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Macroscopic and deterministic
quantum feature generation
via phase basis quantization
in a cascaded interferometric
system

Byoung S. Ham

Quantum entanglement is the quintessence of quantum information science governed by quantum
superposition mostly limited to a microscopic regime. For practical applications, however,
macroscopic entanglement has an essential benefit for quantum sensing and metrology to beat

its classical counterpart. Recently, a coherence approach for entanglement generation has been
proposed and demonstrated in a coupled interferometric system using classical laser light, where
the quantum feature of entanglement has been achieved via phase basis superposition between
identical interferometric systems. Such a coherence method is based on the wave nature of a photon
without violating quantum mechanics under the complementarity theory. Here, a method of phase
basis quantization via phase basis superposition is presented for macroscopic entanglement in an
interferometric system, which is corresponding to the energy quantization of a photon.

Quantum entanglement' has been understood as a mysterious entity in quantum mechanics over the last century
limited to a microscopic regime governed by quantum superposition between two or more particles. Quantum
entanglement has been implemented for various potential applications of quantum information science such as
quantum computation®~®, quantum cryptography®, and quantum sensing®~'?. In quantum sensing and quan-
tum metrology, higher-order entangled states gives a great benefit due to correlated photon (atom) number-
proportional sensitivity and imaging resolution. Although the higher-order entangled states, i.e., a NOON state,
has been demonstrated for the photonic de Broglie waves (PBWs)!3-'*, its potential applications for quantum
sensing have still been limited by the lower N number'®. The inevitable limitation for the N number is due to
probabilistic post-measurement process for coincidence detections confined by Poisson statistics or x *) nonlinear
processes, where the N-photon detection probability in Poisson statistics is proportional to e V. The higher-order
entangled photon generation by x @ is even worse.

Complementarity theory or wave-particle duality is the core concept of quantum mechanics resulting from
Copenhagen interpretation for a single particle'. Thus, energy quantization of the particle nature of a photon
is incompatible with phase quantization of the wave nature. The energy quantization-based interpretation of
quantum mechanics results in a phase information-independent measurement technique in a coupled system for
such as anticorrelation, the co-called Hong-Ou-Mandel (HOM) dip'’, and Bell inequality violation'® for nonlo-
cal correlation between the paired particles. In an interferometric system of a Young’s double-slit system or a
Mach-Zehnder interferometer (MZI), a single photon-based interference fringe is explained by self-interference
satisfying the wave nature of Copenhagen interpretation. Such a wave property of a single photon is related with
self-interference of a single photon under the Born’s rule'®, and a related quantum test tool has been suggested
by Sorkin in 1970s*. As claimed by Dirac* and Feynman?®*, a photon never interferes or interacts with others
but itself**. The concept of self-interference has expanded into a multi-photon-multi-slit system, where bipartite
correlation is a part of it*.

Recently, wave nature-based quantum mechanical interpretations have been presented to understand funda-
mental physics of deterministic quantum feature generation for such as anticorrelation (a HOM dip)* and PBW
in the name of coherence de Broglie waves (CBWs)%. For both cases, experimental demonstrations have also been
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Figure 1. Schematic of macroscopic entanglement generation via path superposition of coupled
interferometers. ¢ = 27’_’AL1; Y= %’ALZ.

followed by using coherent photons of an attenuated laser light”” and a typical laser itself without attenuation,

respectively. The wave nature approach for quantum features leads to an intrinsic property of determinacy in
quantum feature generation, where phase-dependent anticorrelation has been analyzed for a typical spontaneous
parametric down conversion-based HOM dip result®. According to the particle nature-based quantum interpre-
tations, all measured HOM dips so far have no phase information between the paired photons. Regarding CBW,
tensor product-based phase bases of bipartite photons in a coupled MZIs have been investigated for the origin
of quantum feature, whose image resolution is enhanced by the number of MZIs. In CBWs, thus, the resulting
phase bases can be interpreted as phase quantization, which corresponds to energy quantization of a NOON state
in PBWs. Here, a fundamental physics of CBWs in an n-coupled MZlIs is investigated for a general understand-
ing as to what caused such a nonclassical feature and how to generate it. This understanding on CBWSs paves a
road to macroscopic quantum sensing based on phase quantization in a coupled interferometric system. In this
case, the phase control of each MZI for CBWs is compatible with coincident photon number detection in PBWs.

Results

Figure 1 shows a schematic diagram of an n-coupled MZIs for the macroscopic quantum feature of CBW's based
on the on-demand phase control of ¢ and . For this, the basic building block is denoted by n=1, where the
paired MZIs having a common phase ¢ are coupled via a dummy MZI with the phase s (see the colored MZIs).
In Fig. 1, both phase and intensity fluctuations of the coherent field E, do not affect the final outputs, resulting
in a robust quantum system. This is due to the BS matrix, where the split fields “1” and “2” in Fig. 1 are equal in
measurements due to the Born’s rule of probability amplitudes'®, where the BS always results in the fixed phase
difference of 5 and the same intensity ratio between the split fields*. According to MZI physics, the output fields
of the first g— MZI via the dummy MZI (red) in Fig. 1 are given by:

Br] =2l i(l4en) —(1-ev) || 0

where the outputs are deterministic according to the phase basis of ¢ € {0,7}. The input field is coherent
light from a typical laser: Eo(r,t) = |E0|ei(k°'*2”f°t). From Eq. (1), the corresponding intensities represent a
classical bound governed by the Rayleigh criterion or a diffraction limit, whose maximum image resolution is
A/2, in which the A is the wavelength of the input field E, (see the upper panels of Fig. 2):

Iy

S = cos g, 2)

1
Ig E(l + cos ¢)Ip, (3)

where Iy = EoEj. Unlike previous analysis with asymmetric coupling between ¢— MZIs with an opposite
position of AL; between n=1 and n=2 MZIs*, Fig. 1 is set for the same AL, representing identically paired ¢
-MZIs, while an asymmetric { is applied for the path superposition between them. In both cases, the asymme-
try between neighboring MZIs is the essential condition of CBWs, where the  positions results the identical
output relation for { = % due to cos(mw) = cos(—m) (see Fig. 2 and Sections A and B in the Supplementary
Information). The diffraction limit as a classical bound in a typical MZI is clearly shown by the phase resolution
of 5 (or ) in the upper right panel in Fig. 2.

For the doubly coupled MZIs via the asymmetric \ in Fig. 1, the output fields are represented as:
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Figure 2. Numerical calculations for Fig. 1. Upper panels: n=1. Lower panels: n=2. (third column) Blue dotted
and red curves: |y = £7. Black dotted (solid) line: I, (I) for ¢ = 0.
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where the corresponding output intensities of Eq. (4) are as follows (see the Supplementary Information):

Iy = [1 + cos @? + sin ¢? cos 1//], (5)

N | =

1
Iy = 1[(1 — 05 2¢)(1 — cos ¥)]. (©)

From Egs. (5) and (6), the following analyses are conducted for the {— basis control (see the lower right
panel in Fig. 2):

(i) Fory =0,

The output intensities of I, and I are ¢ independent, resulting in a fixed intensity as shown by the
black dotted and solid lines for I4 = Iy and Iz = 0, respectively (see the third column of Fig. 2). This
identity relation results from double unitary transformations of CBWs for n=2, and has been applied
for a new type of quantum cryptography in the name of ‘unconditionally secured classical key distribu-
tion (USCKD)*. Each ¢-MZI plays a role of unitary transformation, where the dummy {-MZI reverses
its time evolution of the wave function, resulting in identity relation in the final outputs through the
followed ¢-MZI (see Sect. 1 of the Supplementary Information of ref. *°). The USCKD can be explained
as follows: The orthogonal phase basis choice of ¢ € {0, 7} assigned to Bob and Alice in the first and
second ¢-MZIs, respectively, in Fig. 1 results in the identity relation between the input and output fields
for = 0, as shown in Fig. 2. This is the deterministic randomness of USCKD, where the randomness
results in the unconditional security via MZI superposition™®.

(i) Foryr = 4,

The output intensities are ¢ dependent, resulting in a swing property between the classical and quan-
tum bounds: Iy = Iy(1 + cos2¢)/2 and Iy = Iy(1 — cos 2¢)/2. In this case, the modulation term of
cos 2¢ cannot be obtained by classical physics limited by the Rayleigh criterion, which corresponds to
a doubly increased frequency of E,. With a proper basis choice of s € {0, 7}, thus, the phase resolution
of output intensities is doubled due to the cos 2¢ term as shown in the third column of Fig. 2. This MZI
superposition-based nonclassical feature is called CBW?*?%, where CBW is a wave version of quantum
mechanics, corresponding to the particle version of PBW (discussed in Fig. 3)'*. The interference fringe
in the bottom row of Fig. 2 is completely different from multi-wave interference, e.g., Fabry-Perot, in
classical physics. Thus, each fringe either I, or Iy behaves such as frequency doubled laser light, i.e., 1,/2
or 2fp. Unlike the particle nature-based PBWs, the wave nature-based CBWs result from the path super-
position between identical ¢-MZIs via the dummy {-MZI. The role of {-MZI for the nonclassical feature
generation in Egs. (5) and (6) is discussed below. Due to the wave nature, macroscopic entanglement
of CBWs is also an inherent property, where the photon number does not affect the quantum feature.
The direct proof of entanglement between bipartite entities has been done by either a HOM dip or Bell
inequality measurements. The nonclassicality of CBW between “3” and “4” in Fig. 1 is demonstrated in
Fig. 2 for y = £ (see Fig. 3).

(iii) Foryr = +m/2,
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Figure 3. Numerical calculations for normalized intensity product R;; for Fig. 2. (a) Rap. (b) Ryp. (€) Rep for
¥ = £7. (d) Ry for ¥ = £ (red), ¥ = 0(dotted), = £ /2(black).
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Figure 4. Numerical calculations for the output field intensity I{" for different n in Fig. 1.

The output intensities are ¢ dependent but do not reach the nonclassical bound, where the phase reso-
lution fluctuates across the diffraction limit (details are analyzed in Fig. 3): I4 = Ip(1 + cos¢?)/2 and
I4 = Ip(1 — cos @) /4. Neither a single MZI nor a coupled MZI reaches the quantum state without proper path
superposition®!.

In a short summary, the cos 2¢ modulation term in case (ii) for = £ shows a definite quantum feature
beating the classical limit of Rayleigh criterion in image resolution, where the MZI coupling method in Fig. 1 is
via path (phase) superposition rather than conventional photon superposition in PBWs. Thus, the function of
P-controlled superposition between two identical 9-MZIs decides whether the coupled system works for a clas-
sical one or a quantum one. The anticorrelation or entanglement condition is satisfied with a proper phase-basis
choice®"*2. To function as a quantum system, the phase-basis choice must be g5 € {0, %, 7, 37” } for a coupled
MZI as shown in the lower right corner of Fig. 2 . Here, the Z and 2Z phase bases are newly created via double
MZI coupling process in Fig. 1, where the phase basis quantization is ¢, = 7/n (discussed in Figs. 4 and 5).

Figure 2 shows numerical calculations for Fig. 1, where the upper panels are for a single MZI (n=1) as a
classical reference, while the lower panels are for a coupled ¢-MZI via a dummy -MZI (n =2) for CBW. For the
single MZI, the phase resolution is limited by the Rayleigh criterion at A9 /2. In the doubly coupled MZI, however,
the phase resolution strongly depends on the choice of phase basis of » € {0,7}. If { = 0, the coupled system
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Figure 5. Numerical calculations for the output field intensity I /g") for different n in Fig. 1.

behaves as a perfect correlation system as shown by the dotted (solid) line in the lower right panel. If {y = %,
the coupled system swings between the quantum and classical bounds depending on ¢-basis (discussed in Fig. 3).

Figure 3 shows normalized intensity product R;j (= 4L;;) for Fig. 2. Figure 3a and b show the product R;as
functions of ¢ and . Figure 3c and d are the details of Fig. 3a and b, respectively, where Fig. 3¢ represents the
Rayleigh criterion as the conventional coherence limit in a single MZI comparable to N =2 in the PBW'>!4, The
modulation frequency of R, in Fig. 3d varies between the classical and quantum bounds depending on \ values
as analyzed above in Fig. 2. For » = 0 (see the dotted line in Fig. 3d), Rap = 0 demonstrates an extreme bound
of anticorrelation, representing a reversible process applied for USCKD. In other words, the output direction
in the doubly coupled MZI of Fig. 1 is predetermined depending on the \ basis via double unitary transforma-
tions. If y = %, R,z swings between the quantum and classical bounds depending on the ¢ values (see the red
curve), resulting in a quantum feature with A/8 phase resolution, which is equivalent to the N=4 in PBWs'“.
For the quantum sensing of CBWs, however, the output fields I, and Iz do not need to be multiplied via an AND
gate, where this AND gate operation of coincidence measurements is a necessary step for PBWs.

If ¢ = £7/2, it belongs somewhere between the classical and quantum bounds (see the green curve in
Fig. 3d), partially violating the classical limit. Unlike the conventional understanding, coherence control by the
dummy {-MZI for the coupled ¢-MZIs in Fig. 1 functions as a decision maker for either a classical system or
a quantum system. The major discovery in this manuscript is that entanglement is a deterministic feature for
CBWs. Thus, the quantum feature of the present CBWs in a classically coupled MZI system can be manipulated
deterministically and macroscopically via path superposition. This macroscopic and deterministic nonclassical
property of CBWs do not violate the wave-particle duality in quantum mechanics®.

For generalized CBWs in a 2n-coupled ¢ — { MZI system satisfying the CBW condition with {y ==+, the
following general output fields are obtained using Eq. (4) (see Sections A in the Supplementary Information):

(n) i . i
Eo | a1\ [ (1+D"e™) i(1—(=1)"e™) || Eo
|:Eﬂ:| —( 1) (2) |:_i(1_(_1)nein¢z) (1+(_1)nein<p) BE (7)
The respective output fields intensities of Eq. (7) are as follows (see Figs. 4 and 5):

I = %10 [1+ (=1)"cos (np)], (@)

" 1 n
I = So[1 = (=1)" cos (ng)]. ®

In Egs. (8) and (9), the required condition for the quantum feature of anticorrelation® is ¢ = :i:m—n” (m=0,1,2,
..., 11), as shown in Figs. 4 and 5. Under this condition, the phase resolution of each output field is §¢, = 49/2n.
Thus, quantum sensing is satisfied for alln > 2 to beat the classical limit of 49/2. As a result, the principal phase
bases of the n-coupled MZIs are 0 and v /n, where 77 /n represents the phase basis quantization. This is the phase
quantization of CBWSs corresponding to energy quantization in the particle nature of a photon for PBWs. This
relation is bedrock to the enhanced phase resolution in the CBWSs represented by Acgw = d9/2n 22532 As is
well understood, the enhanced phase resolution results from the tensor product between n-bipartite MZIs*2. A
proper superposition for the tensor product plays a critical role as shown in Figs. 2, 3, 4 and 5.

The normalized intensity product Rgg is given by (I(g") Ié”)) JIo)%:

w _1
Ry = 5(1 — cos 2ng). (10)

Unlike the particle nature of photons heavily depending on measurement trials®'%, the average value in
Eq. (10) is for a single shot measurement owing to the collective feature. For single shot measurements, mul-
tipartite entanglement generation has also been performed in a collective atomic ensemble*>. For the CBW
measurements, phase stabilization of the MZI system is a prerequisite, where such MZI stabilization has already
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been satisfied even for a km range of MZI system?*. Thus, the phase resolution in the n-coupled MZI system of
Fig. 1 is enhanced by a factor of n, where n=1 is for the Rayleigh criterion or diffraction limit in classical physics
(see Fig. 3c). Considering that the intensity correlation of coherent lights is g (0) = 1 due to Poisson statistics,
the normalized intensity product in Eq. (10) violates the Poisson statistics-based classical result if ¢ = 4" under
the coupling condition of s = £m. A detailed method for intensity correlation g@ < 0.5 satisfying quantum
features has been discussed in refs. * and *!, where application of randomness results in uniform output fields in
average values of each final port, but distinctive fringe of anticorrelation (¢'» < 0.5)in their products.

Conclusion

In conclusion, quantum features of CBWs were analyzed in a coupled interferometric scheme of MZIs via path
superposition control, where the asymmetric coupling method via a dummy MZI plays an essential role. Most
of all, the generated quantum features were deterministically and macroscopically controllable for on-demand
quantum feature generations. In addition, such deterministic and macroscopic entanglement generation tech-
nique was linearly scalable for higher-order quantum features corresponding to NOON states. Unlike the general
understanding of entangled photon pair-based nonclassical features such as a HOM dip and Bell inequality
violation, coherent light could generate the same quantum features of CBWSs via path superposition among
asymmetrical coupled identical MZIs. These quantum features of CBWSs beating classical limit of Rayleigh
criterion were originated in the phase basis quantization resulting from coupled MZIs, where the asymmetric
coupling plays a key role. The enhanced phase resolution for n > 2 is a direct evidence of the quantum feature
for the CBWSs based on the wave nature of photons in a n-coupled MZIs. For potential applications of CBWs,
a quantum sensor with coherent light can be implemented in a phase controlled Si-based waveguide structure.

Methods
The numerical calculations in Figs. 2, 3, 4 and 5 were performed by Matlab using the equations in the text. The
data that support the findings of this study are available from the corresponding author upon reasonable request.
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