = {|il�}d−1

i=0  are called mutually unbiased iff

In the  work51 it was shown that the observable

is an entanglement witness, more precisely, it has an upper bound 1+ m−1
d  for the set of all separable states, 

independent of the dimension. There is also a lower bound on this quantity by the set of separable states, how-
ever, it is generally depending on the dimension and on the choice of the set  MUBs52. Note, that in particular 
to detect bound entangled states a reordering of the basis of one subsystem is needed else the witness Mm is 
decomposible. In this case the lower and upper bounds can change in general. There exists also unextendible 
 MUBs53 which have been shown to more effective to detect entanglement but so far not bound entanglement. 
The strongest witness for d = 3 is given for m = d + 1 , i.e. exploiting the complete set of MUBs which is not 
known to exist in any dimension. The slice B3 is one where also Md is successfully detecting bound entangled 
 states54. Generally, the construction of entanglement witnesses from MUBs cover several well-known entangle-
ment  witnesses55 such as the Choi map.
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