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Artificial intelligence‑based 
detection of epimacular membrane 
from color fundus photographs
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Epiretinal membrane (ERM) is a common ophthalmological disorder of high prevalence. Its symptoms 
include metamorphopsia, blurred vision, and decreased visual acuity. Early diagnosis and timely 
treatment of ERM is crucial to preventing vision loss. Although optical coherence tomography (OCT) 
is regarded as a de facto standard for ERM diagnosis due to its intuitiveness and high sensitivity, 
ophthalmoscopic examination or fundus photographs still have the advantages of price and 
accessibility. Artificial intelligence (AI) has been widely applied in the health care industry for its 
robust and significant performance in detecting various diseases. In this study, we validated the 
use of a previously trained deep neural network based‑AI model in ERM detection based on color 
fundus photographs. An independent test set of fundus photographs was labeled by a group of 
ophthalmologists according to their corresponding OCT images as the gold standard. Then the test 
set was interpreted by other ophthalmologists and AI model without knowing their OCT results. 
Compared with manual diagnosis based on fundus photographs alone, the AI model had comparable 
accuracy (AI model 77.08% vs. integrated manual diagnosis 75.69%, χ2 = 0.038, P = 0.845, McNemar’s 
test), higher sensitivity (75.90% vs. 63.86%, χ2 = 4.500, P = 0.034, McNemar’s test), under the cost of 
lower but reasonable specificity (78.69% vs. 91.80%, χ2 = 6.125, P = 0.013, McNemar’s test). Thus our 
AI model can serve as a possible alternative for manual diagnosis in ERM screening.

Epiretinal membranes (ERMs) are the abnormal formation of non-vascular cellular or fibrous membrane at 
the inner layer of  retina1. Typically, when the membrane locates around macular region, it is called epimacular 
membranes or premacular fibroplasis. Most ERMs are asymptomatic and remain stable or even regress automati-
cally in absence of medical  intervention2. However, there are cases that develop rapidly within months, causing 
blind spot or  scotoma3. Further contraction of the membrane may tear the retina and lead to severe outcomes 
such as retinal hemorrhage, retinal edema, or even macular  holes4,5. Reported prevalence of ERM ranges from 
3.4% to 39% in different  populations6–15. These published incidences can be under-estimated, due to difficulty 
in diagnosis of secondary ERM with the presence of primary ocular diseases.

Clinical management of ERM was observed at early asymptomatic stage or surgical intervention at late 
 stage1. Surgical removal of ERM can restore retinal structure and improve visual acuity, but there is potentially 
residual impairment of visual  function16. Better visual acuity improvements have been found with: (i) shorter 
latency between symptom onset and  surgery17; (ii) better preoperative visual  acuity17–19; (iii) less central foveal 
thickness measured by  OCT20,21; (iv) maintained integrity of retinal  structure18–20,22,23; (v) thinner ganglion cell 
inner plexiform  layer24; (vi) absence of co-existing  maculopathy25. Therefore, early detection of ERM and timely 
surgical intervention are crucial to achieving better visual outcomes.

With the high prevalence and possible severe consequence of the disease, fast and inexpensive approaches 
for ERM screening in large population are in need. Traditionally, ERMs were diagnosed and classified based on 
subjective symptoms and ophthalmoscopic  examination26. Fundus photographs provide the possibility of review 
and compare ERM at different time points. Experienced ophthalmologists are required for correct interpretation 
of retinal images. Non-invasive modern examination, such as optical coherence tomography (OCT), provides 
high-resolution structural information of live retina and has been widely used as an essential diagnostic tool 
in multiple maculopathies. Cross-sectional macula-centered OCT images provide clear and intuitive structural 
relationship of epimacular membrane and the neuroretina, and have been proved to be more sensitive than other 
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clinical examinations in ERM  diagnosis27. Furthermore, linear scanning across the macular fovea provides mul-
tiple quantifiable structural parameters including the central foveal thickness, the volume of macular edema, and 
the ERM  thickness18,21,28,29. Based on these quantifiable data, several OCT-based ERM classification systems have 
been established, contributing to a better understanding of ERM. However, the promotion of OCT in primary 
hospitals is difficult due to price issues.

Deep learning-based artificial intelligence (AI) has been widely applied in assisting detection and staging 
of common ocular disorders with distinctive features, such as diabetic  retinopathy30–33,  glaucoma34,  cataract35, 
age-related macular  degeneration36,37, and retinopathy of  prematurity38–40. Unlike the traditional coding process 
where methodology has already been established by programmers before coding, decision-making strategy is 
figured out by deep-learning algorithms throughout the coding process, which means deep learning algorithms 
may detect novel features that highly related to disease diagnosis or  staging41. AI models have shown reliable 
performance in detection of ERM based on OCT  images42,43. However, currently there is no validated AI model 
for ERM detection based on fundus photographs, which is of easier access and lower cost. In this study, we 
compared manual or AI detection of ERM based on fundus photographs with the standard diagnosis of ERM 
based on OCT and other clinical information, validating the use of AI model in assisting detection of ERM 
using fundus photographs.

Methods
Case recruitment. Total 96 successive outpatients diagnosed with ERM from 2017 October to 2019 Decem-
ber at Beijing Tsinghua Changgung Hospital were recruited in this retrospective study (Fig. 1). Their basic infor-
mation, brief medical history, fundus photographs of both eye (192 eyes) (macular-centered, by Canon CR-2 
Digital Retinal Camera (Canon, Long Island, NY, US)), and ipsilateral OCT images (vertical and horizontal cross 
section at macular, by Heidelberg Engineering OCT Spectralis (Heidelberg Engineering, Heidelberg, Germany)) 
were anonymized and acquired from the hospital information system. This study was approved by the Ethical 
Committee of Beijing Tsinghua Changgung Hospital. The Ethical Committee of Beijing Tsinghua Changgung 
Hospital waived the need for informed consent from the participants. All methods were carried out in accord-
ance with the Declaration of Helsinki and the International Ethical Guidelines for Biomedical Research Involv-
ing Human Subjects.

ERM diagnosis by OCT images. Corresponding OCT images of all recruited retinal images (including 
both ERM and non-ERM groups) were examined individually by two experienced ophthalmologists. Sex, age, 
and brief medical history of the patients were provided to the examiners in order to improve diagnostic accuracy. 
Both examiners gave binary diagnosis of ERM or non-ERM. When the two examiners reported contradicting 
diagnoses, a third specialist re-examined the corresponding OCT images and made the final OCT diagnosis. 
Figure 2D–E showed typical OCT images of ERM.

Manual and AI interpretation of fundus photographs. Fundus photographs of ERM and non-ERM 
eyes were mixed together and randomly labeled with successive numbers. Resulted retinal image set was inter-
preted independently by three different ophthalmologists without knowing the sex, age, medical history, and 
OCT result of the cases. The three ophthalmologists consist of one resident doctor, one attending, and one retina 
specialist, representing different experience levels in ERM diagnosis and management. Mixed fundus photo-
graphs set were analyzed by AI model simultaneously. Figure 2A–C were examples of visualized ERM detection 
of AI model in form of Grad-CAM44. The AI model outputs binary result (ERM or non-ERM).

Brief introduction of the AI model. The AI model used in our ERM recognition is a multiply retinal 
diseases classification model based on a deep neural network (DNN). Neural network inspired by animal and 
human visual system mimics how the human brain works in processing data and pattern abstraction. Due to its 
depth and massive layers, DNN has huge representation power to learn visual features of retinal diseases and dis-
criminate them effectively. The disease classification model adapted a novel backbone neural network that com-
bines Inception-Resnet-v245 and  Xception46 architecture. An n-way binary classification layer is added to the top 
of the backbone network, which yields the probability of each disease. Tensorflow machine learning framework 
is used in the training  model47. The AI model used in this study was previously trained with a different dataset 
consisting of 207,228 fundus photographs collected from 16 clinical settings with different disease distributions 
across China, with an average age of 40.83 ± 15.43 (registered with ClinicalTrials.gov, NCT04213430)48. It was 
annotated by an expert ophthalmologist team as 14 retinal abnormalities including ERM. Data augmentation 
methods during the training included Inception network family-related data  sampling49 and random rotation 
that imitates intrinsic similarity of fundus image. Before image analysis, any given RGB fundus photograph is 
cropped and resized into 585 × 585 square with only the region around the posterior pole reserved. After analy-
sis, the model returns a 1 × n vector whose every element represents the probability of a certain disease (ranging 
from 0 to 1). For each disease, a positive result is assigned to the image if the corresponding element exceeds the 
threshold of the disease. In this study, only the element linked to ERM was taken into consideration.

Statistical analysis. Performance of both manual and AI interpretations were calculated with respect to 
standard diagnosis based on OCT images. The accuracy of manual and AI detection for ERM were calculated 
using the equation accuracy = (TP + TN)/ALL (TP: true positive; TN: true negative; ALL: total sample size). 
Sensitivity and specificity of manual and AI detection were also calculated, using the equation sensitivity = TP/
(TP + FN), specificity = TN/(TN + FP) (TP: true positive, TN: true negative, FP: false positive, FN: false nega-
tive). Kappa (κ) statistics were used to quantify the degree of agreement comparing different individual manual 
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Figure 1.  Experimental design. (A) Inclusion and exclusion of ERM case and non-ERM sex and age matched 
group are demonstrated in the flow chart. (B) Simultaneously, mixed retinal image set were evaluated by 3 
ophthalmologists and AI model respectively. Result from manual diagnosis and AI model were compared with 
standard OCT diagnosis. ERM epiretinal membrane, BTCH Beijing Tsinghua Changguang Hospital.
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analyses, summarized manual results, AI interpretation with the standard OCT result. Statistical significance 
was considered at P < 0.05.

Results
Basic information of recruited cases. A total of 96 patients has been recruited in this study. Among 
them, 48 (50%) are female and 48 (50%) are male, with an average age of 66.75 ± 10.03 and 72.25 ± 12.09 respec-
tively (Table 1). Our reported even distribution of ERM patients in different sex groups is in consensus with 
the previously reported consistent prevalence in both male and female groups. Among all these outpatients, 69 
(71.87%) of them had symptoms of blurred vision, decreased visual acuity, or metamorphopsia. 27 (28.13%) of 
them had no obvious symptoms and the ERM was found accidentally through physical examination or during 
following up of other ocular diseases. The most frequent comorbidity in our recruited group was age-related cat-
aract. Other comorbidities include macular edema, diabetic retinopathy, retinal detachment, and macular hole.

OCT diagnosis results. Totally 96 outpatients (192 eyes) were recruited in the beginning, among which 91 
patients (182 eyes) have done OCT and were included in further analysis (Fig. 1A). All acquired OCT images 
were re-examined by retinal specialists in order to obtain standard ERM diagnosis. For all the OCT-examined 
patients, 24% of them have both eyes diagnosed with ERM. Left-eye only and right-eye only ERM took up 30% 
and 37% of the population respectively (Fig. 3).

After elimination of unclear fundus photographs due to cataracts or vitreous opacity, 153 fundus images 
from 91 patients were reserved. Among them, 144 eyes have corresponding OCT images and their diagnosis of 
ERM was re-confirmed by experienced ophthalmologists based on OCT images as well as basic information and 

Figure 2.  An example of accurate recognition of ERM in fundus photograph by AI model. (A) Grad-CAM 
image showing suspected location of ERM. (B) Original fundus photograph. (C) Merged image of fundus 
photograph and Grad-CAM. (D) Infrared fundus image of the same ERM eye, with red and green lines 
representing location of cross sectional OCT images. (E, F) Cross sectional OCT images across fovea showed 
ERM.

Table 1.  Basic information of recruited outpatients. *Independent t-test was employed between genders.

Male Female Total P value* 95% CI

Number of patients 48 (50%) 48 (50%) 96 – –

Average age 66.75 ± 10.03 72.25 ± 12.09 69.2 0.015 − 8.029 to − 2.971
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brief medical history of the patients (Fig. 1B). Eventually, 83 affected eyes and 61 non-ERM eyes were figured 
out from the image set. There is no significant difference with right or left eye between the ERM and non-ERM 
groups (chi-square test, χ2 = 0.006, P = 0.9383) (Table 2). The mixture of both ERM and non-ERM eyes was 
reserved for subsequent analysis.

Manual and AI interpretation of fundus photograph set. Three ophthalmologists analyzed 
the fundus photograph set individually. The diagnostic accuracy of the three examiners were 74.31 ± 1.82%, 
73.61 ± 1.84%, and 72.22 ± 1.87% (95% CI) respectively. Kappa tests between any two of them showed inter-
mediate to high consistency among the three individual analyses. (ophthalmologist 1 & 2: kappa = 0.631, z 
value = 7.909, P = 0.000****; ophthalmologist 1 & 3: kappa = 0.529, z value = 7.081, P = 0.000****; ophthalmolo-
gist 2 & 3: kappa = 0.669, z value = 8.157, P = 0.000****). The AI model showed higher accuracy than all three 
manual interpretations, with an accuracy of 77.08 ± 1.75% (95% CI). However, the accuracy between any oph-
thalmologists and the AI model was not significantly different. (ophthalmologist 1 vs. AI: u = 0.5495, P > 0.05; 
ophthalmologist 2 vs. AI: u = 0.6836, P > 0.05; ophthalmologist 3 vs. AI: u = 0.9482, P > 0.05; u test). The highest 
sensitivity was achieved by the AI model (75.90%), whereas the highest specificity was found in manual interpre-
tation (98.36%). Generally, diagnosis of ERM based on fundus photographs is an approach with high specificity 
(73.77–98.36%) but relatively low sensitivity (53.01–75.90%).

In order to investigate whether re-examination of the same fundus photograph would increase diagnostic 
accuracy, opinions from all three examiners were integrated. Diagnosis with most supporters was defined as the 
integrated manual diagnosis, representing the general performance of manual diagnosis. The integrated manual 
diagnosis resulted in an accuracy of 75.69%, which is slightly higher than the simple average of the manual 
accuracy (73.38%) and is higher than all of the examiners’ accuracy (Table 3). Although it is still lower than the 
accuracy of the AI model, no statistically significant difference was found between the accuracy of integrated 
manual diagnosis and the AI model. (u test, u = 0.2774, P > 0.05).

Further comparison between correct detection of ERM made by integrated manual analysis and AI model 
was shown in Fig. 4. Among all the correctly diagnosed ERM cases, 49 (73.13%) images were correctly detected 
by both manual approaches and AI model. 4 (5.97%) retinal images were diagnosed by manual approaches only, 
and another 14 (20.90%) ERM positive fundus photographs were detected by AI model only. The total number 
of the correctly categorized pictures will add up to 67 on either positive result. Therefore, taking both AI outputs 
and “manual intelligence” into consideration will obviously increase the sensitivity of diagnostic approaches. 
Comparison of correct elimination of ERM between integrated manual approaches and AI model were also 
conducted. Among all the correctly classified as non-ERM cases, 48 (85.71%) photographs were correctly elimi-
nated both manually and with the AI model. 8 (14.29%) fundus images without ERM were detected by manual 
analysis only. All non-ERM cases recognized by the AI model were successfully figured out by manual diagnosis, 
which indicates better performance of ophthalmologists in negative prediction comparing with the AI model. 

Figure 3.  Rate of affected eyes in recruited population. The above pie chart illustrated composition of recruited 
population in terms of different affected eyes diagnosed by OCT. Among 91 patients with their OCT images 
re-examined by ophthalmologists, 22 patients were diagnosed with ERM in both eyes; 27 were diagnosed with 
right-eye ERM only; 34 were diagnosed with left-eye ERM only; 8 were confirmed as non-ERM. Percentages of 
each kind were labeled next to its corresponding sector on the chart.

Table 2.  OCT diagnosis result. *OD right eye, OS left eye.

OD* OS* Total χ2 P value

ERM 43 40 83

0.006 0.9383Non-ERM 32 29 61

Total 75 69 144
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Despite the differences between the two approaches, the AI model detection and manual diagnosis still greatly 
overlapped with each other (73.13% in correct ERM detection and 85.71% in non-ERM), which further proves 
the consistency between them.

To eliminate the bias caused by imbalanced case numbers between ERM and non-ERM, the performance 
of ERM detection of the AI model was presented as receiver operating characteristic (ROC) curve and areas 
under the curve (AUC) (Fig. 5). The performance of AI model was comparable with ophthalmologists, with 

Table 3.  Detailed result of different approaches. ※ TP true positive, TN true negative, FP false positive, FN 
false negative. Compared with integrated manual diagnosis: *P < 0.05; **P < 0.01; McNemar’s test.

Ophthalmologist 1 Ophthalmologist 2 Ophthalmologist 3 Integrated manual diagnosis AI model

ERM 78 57 45 58 76

Non-ERM 66 87 99 86 68

TP※ 62 51 44 53 63

TN※ 45 55 60 56 48

FP※ 16 6 1 5 13

FN※ 21 32 39 30 20

Accuracy 74.31% 73.61% 72.22% 75.69% 77.08%

Sensitivity 74.70% 61.45% 53.01% 63.86% 75.90%*

Specificity 73.77% 90.16% 98.36% 91.80% 78.69%**

Figure 4.  Correctly categorized ERM and non ERM by manual and AI analysis.
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one operating point above, one under, and one on the ROC curve of AI model. AUC of the AI model was 
0.8566 ± 0.061 (95% CI) using OCT diagnosis as the standard diagnosis.

Evaluation of AI model in simulative clinical situation. In order to mimic the diagnosis of ERM in 
clinics, we next provided both fundus photographs and OCT results with other clinical information to 2 retinal 
specialists respectively, resulted in a comprehensive diagnosis. Diagnosis made by 2 specialists showed high 
consistency to each other (kappa = 0.795, z value = 9.603, P = 0.000****). ROC curves of the AI model using 
either specialists’ diagnosis as standard diagnosis was illustrated in Fig. 6. Comparable performance between 
AI and ophthalmologists was found in both situations, with AUC of 0.8879 ± 0.0542 (specialist 1, 95% CI) and 
0.9065 ± 0.0473 (specialist 2, 95% CI).

Figure 5.  Receiver operating characteristic curve using OCT diagnosis as standard diagnosis. Operation 
points of manual diagnosis were illustrated on the graph, in order to compare the performance between 
ophthalmologists and AI model. AUC  areas under the curve.

Figure 6.  Receiver operating characteristic curve using comprehensive diagnosis as standard diagnosis. 
Operation points of manual diagnosis were illustrated on the graph, in order to compare the performance 
between ophthalmologists and AI model. AUC  areas under the curve.
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Discussion
ERM is a retinal disease that can be commonly seen in ophthalmology clinics. Its diagnosis is mostly based on 
clinical findings. Variety of examinations have also been applied in ERM diagnosis: fluorescein angiography pro-
vides unique information for ERM diagnosis but is invasive and of more side effects; OCT, as a novel non-invasive 
imaging technique, provides an intuitive diagnosis of ERM. However, these examinations are less conducted in 
clinic than fundus photographs. Little studies have been reported comparing ERM diagnosis based on fundus 
photographs and OCT images. The only one we found in the literature reported a concordance rate of 89.13% 
between diagnosis based on non-mydriatic fundus images and OCT images in a group of 32 outpatients (46 
eyes) with suspected idiopathic  ERM50. Here we reported accuracy of ERM diagnosis based on fundus photo-
graphs between 72.22 and 74.31% (comparing with diagnosis based on OCT images), which is lower than the 
previously reported concordance rate. This may due to our inclusion of secondary ERM in the study, resulting 
in complicated fundus conditions. With a sensitivity of 63.86% by ophthalmologists, diagnosis of ERM based 
solely on fundus photographs take a huge risk of missed diagnosis. To our best knowledge, most prevalence 
and risk factor studies of ERM were based on diagnosis using fundus  photographs13. The two studies that used 
OCT-based diagnosis were in urban and rural Chinese  populations14,51, thus reported prevalence of ERM may 
be greatly underestimated in other populations.

Previously when manual labeling and AI testing were based on the same materials with manual diagnosis 
itself was set as standard diagnosis, it is impossible to prove AI is better than manual diagnosis since both sen-
sitivity and specificity cannot exceed 1. Our study used a labeling method (diagnosis based on OCT images) 
with higher accuracy than the testing method (diagnosis based on retinal images). This kind of up-level labeling 
makes it possible to draw the conclusion that AI model have better performance than manual analysis and vali-
date substitution of physicians with AI model in some conditions. Our reported AI model was based solely on 
retinal images. We expect higher sensitivity and specificity in ERM detection when further information, such as 
symptoms and medical history, are also included in AI model to improve its discrimination ability.

The application of our AI model in ERM detection, however, is not without limitation. ERM is an age-related 
disease. In other words, the prevalence of the ERM is higher in elder population. Prevalence of cataracts or 
opaque vitreous is also increased in this population, making it difficult to acquire clear retinal images. In our 
study, when unclear fundus images were eliminated, we reported an accuracy of 77.08% for AI detection. Most 
of the fundus images misclassified by AI model were of large area of darkness around macula. (Supplementary 
Figure 1). In the scenario of disease screening in population, however, when most people are healthy and have 
clear cornea, lens, and vitreous, it is easier to acquire fundus images of high quality and better performance of 
the AI model is expected. Moreover, the distribution of the disease and non-disease group of test image set in 
this study was slightly different from the dataset used in the AI model development. The average age of patients 
in this study is older, and the spectrum of the disease likely shifts to severe ERM, which makes the model tend to 
predict disease cases rather than exclude non-disease ones. This is in accord with our reported lower specificity 
of AI model (78.69%) compared with manual diagnosis (91.80%), in other words, more people without ERM 
are labeled as ERM by the AI model.

The choice of threshold of our AI model for positive prediction in this study addressed a balance between 
sensitivity and specificity. In Fig. 5, the operation points of ophthalmologist 1 and 2 are below or on the ROC 
curve of AI model, which means the model has a better or equivalent performance. For the diagnosis of oph-
thalmologist 3, although its operation point is above the curve due to higher specificity, its sensitivity is too low, 
indicating that its use is biased and limited. Furthermore, in a specific application, the model can be calibrated 
by choosing a threshold corresponding to a preferred sensitivity while achieving a comparable specificity with 
ophthalmologist’s diagnosis, and vice versa. Thus our AI model could be used as a possible alternative of accept-
able accuracy at a relatively low cost when there is difficult access to ophthalmological specialists or advanced 
examination. Another limitation of our study is that we have not validated the use of this AI model in popula-
tional screening, which could be conducted in our sequential studies.
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