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Changes in microbial community 
phylogeny and metabolic activity 
along the water column uncouple 
at near sediment aphotic layers 
in fjords
Sven P. Tobias‑Hünefeldt1,2, Stephen R. Wing3, Federico Baltar3,4* & Sergio E. Morales1*

Fjords are semi-enclosed marine systems with unique physical conditions that influence microbial 
community composition and structure. Pronounced organic matter and physical condition gradients 
within fjords provide a natural laboratory for the study of changes in microbial community structure 
and metabolic potential in response to environmental conditions. Photosynthetic production in 
euphotic zones sustains deeper aphotic microbial activity via organic matter sinking, augmented by 
large terrestrial inputs. Previous studies do not consider both prokaryotic and eukaryotic communities 
when linking metabolic potential and activity, community composition, and environmental gradients. 
To address this gap we profiled microbial functional potential (Biolog Ecoplates), bacterial abundance, 
heterotrophic production (3H-Leucine incorporation), and prokaryotic/eukaryotic community 
composition (16S and 18S rRNA amplicon gene sequencing). Similar factors shaped metabolic 
potential, activity and community (prokaryotic and eukaryotic) composition across surface/near 
surface sites. However, increased metabolic diversity at near bottom (aphotic) sites reflected an 
organic matter influence from sediments. Photosynthetically produced particulate organic matter 
shaped the upper water column community composition and metabolic potential. In contrast, 
microbial activity at deeper aphotic waters were strongly influenced by other organic matter input 
than sinking marine snow (e.g. sediment resuspension of benthic organic matter, remineralisation 
of terrestrially derived organic matter, etc.), severing the link between community structure and 
metabolic potential. Taken together, different organic matter sources shape microbial activity, but not 
community composition, in New Zealand fjords.

Fjords are unique environments, representing modified marine ecosystems mixing freshwater, terrestrial and 
marine inputs. Influences on microbial community structure and function are linked to changes in environ-
mental condition, including alternate organic carbon sources (e.g. terrestrial, marine and freshwater sources), 
salinity, nutrient, and light1–3. Moreover, due to these strong environmental gradients, fjords are ideal natural 
laboratories to study marine microbial communities and phylogenetic and functional diversity controls due to 
strong environmental gradients. However, the energy sources supporting primary production and heterotrophic 
activity in fjords, and how they change in relation to observed community changes, remain poorly defined. In 
open ocean systems primary productivity by surface phytoplankton mediates the downward flux of particulate 
carbon, transferring energy to aphotic zones. This unidirectional transfer of organic matter from surface to deeper 
layers is termed the biological carbon pump4–6. The process is expected to dominate in fjords where carbon inputs 
are predominantly linked to phytoplankton and chemoautotroph production7–9, sustaining a significant portion 
of heterotrophic respiration10. Nevertheless, studies of benthic communities in fjords have demonstrated that 
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microbial reworking of refractory organic matter from terrestrial sources is in some fjords a dominant source 
of carbon to deep communities11–14. Despite this, we lack an integrated view of microbial metabolic potential 
within fjords and specific information about the composition of microbial populations and how they are linked 
to the available range of organic matter sources. Resolution of these associations will provide the basis for a 
mechanistic understanding of how organic matter is processed in fjords and increased understanding of how 
this ecosystem is sustained and shaped.

In a recent study we examined for the first time the patterns in microbial community composition relative to 
variability in environmental factors among fjords in the New Zealand Fiordland system15. This previous study 
identified that salinity and depth were the primary drivers of both prokaryotic and eukaryotic microbiome 
diversity and composition changes, while oxygen and temperature only played a minor role in determining taxo-
nomic patterns. However, other factors such as tannin induced light penetration decreases or grazing pressures 
may also play a role16,17, especially when there are differences between prokaryotic and eukaryotic community 
patterns. The depth and salinity effects are shown to be linked to primarily the LSL (low-salinity layer), with 
distinct diversity and community differences between Chalky Inlet (containing the smallest LSL) and Doubtful 
Sound (containing the largest LSL). Microbial phyla matched previous reports in marine, and tropical and tundra 
fjords. However, the identified phyla are capable of diverse functional processes and the link between patterns 
in phylogenetic and functional diversity in these fjords remained unresolved.

In the present study we examine the microbial metabolic community potential (via Biolog Ecoplates), bacte-
rial abundance, heterotrophic production (via 3H-leucine incorporation), and prokaryotic/eukaryotic commu-
nity composition (via 16S and 18S rRNA amplicon gene sequencing). We use this data to compare community 
metabolic diversity and potential, and how it relates to known drivers of microbial community changes across 
six different fjords in New Zealand. We aimed to reveal how metabolic potential changed along environmental 
gradients within fjords and how these patterns are linked to community composition changes, integrating both 
prokaryotic and eukaryotic microbiomes for the first time. We hypothesised that microbial community function 
and composition were linked, and both would decrease with depth due to decreased abundance of photosyn-
thetically produced organic matter.

Methods
Sample collection, DNA extraction, and sequencing.  Samples were collected and processed accord-
ing to the protocol outlined in Tobias-Hünefeldt et  al.15. Duplicate samples were collected from Fiordland 
National Park (45.60° S, 167.36° E) in November 2015 using a CTD sensor system (SBE-25 0352) with attached 
10 L Niskin bottles for a total of 44 samples. Samples were collected at the head and mouth of 5 fjords (Breaksea 
Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, and Wet Jacket Arm) at the surface and at 10 m. However, 
1, 1, 4, 1, and 4 samples were collected from Breaksea Sound’s 10 m mouth, Chalky Inlet’s 10 m head, Doubtful 
Sound’s surface head, Dusky Sound’s 10 m head, and Wet Jacket Arm’s surface head region. To generate higher 
resolution data sets Long Sound samples were collected using a transect and depth profile. Duplicate surface 
and 10 m samples from the transect started at the fjord’s mouth and moving inwards with sampling occurring 
at 2.47, 3.16, 4.73, 5.59, 8.47, 10.67, and 14.3 km from the outermost sample with exceptions. The depth profile 
was collected using duplicate samples 8.47 km from the outermost sample at depths of 0, 10, 40, 100, 200, and 
300 m, with exceptions.

DNA was extracted using the MoBio DNeasy® PowerSoil® Kit (MoBio, Solana Beach, CA, USA) using the filter 
contents of 0.22 µm polycarbonate (diameter of 47 mm) filtered 0.5–1 L water subsample, frozen at − 20 °C and 
stored at − 80 °C. A modified manufacturers protocol was utilised, bead beating samples in a Geno/Grinder for 
2 × 15 s instead of vortexing at maximum speed for 10 min.

DNA underwent sequencing and quality control as outlined in Tobias-Hünefeldt et al.15. The Earth Micro-
biome Project protocol was followed18, generating community profiles with barcoded 16S (targeting the V4 
region: 515F (5′-NNNNNNNNGTG​TGC​CAGCMGCC​GCG​GTAA-3′) and 806R (5′-GGA​CTA​CHVGGG​TWT​
CTAAT-3′)) or 18S 1391f (5′-GTA​CAC​ACC​GCC​CGTC-3′) and EukBr (5′-TGA​TCC​TTC​TGC​AGG​TTC​ACC​
TAC​-3′) rRNA gene primers. Illumina HiSeq (16S) and MiSeq (18S) 2 × 151 bp runs were used to generate com-
munity reads. Raw community profiles underwent quality control using the Quantitative Insights into Molecular 
Ecology (QIIME) 1.9.1 open-reference operation taxonomic unit-picking workflow with default parameters19. 
Operational taxonomic units (OTUs) were clustered at 97% for 16S and 99% for 18S similarity using UCLUST20 
and an open reference strategy based on reference sequences from the SILVA database (release 128) using 
QIIME’s pick_open_reference_otus.py command21. OTUs were classified to 7 taxa levels (kingdom, phylum, 
class, order, family, genus, OTU) using BLAST22 with a maximum e-value of 0.001 against the SILVA database. 
Subsampling and rarefication was carried out ten times at a depth of 22,000 (16S) and 6600 (18S) sequences, 
merging the resulting tables into a single OUT table. The merged OTU table was then exported as a biom (json) 
file for further processing.

All sequence data from this study has been deposited in NCBI under BioProject PRJNA540153.
All data analysis was carried out using R version 3.6.1 (R Core Team (2019). R: A language and environment 

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​
ct.​org/) within RStudio23, and visualised using the ggplot2 package (version 3.2.1)24 unless otherwise stated. All 
code and associated files are available at https://​github.​com/​SvenT​obias-​Hunef​eldt/​Fiord​land_​2021/.

Carbon utilisation profiling, and bacterial abundance and productivity.  Carbon utilisation pro-
files were determined using Biolog EcoPlates™ loaded with water collected in 10 L Niskin bottles attached to 
a CTD rosette.  150 μL of sample was utilised per Biolog Ecoplate well, then incubated for 7 days at 4 °C with 
colour patterns assessed at OD A590 nm.

https://www.R-project.org/
https://www.R-project.org/
https://github.com/SvenTobias-Hunefeldt/Fiordland_2021/
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Samples were incubated in the dark for 10 min, then preserved with glutaraldehyde (final concentration of 
2%) and frozen with liquid nitrogen prior to counting. Thawed cells were stained with a final concentration of 
10 µL ml−1 SYBR Green I fluorescent staining for 10 min, bacterial abundance quantifications were performed 
with  a FACS Canto II flow cytometer (Benton and Dickinson, USA) following methods in Gasol and Del 
Giorgio25.

Leucine incorporation assays were used to quantify heterotrophic bacterial productivity, following the cen-
trifugation protocol outlined in Smith and Azam26. Triplicate 1.2 mL samples received a saturating concentration 
(40 nmol l−1) of 3H-Leucine (Perkin–Elmer, specific activity = 169 Ci mmol−1). The addition of 120 μL of 50% 
trichloroacetic acid (TCA) 10 min prior to isotope addition established controls. Microcentrifuge tubes were 
incubated in the dark at in situ temperature for 1 h. Leucine incorporation in triplicate samples was stopped 
with the addition of 120 μL ice-cold 50% TCA. Subsamples and controls were kept at − 20 °C until centrifuga-
tion (at ca. 12,000g) for 20 min, followed by aspiration. Finally, 1 mL of scintillation cocktail was added to the 
microcentrifuge tubes before determining the incorporated radioactivity after 24–48 h on a Tri-Carb® Liquid 
Scintillation Counters scintillation counter (Perkin–Elmer) with quenching correction.

Statistical analyses.  Beta-diversity was explored using the Stats package, and displayed with the ggplot2, 
ggpubr, and ggbiplot packages 24,27,28. Findings were corroborated with phyloseq package generated NMDS plots. 
Dissimilarities were calculated with the vegan package vegdist() function using Bray-Curtis distances 29. Vegan 
package (version 2.5-6) mantel tests, ANOSIM, and PERMANOVA tests assessed multi-group correlations, 
while Wilcoxon tests were used to compare two groups.

Results and discussion
The present study was carried out in six fjords within New Zealand’s Fiordland system, specifically Breaksea 
Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, Long Sound, and Wet Jacket Arm, as described in Tobias-
Hünefeldt et al.15. Analyses were divided into three categories: (1) a multi-fjord analysis comprising five of the 
tested fjords (excluding Long Sound), (2) a high-resolution study along Long Sound’s horizontal axis, and (3) a 
depth profile of Long Sound’s deepest location (at 421 m). These categories were established to identify trends 
across multiple fjords, and then test the trends using a fjord analysed at a higher resolution. Total community 
composition (via 16S and 18S rRNA gene sequencing) and metabolic potential did not significantly covary across 
the five studied fjords (Mantel, r < 0.01, P = 0.47), Long Sound’s horizontal transect (Mantel, r < 0.01, P > 0.05) 
(Fig. 1), or Long Sound’s depth profile (Mantel, r < 0.22, P > 0.05) (Fig. 2). However, depth covaried with com-
munity structure for five studied fjords (Fig. S1), across the horizontal transect at Long Sound (Figs. S2, S3), 
and along Long Sound’s depth profile (Fig. 2).  Microbial communities differed significantly between the surface 
and 10 m  (Mantel, Multi-fjord—r = 0.21, P < 0.01, Transect—prokaryotes r = 0.47, P ≤ 0.01, eukaryotes r = 0.56, 
P < 0.01), as opposed to changes along the fjords horizontal axis (Mantel, Multi-fjord—r = 0.08, P = 0.04, Tran-
sect—prokaryotes r = 0.21, P = 0.01, eukaryotes r = 0.13, P = 0.07) (Figs. S2, S3, S4). Significant depth dependent 
metabolic potential differences could also be identified at the regional (multi-fjord; Anosim: R = 0.10, P = 0.03) 
and individual fjord scale (Anosim: R = 0.27, P ≤ 0.01) (Fig. 1).

Across the fjords (excluding Long Sound), surface samples were more metabolically active (i.e., average meta-
bolic rate [AMR]) compared to the 10 m samples (Wilcox test, W = 425, P < 0.01), and samples closer to the fjord 
head displayed increased metabolic rates (Wilcox test, W = 0, P < 0.01). Thus, metabolic variability varied with 
horizontal sampling location (Fig. 1b). While activity was not consistent along the length of Long Sound, surface 
samples in the low salinity layer were more metabolically active than those collected at 10 m (Fig. S5), although 

Figure 1.   Comparison of Biolog Ecoplates results for surface vs. 10m samples by principal component analysis 
(PCA). Surface and 10m samples compared across 5 sites. (a) Comparison of samples from a transect in a single 
site (Long Sound). (b) Text labels represent horizontal sample location (head/mouth of the fjord [a], or  Km 
from the outermost sample [b]). Ellipses represent the 95% confidence interval.
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Figure 2.   Benthic and surface influence on metabolic potential. Two potential metabolic scenarios are depicted 
(a), the metabolic rate and diversity when driven solely by photosynthetic production, and another model that 
accounts for additional benthic influences. Biolog Ecoplate plate derived Average Metabolic Rate (AMR, b), 
Community Metabolic Diversity (c), and the relative metabolic potential (e) are also shown in addition to the 
bacterial abundance and productivity (d), and taxonomic and Biolog plate derived dissimilarity (Bray–Curtis) 
from the surface (f). Different colours represent carbon source groups (e; carbohydrates are blue, carboxylic 
acids are orange, amino acids are light blue, polymers are green, phosphorylated chemicals are yellow, 
and amines are dark blue), and Bray–Curtis dissimilarity data sources (f; the 16S community is black, 18S 
community is orange, and Biolog derived metabolic potential is light blue).
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activity at 10 m between 1 and 4 km could not be measured due to sampling limitations. Heterotrophic produc-
tion (via leucine incorporation) was not significantly correlated with microbial abundance within the five studied 
fjords and Long Sounds horizontal axis (Mantel—Multi-fjord r = 0.04, P = 0.22, Horizontal r = 0.04, P = 0.32). 
Along the depth profile, prokaryotic abundance and production were significantly correlated (Mantel, r = 0.60, 
P = 0.01) exhibiting a large drop in productivity from the surface to 10 m followed by a more gradual decrease.

We hypothesized that metabolic rate and diversity would be driven by marine snow linked to photosynthetic 
primary producers at the surface (e.g. phytoplankton and macroalgae; Fig. 2a) leading to a steady decrease in 
metabolic potential as resources were depleted with increases in depth. The high-resolution depth profile was 
used to explore this topic in more detail (Fig. 2, Fig. S4). Any deviation altering the slow loss of metabolic poten-
tial would be linked to extraneous sources of nutrients uncoupled from surface activity (i.e. benthic influences, 
subsidies from land-based inputs). We observed a steady loss of metabolic diversity and rate from surface to 40 m 
(Fig. 2b,c), with sustained increases at depths from 100 m onwards. However, abundance did not follow the same 
pattern, and instead continuously decreased until 360 m (Fig. 2d). Abundance and metabolic changes over depth 
were associated with shifts in specific carbon utilization potential, where carbohydrate metabolism decreased 
from 12.7 to 6.8%, as carboxylic acid utilization increased from 12.0 to 29.5% from the surface to 360 m (Fig. 2e). 
This likely reflected the diminishing abundance of readily mineralizable substrates with depth, and the increase in 
recalcitrant sources of carbon and energy. Consistently, we also observed increases in phosphorylated chemical 
metabolism peaking at 40 and 360 m (Fig. 2e) as expected from utilization of phosphorous at the surface during 
blooms30. However, observed changes in metabolic potential did not reflect changes in prokaryotic or eukaryotic 
community composition (Fig. 2, Fig. S4), suggesting that while the community members were relatively consist-
ent past a certain depth (i.e., 10 m for eukaryotes and 40 m for prokaryotes) the metabolic potential changed 
dynamically past 100 m, regaining peak metabolic potential with proximity to the bottom (Fig. 2f). Therefore, 
we conclude that as bacterial abundance decreases with depth, the functional diversity for carbon utilisation 
increases. However, this is not due to large prokaryotic or eukaryotic community changes, but may be due to 
the utilisation of alternative metabolic pathways by the present organisms. However, it may still be possible that 
fungi play a role in the observed metabolic changes as this study did not assess their community composition. 
This study is nonetheless one of the first to consider both prokaryotic and eukaryotic community compositions 
when assessing metabolic changes within a fjord.

Our results demonstrate that metabolic potential and activity in fjords is linked to similar parameters as 
microbial community composition across surface or near surface sites. However, distinct selective pressures 
exist at aphotic sites which ultimately affect the link between phylogenetic and metabolic diversity. The observed 
patterns are contrary to the open ocean carbon pump paradigm and demonstrate that additional refractory 
sources of organic matter, including resuspension of terrestrial organic matter associated with benthic commu-
nities, are important contributors to microbial activity in fjords, which form a major marine biome worldwide 
(e.g. Patagonian, Scandinavian, Northeastern Pacific systems). We propose that this reflects the influence of the 
benthic microbial loop and incorporation and breakdown of terrestrial organic matter in fjordic sediments. Sedi-
ment resuspension can occur through a variety of abiotic31,32 and biotic sources (known as bioturbation33). The 
resuspension of organically rich sediments has previously been shown to increase microbial activity34. Observed 
patterns suggest that resuspension could also be driven by bottom feeding organisms, increasing suspended 
organic matter and its utilization in near bottom habitats35. Therefore, organic matter sources influence the 
relationship between microbial communities and their metabolic potential.

Data availability
The sequence data from this study have been deposited in NCBI under BioProject PRJNA540153. All data 
generated and/or analysed during the study is available within the GitHub repository, https://​github.​com/​SvenT​
obias-​Hunef​eldt/​Fiord​land_​2021/.
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