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Artificial intelligence‑based image 
analysis can predict outcome 
in high‑grade serous carcinoma 
via histology alone
Anna Ray Laury1*, Sami Blom4, Tuomas Ropponen4, Anni Virtanen3 & Olli Mikael Carpén1,2,3

High‑grade extrauterine serous carcinoma (HGSC) is an aggressive tumor with high rates of 
recurrence, frequent chemotherapy resistance, and overall 5‑year survival of less than 50%. Beyond 
determining and confirming the diagnosis itself, pathologist review of histologic slides provides no 
prognostic or predictive information, which is in sharp contrast to almost all other carcinoma types. 
Deep‑learning based image analysis has recently been able to predict outcome and/or identify 
morphology‑based representations of underlying molecular alterations in other tumor types, such as 
colorectal carcinoma, lung carcinoma, breast carcinoma, and melanoma. Using a carefully stratified 
HGSC patient cohort consisting of women (n = 30) with similar presentations who experienced very 
different treatment responses (platinum free intervals of either ≤ 6 months or ≥ 18 months), we used 
whole slide images (WSI, n = 205) to train a convolutional neural network. The neural network was 
trained, in three steps, to identify morphologic regions (digital biomarkers) that are highly associating 
with one or the other treatment response group. We tested the classifier using a separate 22 slide 
test set, and 18/22 slides were correctly classified. We show that a neural network based approach 
can discriminate extremes in patient response to primary platinum‑based chemotherapy with high 
sensitivity (73%) and specificity (91%). These proof‑of‑concept results are novel, because for the first 
time, prospective prognostic information is identified specifically within HGSC tumor morphology.

Ovarian cancer is the 5th leading cause of cancer death in women in the United  States1 and other western 
countries; about three quarters of those deaths are due to high-grade serous carcinoma (HGSC)2. Extrauterine 
high-grade serous carcinomas (ovary, fallopian tube, peritoneum) are aggressive tumors with poor outcomes; 
overall 5 year survival is less than 50%1,3, and for women with advanced disease, about 25%. These tumors typi-
cally present at late stage (III–IV), and are remarkable for their genetic and morphologic  heterogeneity4; they are 
also notable for their diversity in outcome. Well-described clinical factors affecting long term survival include 
younger age at diagnosis, lower stage, and optimal surgical debulking, however, even within these strata outcome 
is  unpredictable5. Unlike many other cancer types, some patients (up to 15%) presenting with stage III–IV disease 
can survive for a decade or  beyond6,7, suggesting significant underlying biologic differences within HGSC. Until 
recently, the standard treatment for these tumors had changed very little since the 1970s, consisting of debulk-
ing surgery and platinum-based chemotherapy, with very little improvement in survival. Since 2014, poly ADP 
ribose polymerase (PARP)  inhibitors8 have been available, which work by exploiting DNA repair vulnerabilities 
in some patients, including those with BRCA mutations. Despite the ever-increasing body of knowledge on the 
role of BRCA mutations and homologous recombination (HR) deficiencies in these high grade tumors, treat-
ment response remains unpredictable and disease progression is poorly understood, even in patients presenting 
with advanced  disease9,10.

We know that in addition to PARP inhibitor sensitivity, women with BRCA mutations and HR deficiency 
are more likely to have a good response to standard  therapy11–14, though overall, treatment response is not 
entirely predictable even if the underlying mutation(s) are known. Further, HR deficiency is only present in 
about half of tumors, and testing for HRD remains a  challenge15,16; additional tools for treatment response pre-
diction are needed. While the relevance of the progression free interval (PFI) as an indicator is debatable and 
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somewhat arbitrary, women who relapse in < 6 months are considered platinum resistant, while those with a PFI 
of > 12 months are considered platinum sensitive. Only a quarter of women have a PFI of > 18 months, which 
has been reported as a conditional prognostic factor for long term  survival17; a small subset of patients experi-
ence prolonged, long term survival (≥ 7 years), but very little in the way of additional prognostic information is 
known about these  women5,18.

The variability in morphology of HGSC is notable both inter- and intratumorally; unlike many other cancer 
types a clinically useful correlation between morphology and outcome has been difficult to define. Within BRCA 
mutations and HR deficiency certain morphologic patterns have been identified more frequently, however, these 
sometimes contradictory findings have not been sufficiently discriminatory for clinical  use19–22.

The past 10 years have also brought about significant advances in digital pathology; whole slide scanning has 
become faster, computational power has increased, and data storage has become cheaper. These developments 
have made large-scale slide scanning and image analysis a reality, and allowed the development of machine learn-
ing tools to address biological questions via histology and tumor morphology. A variety of methods have rapidly 
begun to prove their potential clinical utility. Machine algorithms can perform as well as expert pathologists in 
some types of cancer  diagnosis23,24, offer additional precision at error-prone identification tasks such as metastasis 
 detection25, and perhaps most importantly, have the potential to add novel information. There is already a grow-
ing body of evidence showing that artificial intelligence-based image analysis can identify morphologic features 
in tumors which reflect underlying genetic  differences26,27, and can aid in  prognostication28,29.

Thus far, no similar studies have used whole slide images (WSI) to evaluate the utility of artificial intelligence-
based image analysis in high grade extrauterine serous carcinoma. The premise of this project is that there is an 
intrinsic difference in HGSC tumors that are refractory to therapy from the outset, and those which take much 
longer to recur. Further, we propose that some indication of this underlying difference is detectable in the tumor 
morphology by artificial intelligence, and can be used to prospectively identify these two groups of patients, a 
task not currently possible prospectively. We hypothesize that with the help of a very well curated patient series 
reflecting the extremes of treatment response, we can train a neural network to differentiate between good 
outcome and poor outcome tumors in WSI. The purpose of this work was to determine if a weakly supervised 
convolutional neural network can accurately classify high grade serous carcinoma into outcome groups using 
tumor morphology alone.

Methods
Training and testing cohorts. An initial group of more than 1000 patients diagnosed with high-grade 
extrauterine serous carcinoma and treated at HUS Helsinki University Hospital between 1982 and 2013 was 
identified using diagnostic code searches. The following clinical data were recorded; age, stage, residual disease 
after surgery (R status), treatment protocol, PFI, recurrence status and type, vital status.

The study protocol and use of all material was approved by The Ethics Committee of the Hospital District 
of Helsinki and Uusimaa (HUS: HUS359/2017); all methods were carried out in accordance with the relevant 
guidelines and regulations. The clinical material was collected under the auspices of Helsinki Biobank. At the 
time of this work, Finnish biobank legislation (Biobank Act 688/2012, https:// www. finlex. fi/ en/ laki/ kaann okset/ 
2012/ en201 20688. pdf) provided a lawful basis for the use of biobanked samples and data for scientific research 
without project-specific consent from the patients involved. For retrospective studies of remnant tissue (and 
deceased patients), specific consent was not required by Finnish law for samples obtained prior to 2013. Sample 
donors always have the right to withdraw from participation.

From this cohort, we selected patients with stage III-IV disease at presentation, who underwent primary 
cytoreductive surgery (any R status), and at least 6 cycles of adjuvant platinum-based chemotherapy. From 
this subset, we selected two distinct groups of women for inclusion in our training set; those with evidence of 
biochemical remission/response at some point during treatment (defined as CA-125 < 35 IU/ml) and either 
1) extended progression free survival (≥ 18 months, n = 13) (PFI-L) or 2) a very short time to progression 
(≤ 6 months, n = 17)(PFI-S). Time to progression was defined as the platinum free interval (PFI); the time 
between the last chemotherapy cycle to the first recurrence. Recurrence was defined as any diagnosis of recur-
rent or progressive disease; laboratory, clinical, or radiologic. Extensive clinical data, including precise treatment 
and outcome information, has been verified. For each case, archived H&E slides were reviewed, the histologic 
diagnosis was verified, and confirmatory immunohistochemical stains (WT-1, p53) were evaluated. All avail-
able H&E slides of adnexal tumor masses from the primary debulking surgery were included in the training set 
(n = 205, 2–13 per woman).

The validation test cohort (n = 22) consisted of a separate group of women with the same selection criteria as 
the training cohort; only one slide from each woman was included in the validation test set. The slide with the 
greatest amount of well-preserved tumor tissue was selected as the representative slide.

Morphologic review. The training set (n = 205 from 30 patients) and test set (n = 22) WSI were evaluated by 
a pathologist as described  previously19,20 for classic papillary features versus solid, endometrioid, and transitional 
(SET) patterns or ambiguous morphology. All slides were from adnexal masses. The predominant morphologic 
pattern (> 50%) was recorded as either classic or non-classic (including SET, ambiguous). Uniform tumor mor-
phology was also noted, and the presence of any classic papillary architecture was recorded.

Slide preparation. All slides were prepared from archival formalin fixed paraffin embedded (FFPE) tis-
sue blocks, and stained with hematoxylin & eosin (H&E) to create the whole slide images (WSI). Both archival 
and recut slides were used, depending on the condition of the original slide; if the original slide was faded or 
damaged, then recuts were obtained. The slides were digitized using a whole slide scanner; either Pannoramic 
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SCAN 150 (3DHistech, Ltd., Budapest, Hungary) with an image resolution of 0.22 μm/pixel or a Pannoramic 
SCAN 250 with an image resolution of 0.24 μm/pixel, and uploaded to Aiforia’s cloud-based platform (Aiforia 
Technologies, Helsinki, Finland).

Neural network workflow and training. All tumor WSI were uploaded to Aiforia’s commercially avail-
able cloud-based platform, and the final neural network was trained in three steps (Fig. 1a–c) and applied to the 
test set (Fig. 1d). Training parameters are presented in Supplementary Table S1 online. The logical workflow pro-
ceeded as follows. First, a human (pathologist; ARL) shows a neural network where tumors are located within 
WSI. Then, the neural network shows the human which features in the WSI associate with patient outcome 
group (PFI-S and PFI-L). The human reviews the neural network’s suggestions, focusing on regions that are 
high-confidence for association with one or the other outcome group, and then tells the neural net to refine the 
interpretation of outcome-associated features based on the human’s review.

Neural network training. Step 1 Neural network 1 (NN1), supervised learning of tumor segmentation. A 
semantic segmentation convolutional neural network was trained using hard labels for tumor regions. Manual 
pixel-level annotations were performed by a pathologist (ARL). Gross tumor regions were annotated in order to 
exclude background/benign tissue, artifacts (eg folded tissue), whitespace, and extensive necrosis. The network 
was trained with a 200 µm field of view.

Step 2 Neural network 2 (NN2), weakly supervised learning using patient outcome as the label in tumor seg-
ments. The hard labels for tumor segments of the NN1 were relabeled based on patient outcome group (PFI-S, 
PFI-L). A convolutional neural network was trained to associate tumor features with the outcome group. The 
network was trained with a 500 µm field of view.

Step 3 Neural network 3 (NN3), supervised learning based on hard labels for digital biomarkers. The output of 
NN2 was filtered based on pixel-level confidence (for association with one or the other outcome group). A digital 
biomarker is defined as a region of tumor identified by NN2 as being highly associated with one or the other PFI 
group. A mask showing only the high-confidence pixel regions (digital biomarkers) was reviewed by a pathologist 
(ARL), who curated (via manual annotation) a data set for training the new neural network. Regions identified by 
the high-confidence mask were annotated; annotations were focused viable tumor tissue and contiguous foci at 
least 200 µm in size. Regions of necrosis, stroma, tissue artifact, and blur were excluded. The neural network was 
trained with a 200 µm field of view, in replicate with identical training parameters (see Supplementary Table S1). 
The neural network learned tumor features strongly associating with the outcome group.

Step 4 NN1 and NN3 were combined in a single inference pipeline in order to run final inference with output 
for semantic segmentation of tumor (NN1) and percentage of outcome classes within the tumor region (also 
semantic segmentation). NN1 and NN3 are not integrated at the network level; NN3 inference results are filtered 
by NN1 inference results.

Step 5 Validation set testing. The combined inference pipeline was applied to the 22 slide validation test set. 
The output was visualized, and the WSI were classified according to rank order of the relative percent area of 
digital biomarkers identified within the tumors.

Statistical analysis. Descriptive statistics were calculated in Microsoft Excel (2016) and via the online 
MedCalc statistical calculator (https:// www. medca lc. org/ calc/ diagn ostic_ test. php).

Results
Cohort clinicopathologic features summary. The training set consisted of WSI (n = 205) from 30 
women; 17 in the group PFI-S (WSI n = 105) and 13 in PFI-L (WSI n = 100). The validation test set consisted of 
22 WSI from 22 women, 11 in the PFI-S group and 11 in PFI-L. The clinicopathologic features of each group are 
presented in Table 1.

Morphologic review. Ten of the 30 training set cases were noted to have a predominantly papillary archi-
tecture (Table  2), relatively evenly balanced between the PFI-S (6/17, 35%) and PFI-L (4/13, 30%) outcome 
groups. 4 tumors were notable for their uniform morphology, all of which were the non-classic SET/ambiguous 
type. Only 6 tumors lacked any identifiable classic papillary architecture, and 4 of these represent the tumors 
with uniform morphology noted above. Findings were similar for the test set cases (Table 2), despite utilizing 
only one slide per tumor, though the PFI-S group had one case with uniform classic-type architecture.

Prognosticator/classifier. We trained the classifier initially on 205 WSI of adnexal tumors from 30 women 
(Fig. 1a,b); this was followed by annotations of digital biomarkers (Fig. 1c; 178 WSI from the 30 women), which 
were used to train a new, final, neural network in replicate. In the 22 WSI validation test set, all slides had pixel 
areas identified as digital biomarkers (high-confidence pixel areas) for short PFI, and all but one slide had at least 
focal digital biomarker regions for long PFI, though the presence of PFI-L digital biomarker findings was scarce 
overall (Table 3). Representative digital biomarkers are shown in Fig. 2. 

We subsequently classified the validation test set (22 slides, 22 women) into short and long PFI groups 
(Table 3). Classification was very similar for both replicates of the neural network. Given that the absolute area 
classified as either long or short is not comparable between slides, the classifier decision is based on the relative 
percent area ratio of short to long PFI features (short/long) in rank order, with a cutoff of 30 providing the best 
fit. Replicate 2 provided a higher specificity than replicate 1; all slides misclassified by replicate 2 were also mis-
classified in replicate 1. Applying replicate 2 to the test set: 8 of 11 short PFI group samples and 10 of 11 long PFI 
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Figure 1.  Neural network training. (a) Neural Net 1. Supervised learning of tumor segmentation. Manual 
semantic segmentation annotations are performed, and the neural network learns tumor segmentation. (b) 
Neural Net 2. Weakly supervised learning, using patient outcome group as the label. Tumor annotations from 
Neural Net 1 are relabeled as PFI-S or PFI-L, and the neural network learns tumor features associating with 
the two outcome groups. (c) Neural Net 3. Supervised learning based on annotations of digital biomarkers. 
The results of Neural Net 2 are visualized and confidence filtered. Features within the high-confidence masks 
(digital biomarkers) are reviewed and new semantic segmentation annotations of these regions are performed. 
The neural net learns tumor features that are strongly associating with outcome group. (d) Combined Inference 
Pipeline. Neural Net 1 and Neural Net 3 were combined in a single inference pipeline. The neural nets are 
applied to the validation test set; output is visualized and classified. Yellow slides represent WSI classified as 
PFI-S by the neural network, with the blue star indicating the misclassified WSI. Blue slides represent WSI 
classified as PFI-L by the neural network; those with yellow stars represent misclassified slides.
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group samples were correctly classified, for a sensitivity of 73% and a specificity of 91%. The positive predictive 
value is 89%, with an overall accuracy of 82%.

In order to determine if the neural network results were due to a retrospectively apparent similarity between 
slides (either morphologic or artifactual), the three highest-scoring test set WSI (as per Table 3) for each PFI 
category were visualized and compared. No obvious morphologic or artifactual parallels were observed by 
reviewing the test set WSI visual results alongside the classification result data in Table 3. The three slides with 
the lowest ratio of short to long PFI-associated features all had SET-predominant morphology; regions identified 
as PFI-L-associated tended to have solid architecture. Of the three slides with the highest ratio of short to long 
PFI-associated features, two were predominantly SET, with one showing uniform endometrioid architecture. 
In these slides, large tumor areas (70–87%) were identified as PFI-S-associated and consisted of variable mor-
phologies: solid, endometrioid, papillary. Representative images are presented in the supplementary information 
(Supplementary Fig. S1).

Discussion
This proof-of-concept study provides evidence that a deep learning model can use H&E histology alone to predict 
the biological response of high-grade serous carcinoma to adjuvant platinum chemotherapy, using PFI as a proxy. 
Our results provide evidence that a weakly supervised convolutional neural network can discriminate extremes 
in patient outcome with high specificity. This finding is of both practical and conceptual importance, as there are 
currently no validated tissue-based prognostic or predictive markers for primary platinum-based treatment in 
use for  HGSC30. Surprisingly, and in contrast to many other tumor types, pathologist evaluation of HGSC tumor 
tissue provides almost no predictive or prognostic information beyond the diagnosis itself. This work is predi-
cated in the belief that as-of-yet unidentified clinically relevant information exists within H&E slides of tumor.

We utilized a well-curated patient cohort and selected the extremes of patient response to initial therapy in 
order to maximize the potential differences between the two groups of patients in this initial work. The specific 
time periods (≤ 6 months, ≥ 18 months) were chosen to roughly align with standard clinical definitions of plati-
num refractory/resistance and platinum sensitive, respectively, and to capture the small group of patients with 
long term  survival31. Given that the patient cohort is so tightly stratified by clinical presentation and treatment 
type, PFI is highly likely to be a relevant reflection of the biological behavior of these tumors. The carefully 
curated cohort is critical to our study design, as we know that a variety of clinical factors, such as complete 
macroscopic cytoreduction (R0 vs > R0), are associated with significant outcome differences. The ability to select 

Table 1.  Clinicopathologic features summary.

Training set Validation test set

Short PFI (n = 17) Long PFI (n = 13) Short PFI (n = 11) Long PFI (n = 11)

Age at diagnosis (years)

Mean (range) 63.6 (54–75) 64.9 (51–73) 61.6 (43–78) 61.1 (50–73)

 ≥ 64 7 8 4 5

 < 64 10 5 7 6

FIGO stage

IIIB 1 2 0 4

IIIC 12 10 10 7

IVB 4 1 1 0

R status after PDS

R0 1 3 0 2

R1 0 2 0 2

R2 16 8 11 7

PFI (months)

Mean (range) 2.8 (0–5) 46.9 (19–149) 3.6 (0–6) 41.4 (18–87)

Year of diagnosis (range) 2006–2012 2007–2013 2006–2011 2006–2013

Number of slides 105 100 11 11

Mean per tumor (range) 6.2 (1–13) 7.7 (2–12) 1 1

Table 2.  Morphologic classification of the training and testing sets.

Tumor morphology

Training set Test set

PFI-S (n = 17) PFI-L (n = 13) PFI-S (n = 11) PFI-L (n = 11)

Classic papillary (uniform) 6 (0) 4 (0) 3(1) 2(0)

Non-classic (uniform) 11 (2) 9 (2) 8(1) 9(1)

Classic foci, any amount 14 10 9 10
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Table 3.  Results and classification of validation test set replicates. Digital biomarker (DBM) area refers to 
percent of total tumor area classified as a biomarker. Outcome refers to the actual PFI group. Italicized rows are 
slides incorrectly classified by the neural network. *Does not represent true 0%.

Replicate 1 Replicate 2

Test set slide
Long- DBM 
area %

Short- DBM 
area %

Short/Long 
ratio Outcome

AI 
prediction Test set slide

Long-DBM 
area %

Short-DBM 
area %

Short/Long 
ratio Outcome

AI 
prediction

T13 9.4 4.2 0.4 Long Long T07 11.2 4.1 0.4 Short Long

T15 7.0 3.4 0.5 Long Long T15 15.8 7.4 0.5 Long Long

T17 2.3 1.8 0.8 Long Long T16 16.2 9.7 0.6 Long Long

T16 9.3 9.5 1.0 Long Long T13 8.1 7.9 1.0 Long Long

T07 5.4 7.0 1.3 Short Long T17 6.5 8.6 1.3 Long Long

T12 4.1 11.4 2.7 Long Long T14 6.2 17.0 2.8 Long Long

T08 3.6 16.0 4.4 Short Long T12 8.0 28.8 3.6 Long Long

T14 4.2 28.7 6.8 Long Long T20 4.5 18.5 4.1 Long Long

T02 1.1 12.6 11.4 Short Long T08 5.6 24.4 4.4 Short Long

T20 1.2 19.6 16.5 Long Long T02 2.4 16.3 6.9 Short Long

T18 0.9 16.9 18.0 Long Long T19 1.2 22.0 18.7 Long Long

T04 0.6 23.0 35.9 Short Short T18 1.5 38.2 25.1 Long Long

T19 0.3 11.4 36.4 Long Short T21 1.9 49.6 25.7 Long Long

T22 0.3 10.4 37.4 Long Short T03 2.2 66.5 30.2 Short Short

T03 1.2 57.5 49.6 Short Short T09 0.2 30.2 124.7 Short Short

T21 0.2 25.9 104.6 Long Short T11 0.5 78.2 146.5 Short Short

T01 0.4 72.9 166.6 Short Short T06 0.4 63.8 181.0 Short Short

T09 0.1 18.3 198.3 Short Short T04 0.3 48.9 186.3 Short Short

T06 0.1 36.4 347.1 Short Short T22 0.2 56.5 278.8 Long Short

T11 0.1 63.4 537.6 Short Short T01 0.2 87.4 374.5 Short Short

T05 0.0* 56.6 1446.4 Short Short T05 0.1 68.8 523.1 Short Short

T10 0.0* 56.5 8506.6 Short Short T10 0.0* 70.0 8150.6 Short Short

Figure 2.  (a) Representative digital biomarkers for short PFI. Each tile (970 × 996px) is from a separate training 
set WSI and separate tumor. Each tile represents a region identified by NN2 as being highly associated with 
PFI-S, and that was annotated for inclusion in NN3 training. (b) Representative digital biomarkers for long PFI. 
Each tile (970 × 996px) is from a separate training set WSI; tiles from the same tumor are indicated within boxes. 
Each tile represents a region identified by NN2 as being highly associated with PFI-L, and that was annotated for 
inclusion in NN3 training.
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carefully stratified groups of patients with different outcomes is required to isolate and focus the results on the 
most relevant tissue findings.

We hypothesized that the most relevant prognostic information would be found within the tumors them-
selves; therefore we focused our annotations and subsequent image analysis only on tumor regions and left the 
background tissue unexplored. Specific morphologic features have been described in HGSC, most notably that 
in tumors with BRCA1 and other HR pathway mutations, solid, pseudoendometrioid, and transitional (SET) 
patterns, rather than the classic micropapillary architecture, are more often  identified19,20. However, these patterns 
have not been sufficiently discriminatory to predict mutation status or treatment response. Overall, we noted that 
predominantly papillary tumors were less common than predominantly SET/ambiguous pattern tumors, and 
that tumors with a predominantly papillary architecture were evenly distributed between the short and long PFI 
groups (Table 2) in both our training and test sets. The BRCA status is unknown in nearly all cases, as it was not 
being performed clinically at the time of diagnosis; the two cases with known germline BRCA mutation status 
are both negative, and both showed predominantly papillary architecture. Similarly to previous reports, the pres-
ence of tumors with uniform morphology is uncommon, and predominantly identified in the non-classic SET/
ambiguous  group20. Our findings expand the concept of a morphological/functional relationship by providing 
an explicit mechanism for incorporating tumor heterogeneity and ambiguity into morphologic evaluation, via 
the identification of quantifiable digital biomarkers for predicting outcome. Our model has the potential to serve 
as a foundation for the development of validated systems that would provide additional prospective information 
to guide patients at the start of their treatment.

Replicate trainings of the final neural network produced very similar classifications results (Table 3) and 
identified similar-appearing digital biomarkers (high confidence pixel areas). This finding is reassuring, and 
provides support for our proposition that the findings produced by this neural network are real, rather than ran-
dom variations identified within the tumor histology. While overfitting should always be considered, our overall 
accuracy of > 80% on the independent test set indicates sufficient generalizability. The Aiforia platform does not 
currently provide for systematic review of our visual results, so the depicted morphology must be interpreted 
with caution. That said, the digital biomarker morphology (as shown in Fig. 2) appears to provide some hints; 
the findings for PFI-L tend to be more solid and pleomorphic, while those for PFI-S tend to have more papillary 
features and appear more variable overall. Future directions include closer study of these digital biomarkers to 
examine which features are most important, and to investigate what they represent. This focused study of the 
tumor cells within this extremely heterogeneous disease will direct new questions toward the underpinnings 
of HGSC treatment response and progression, and we believe that looking more closely at restricted regions 
of tumor tissue regions will prove valuable. Others have also shown that neural networks have the potential to 
address the role of tumor morphology in serous  carcinoma32; our work considers this question purposefully by 
specifically addressing only high grade serous carcinoma, and using a patient cohort that has been appropriately 
verified and stratified for an up-to-date diagnosis, staging, and PFI status.

It is interesting to note that within these remarkably heterogenous tumors, digital biomarkers for PFI-S pre-
dominate and were identified in all WSI. Relatedly, almost all WSI had at least focal PFI-L-associated regions. 
Though these findings must be interpreted with caution as the results are directly related to the gain used to 
visualize the output, they are intriguing. The idea that all tumors have “good outcome” and “poor outcome” 
regions is consistent with the concept of genetic heterogeneity in serous carcinoma, and this technique has the 
potential to provide a mechanism for assessing the relative proportions quickly and in a clinically relevant man-
ner. In the future, these findings provide a solid foundation for investigation via spatial transcriptomic techniques 
to identify and confirm differences in gene expression between the digital biomarker regions, and especially to 
investigate differences between the PFI-L and PFI-S digital biomarkers.

There are several limitations to this pilot study. First, the sample size is small; verification of the accuracy 
of the model will need testing on a much larger sample size, and an external patient cohort. Second, molecular 
testing of ovarian tumors was not routinely performed on clinical samples in Finland during the time these 
samples were obtained, and therefore this information is lacking. While this is not critical to the performance 
of the classifier, a clinical tool would require this additional information to be most useful. Third, our samples 
were restricted to adnexal tumors, leaving omental tumor morphology unexplored and potentially limiting 
the neural network generalizability. Fourth, although the methods used in the study are not black-box as users 
can always verify neural networks results visually in Aiforia, deeper understanding of the histological features 
associated with the outcomes requires further studies. Despite these limitations, this work provides substantial 
evidence that a neural network is able to provide clinically relevant additional prognostic information to guide 
the prospective care of patients with HGSC carcinoma.

Our findings are in keeping with the emerging body of literature in other cancer  types26,27,33, indicating that 
neural networks are able to extract additional clinically relevant information from routine H&E slides. Our 
study is unique among the literature in the sense that sophisticated prognostication and histomorphology-based 
predictive and prognostic biomarkers are not currently available to HGSC patients. This work shows, for the first 
time, that deep learning neural networks can discriminate extremes in patient outcome in high grade extrauterine 
serous carcinoma using tumor histology alone.

Data availability
The data that support the findings of this study are available from the Helsinki Biobank but restrictions apply 
to the availability of these data, which were used with permission for the current study, and are not publicly 
available. Data are however available from the authors upon reasonable request and with permission. The image 
analysis data and the AI model’s results are available at cloud.aiforia.com upon reasonable request and with 
permission.
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