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Multimodal deep learning models 
for the prediction of pathologic 
response to neoadjuvant 
chemotherapy in breast cancer
Sunghoon Joo1,4,5, Eun Sook Ko2,5, Soonhwan Kwon1, Eunjoo Jeon1, Hyungsik Jung1, 
Ji‑Yeon Kim3, Myung Jin Chung & Young‑Hyuck Im2,3*

The achievement of the pathologic complete response (pCR) has been considered a metric for 
the success of neoadjuvant chemotherapy (NAC) and a powerful surrogate indicator of the risk of 
recurrence and long‑term survival. This study aimed to develop a multimodal deep learning model that 
combined clinical information and pretreatment MR images for predicting pCR to NAC in patients with 
breast cancer. The retrospective study cohort consisted of 536 patients with invasive breast cancer 
who underwent pre‑operative NAC. We developed a deep learning model to fuse high‑dimensional MR 
image features and the clinical information for the pretreatment prediction of pCR to NAC in breast 
cancer. The proposed deep learning model trained on all datasets as clinical information, T1‑weighted 
subtraction images, and T2‑weighted images shows better performance with area under the curve 
(AUC) of 0.888 as compared to the model using only clinical information (AUC = 0.827, P < 0.05). Our 
results demonstrate that the multimodal fusion approach using deep learning with both clinical 
information and MR images achieve higher prediction performance compared to the deep learning 
model without the fusion approach. Deep learning could integrate pretreatment MR images with 
clinical information to improve pCR prediction performance.

Neoadjuvant chemotherapy (NAC) is increasingly used in the management of early and/or locally advanced 
breast  cancer1. NAC has the following potential benefits for breast cancer therapy: preventing micrometastasis 
preoperatively to increase overall survival, downsizing tumors to make surgery feasible, and providing in vivo 
assessments of sensitivity to a  chemotherapy2–4. After NAC, the achievement of the pathologic complete response 
(pCR) has been considered a metric for the success of NAC and a powerful surrogate indicator of the risk of 
recurrence and long-term  survival5,6.

Recently, many studies have been conducted to find clinical and pathologic features to predict pCR prior to 
the  NAC7–9. As a monitoring tool, breast magnetic resonance (MR) imaging has been shown to be most effec-
tive in predicting response to  NAC10. Recently, several studies using radiomics methodology in which features 
were extracted in the computational method from breast MR images measured after the first cycle of NAC or 
even pretreatment have shown promise in predicting  pCR11–13. However, radiomic studies have limited values 
because of the reproducibility issue of radiomics features, which could be affected by different radiomics software 
or MR acquisition parameters.

To overcome the limitations of previous studies, deep learning could be applied. The deep learning method 
extracts all possible features from a dataset by learning its representation with minimal human  intervention14. 
In medical image analysis, convolutional neural network (CNN) has shown high performance in classification 
and segmentation  tasks15–18. From breast MR images, several attempts with deep learning methods have been 
conducted to predict pCR to NAC in patients with breast  cancer19–21. Recent studies have reported that the per-
formance of the deep learning model is improved when the fusion approach that integrates features from MR 
images which have different views, scales, or acquisition protocols, and even clinical information was applied 
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in diagnosing breast  cancer15,22–24. However, previous studies were conducted with a relatively small number 
of patients or limited clinical information or using just a few select images not covering the entire tumor. This 
provokes the need of an in-depth research of the application of deep learning to fuse MR images with clinical 
information for predicting pCR to NAC in patients with breast cancer.

This study aimed to develop a deep learning model to fuse high-dimensional MR image features and the 
clinical information for the pretreatment prediction of pCR to NAC in breast cancer. We designed the architec-
ture of deep neural network that combined ResNet-50 with 3D CNNs for MR images and fully connected (FC) 
layers for clinical information.

Results
Patients’ outcome and characteristics. Table 1 shows the general characteristics of the patients enrolled 
in this study. Overall, there were 133 (24.8%) and 403 (75.2%) patients with and without pCR, respectively. More 
than half of the patients were ER negative (n = 299, 55.8%), PR negative (n = 342, 63.8%), and HER2 negative 
(n = 359, 67.0%). Most patients were treated with AC-T regimen (n = 367, 68.5%).

Model performance for predicting pCR. To determine the training and validation sets, the entire patient 
group was randomly divided into the training set (n = 429) and validation set (n = 107). There was no significant 
difference between the training and validation sets, except in T stages (P = 0.047) (Supplementary Table S1). The 

Table 1.  General characteristics of the study population. *For ER and PR, the Allred scores (0–8) are used in 
the actual training and validation procedures. For convenience, they are dichotomized in this table.

Total
(N = 536 patients)

pCR
(N = 133 patients)

Non-pCR
(N = 403 patients) P value

Age (y)

Mean (± standard deviation) 45.22 (± 9.91) 46.13 (± 10.13) 44.92 (± 9.82) 0.222

CA 15–3 (U/mL)
0.024

Mean (± standard deviation) 17.52 (± 23.59) 13.53 (± 15.41) 18.84 (± 25.61)

ER (n, %)*

Positive 266 (49.63) 51 (19.17) 215 (80.83)
0.002

Negative 270 (50.37) 82 (30.37) 188 (69.63)

PR (n, %)*

Positive 209 (38.99) 31 (14.83) 178 (85.17)
 < 0.001

Negative 327 (61.01) 102 (31.19) 225 (68.81)

HER2 (n, %)

Positive 177 (33.02) 65 (36.72) 112 (63.28)
 < 0.001

Negative 359 (66.98) 68 (18.94) 291 (81.06)

Pathologic diagnosis (n, %)

IDC 481 (89.74) 127 (26.40) 354 (73.60)
0.012

Others 55 (10.26) 6 (10.91) 49 (89.09)

Ki-67 (n, %)

1 + 102 (19.03) 14 (13.73) 88 (86.27)

0.002
2 + 179 (33.40) 44 (24.58) 135 (75.42)

3 + 128 (23.88) 30 (23.44) 98 (76.56)

4 + 127 (23.69) 45 (35.43) 82 (64.57)

Clinical T-stage at diagnosis (n, %)

cT1 26 (4.85) 12 (46.15) 14 (53.85)

 < 0.001
cT2 288 (53.73) 86 (29.86) 202 (70.14)

cT3 178 (33.21) 25 (14.04) 153 (85.96)

cT4 44 (8.21) 10 (22.73) 34 (77.27)

Clinical N-stage at diagnosis (n, %)

cN0 42 (7.84) 12 (28.57) 30 (71.43)

0.032
cN1 108 (20.15) 38 (35.19) 70 (64.81)

cN2 230 (42.91) 50 (21.74) 180 (78.26)

cN3 156 (29.10) 33 (21.15) 123 (78.85)

NAC regimen (n, %)

AC-T 367 (68.47) 75 (20.44) 292 (79.56)

 < 0.001
ACTH 131 (24.44) 51 (38.93) 80 (61.07)

AC-T & Platinum 15 (2.80) 4 (26.67) 11 (73.33)

AC 23 (4.29) 3 (13.04) 20 (86.96)
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performances are shown in Table 2 and Fig. 1. We found that the deep learning model trained on the dataset that 
contained paired T1-weighted (T1W) subtraction images, T2W images, and clinical information demonstrated 
the highest accuracy for predicting pCR in the validation set (area under the curve [AUC] = 0.888). The clinical 
information-trained deep learning model achieved a validation AUC of 0.827. Comparison of AUC showed a 
significant difference between the two models (P < 0.05). We investigated the relative importance of each clini-
cal information as input on the performance of the deep learning model. Supplementary Figure S1 shows the 
importance of each clinical information to the deep learning model. The type of NAC regimen and Ki-67 level 
showed relatively high importance compared to other features in the clinical information. The performance 
in predicting pCR of the model trained on the dataset with T1W subtraction images and clinical information 
(AUC = 0.848) was higher than that of the model trained on only clinical information. According to the ROC 
curve for these three deep learning models in Fig. 1A, the performance of the deep learning models improved 
with the type of data used for training. Confusion matrices include information about actual and predicted clas-
sifications for models (Supplementary Figure S2).

Figure 1B shows that ROC curves for the deep learning models in the validation set according to different 
scenarios. The deep learning model trained on T1W subtraction images and that on T2W images achieved an 
AUC of 0.725 and 0.663, respectively. When using cropped T1W subtraction images for the lesion as the dataset, 
the performance reduced with an AUC of 0.624. Compared with the deep learning model trained on uncropped 
T1W subtraction images, there was significant difference in AUC (P < 0.05). Compared to all deep learning 
models trained with single MR imaging sequence, the model that integrated T1W subtraction and T2W MR 
images had a higher prediction performance (AUC = 0.745).

Table 2.  Performance of seven deep learning models in a validation dataset in predicting pCR. * Statistically 
significant difference (p < 0.05) compared to Clinical information. # Statistically significant difference (P < 0.05) 
compared to T1W subtraction image.

Input modality AUC (S.E.) Accuracy Sensitivity Specificity PPV NPV

Clinical information 0.827 (0.027) 0.785 0.848 0.757 0.609 0.918

T1W subtraction image 0.725 (0.031) 0.718 0.314 0.907 0.601 0.748

T2W image 0.663 (0.033) 0.709 0.457 0.824 0.537 0.773

Cropped T1W subtraction image for lesion (56 × 56 × 12) 0.624# (0.033) 0.700 0.429 0.813 0.506 0.762

T1W subtraction + T2W images 0.745* (0.031) 0.736 0.486 0.853 0.596 0.788

T1W subtraction image + clinical information 0.848 (0.025) 0.822 0.485 0.973 0.889 0.809

T1W subtraction image + T2W image + clinical information 0.888* (0.022) 0.850 0.667 0.932 0.814 0.863

Figure 1.  Receiver operating characteristic curves showing the AUC values of different deep learning models 
in the validation set. (A) ROC curves for the prediction of pretreatment pCR based on different deep learning 
models trained on clinical information and MR images or only clinical information pCR classifiers. T1 + T2 + C: 
subtracted-T1W images, T2W images, and clinical information. T1 + C: T1W subtraction images and clinical 
information. C: clinical information. (B) ROC curves for prediction of pretreatment pCR based on different 
deep learning models trained on the dataset in the combinations of MR images. T1 + T2: T1W subtraction 
images and T2W images. T1: T1W subtraction images. T2: T2W images. T1 (lesion): cropped image of the 
lesion in T1W subtraction images.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18800  | https://doi.org/10.1038/s41598-021-98408-8

www.nature.com/scientificreports/

Discussion
In this study, we present a deep learning model that is capable of predicting pCR to NAC in patients with breast 
cancer based on pretreatment MR images. We hypothesized that the use of both clinical information and deep 
features extracted from breast MR images could improve performance in predicting pCR rather than using only 
clinical information or MR images. Our experimental results show that the multimodal fusion approach that 
combined clinical information, T1W subtraction images, and T2W images is the best method for pretreatment 
pCR prediction (AUC = 0.888). Considering that the performance improvement in the deep learning model as 
increase in number of dataset, it is relevant to previous findings that multiparametric MR images can reflect 
various information about the  tumor25. Although our results showed that the clinical information only model 
had a lower performance than the MRI-clinical information fused model, the performance of clinical variable 
model could be improved if more dedicated variables are available, considering that the scalable nature of clinical 
variables unlike radiomic features extracted from images.

Our study has three notable strengths compared with earlier work on predicting pCR from breast MR images 
using the deep learning method. First, we included 3D-bilateral whole MR images covering the axilla and chest 
wall to include information outside the lesion. To the best of our knowledge, this is the first application of the 
3D-CNN model to extract the features from the 3D-bilateral whole MR images. Further, we confirmed that the 
entire image-trained model had better performance than cropped MR image-trained model adopted in previous 
studies. It may be due to the inclusion of invisible to human eyes or missed abnormal findings in the axilla or 
other organs identified in the entire image. Second, we did not need to use manual or automatic segmentation 
for tumor area extraction. Additionally, there was no constraint on inclusion of patients with multiple masses or 
non-mass enhancement type tumors in the dataset. Therefore, our method is less labor intensive and includes 
wider implication. Lastly, we included 536 patients who satisfied the inclusion criteria for our cohort. It is the 
largest cohort in the development of the pCR prediction model with breast MR images. Regarding the impact 
of sample size on the accuracy and reliability, Cho et al. studied the scale of the training dataset to achieve high 
performance of the medical image deep learning  system26. They trained CNN to classify axial Computed Tomog-
raphy (CT) images into six anatomical classes (brain, neck, shoulder, chest, abdomen, pelvis). They present the 
trend that increasing the training dataset size increases the performance of the deep learning network, while the 
accuracy did not increase significantly from training size 100–200. At 200 patients in the training set, the average 
of classification accuracy for six anatomical classes was 95.67%, especially for neck and chest CT images, over 
99%. We convince that our results from 536 patients are robust enough.

However, our study still has limitations. First, although it has been confirmed that important information has 
been extracted from the MR image to improve pCR prediction performance, it is difficult to understand how out-
put features were extracted from deep learning model effects to classify pCR. This has been frequently included 
as a problem when applying deep learning methods to clinical  settings27. Recently, there are several attention 
techniques using the backward pass or response of a feedforward propagation on the deep learning algorithm, 
such as Grad-CAM and attention branch  network28,29, to provide explanations for the prediction using the deep 
learning model. However, in our study, it was difficult to apply visual explanation on MR images to interpret the 
decision-making of deep learning models because of the complicated model architectures for multimodal fusion 
and feature extraction from 3D MR images. Future studies will need to apply methods that reveal not only the 
model’s prediction of the pCR but also its basis. Second, this is a retrospective single-center study. For this reason, 
we have MR images from only two types of MR scanners purchased from a single vendor (Philips); therefore, it 
might be difficult to generalize our proposed deep learning models. Further studies validating our model using 
MR images from multiple institutions are needed. Third, more study will need to improve the generalizability 
of our model for clinical implications. Even though the prediction performance of an MRI-clinical information 
fused model is best in our experiments, it is difficult to expect the same environment as the experimental condi-
tions as both refined clinical information and two different MR images for model inference in a clinical setting. 
Considering that clinical information is readily available regardless of medical institution, the clinical informa-
tion only model may have a lower performance than the fused model, but the generalizability may be higher.

Interestingly, when comparing the cases about models trained with MR images and only clinical information, 
the sensitivity was higher in the clinical information-only model and the specificity was higher in all the models 
trained with MR images (Table 2). The clinical information-only model is supposed to predict pCR relatively 
consistently by learning standardized clinical information such as subtype or receptor status. However, in the 
model that was trained with MR images, it seems that the sensitivity decreases due to the increase of false nega-
tives (interpreted as non-pCR but actually pCR) because the chemotherapy-related changes such as fibrosis or 
inflammation may lead to incorrect predictions. In addition, the definition of pCR in our study was pT0/is N0, 
which means residual ductal carcinoma in situ (DCIS) was included as pCR. Differentiation between DCIS and 
invasive carcinoma is almost impossible. Therefore, residual DCIS could partly contribute to decreased sensitivity. 
Results might be different if we use different definition of pCR. This issue might be partly solved if functional 
images such as a diffusion MR images are added to the training  dataset30. Further study is needed.

We selected T2W and T1W subtraction images as MR sequences for this study because they are most com-
monly used by radiologists to diagnose breast cancer and reflect tumor biology. If we additionally apply contrast-
enhanced images from multiple post-contrast time points that were not used in this study, we can use kinetic 
information as leverage for predicting  pCR31. Moreover, addition of diffusion-weighted imaging (DWI) can 
further improve the performance of the model. DWI is used to measure apparent diffusion coefficients (ADCs) 
on the breast tissue. ADC, a measure of the diffusivity of water within the tissue, is sensitive to intratumoral 
changes induced by chemotherapy. According to few clinical studies conducted on patients with breast cancer, 
the use of DWI is valuable in predicting pCR to  NAC10,13,32. As we wrote before, in our study, sensitivity of MR 
image-based model was lower than clinical variable-only model. We anticipate that this could be improved when 
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functional images such as a DWI are added to the training dataset for further study although strict standardiza-
tion for obtaining consistent ADC value would be necessary.

After further studies with larger numbers of patients and various types of MR images, the proposed system 
might be used as an assisting tool for a pCR prediction on volumetric MR images and clinical information. Our 
model could be embedded software for MRI scanners for predicting pCR like MRI CAD (computer aided detec-
tion)  software33. From the viewpoint of studies many drug therapies in the NAC setting, assessment of pCR is 
the standard primary end point, because pCR is the most important clinical characteristic to indicate the risk of 
recurrence and long-term  survival5,6. Through the pCR prediction result of the deep learning model, the clinician 
may change treatment plans for breast cancer during NAC to improve survival of patients.

In summary, we conducted a study on the performance improvement of predictive model of pCR to NAC 
using both clinical information and pretreatment breast MR images by a multimodal fusion approach of the deep 
learning method. Based on the results presented in this study, we believe that a multimodal fusion approach for 
pCR prediction can be adopted in the development of a computer-aided diagnosis system that uses breast MR 
images. With further technological development, a pCR prediction model based on pretreatment MR images may 
be developed, and the system could aid in clinical decision-making for the NAC in patients with breast cancer.

Methods
Study cohort. This retrospective study was conducted in accordance with the Declaration of Helsinki and 
was approved by the Institutional Review Board of ethics committee from Samsung medical center (Seoul, 
Korea). The requirement for informed consent waived (IRB No. 2019-04-021). We reviewed patients with breast 
cancer who were treated with NAC at SMC between January 2010 and August 2018. The inclusion criteria for 
this study were as follows: (1) NAC with no prior therapy; (2) unilateral biopsy-proven primary breast cancer; 
(3) surgery after completion of NAC at our institution; and (4) breast MR images within 1 month prior to ini-
tiation of therapy at our institution. Patients who already had synchronous and metachronous double primary 
cancer or bilateral breast cancer were excluded. Finally, we enrolled a total of 536 patients with breast cancer who 
were treated with NAC in this study. The mean age of the patients was 45.2 years (range, 22–75 years; standard 
deviation, ± 9.9).

The NAC regimen was classified into four categories: adriamycin with cyclophosphamide (AC), AC followed 
by docetaxel (AC-T), AC-T plus platinum, and AC-T with trastuzumab. We treated breast cancer patients with 
standard NAC regimen as below: (1) adriamycin (60 mg/m2) with cyclophosphamide (600 mg/m2) iv every 
3 weeks for six cycles; (2) adriamycin (60 mg/m2) with cyclophosphamide (600 mg/m2) iv every 3 weeks for four 
cycles followed by taxane iv every 3 weeks for another four cycles; or 3) docetaxel (75 mg/m2), and carboplatin 
(area under the curve 5.5). In HER2-positive breast cancer, adriamycin (60 mg/m2) with cyclophosphamide 
(600 mg/m2) iv every 3 weeks for four cycles followed by taxane with trastuzumab (8 mg/kg at cycle 1, 6 mg/
kg at cycles 2–4) iv every 3 weeks for another four cycles. After surgery, patients received adjuvant trastuzumab 
every 3 weeks for a year.

The mean interval between treatment initiation and surgery was 197.0 days (range, 96–614 days). Duration 
of examination depended on the schedule of NAC.

MR image acquisition and preprocessing. The breast MR examination consisted of turbo spin-echo 
T1W and T2W sequences and 3D dynamic contrast-enhanced (DCE) sequence for each patient. T2W and 
contrast-enhanced T1W subtraction MR images were retrieved from the picture archiving communication sys-
tem and loaded onto a workstation for further analysis. Subtraction images from contrast-enhanced images at 
90 s after contrast injection to pre-enhanced images were selected in this study. The detailed description of the 
MR image acquisition procedure is as follows: All magnetic resonance imaging (MRI) scans were performed on 
either a 1.5-T or a 3.0-T scanner from Philips (1.5-T Achieva and 3.0-T Achieva, Philips Healthcare, Best, Neth-
erlands) with a dedicated bilateral phased-array breast coil. The DCE-MRI scans on a 1.5-T scanner (n = 254) 
were acquired using the following parameters: TR/TE, 6.5/2.5; slice thickness, 1.5 mm; flip angle, 10°; matrix 
size, 376 × 374; and field of view, 32 × 32 cm. DCE-MRI was performed with axial imaging with one pre-contrast 
and six post-contrast dynamic series. Contrast-enhanced images were acquired at 0.5, 1.5, 2.5, 3.5, 4.5, and 
5.5 min after contrast injection. The DCE-MRI scans on a 3.0 T scanner (n = 282) were acquired using the fol-
lowing parameters: TR/TE, 5.5/2.8; slice thickness, 3 mm; flip angle, 12°; matrix size, 500 × 237; and field of view, 
30 × 30 cm. DCE-MRI was performed with axial imaging, with one pre-contrast and six post-contrast dynamic 
series. Contrast-enhanced images were acquired at 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 min after contrast injection. 
Image subtraction was performed after the dynamic series. To obtain the DCE T1W subtraction image as model 
input, images that were acquired before injection were subtracted from the images that were acquired at 1.5 min 
after contrast injection. For dynamic contrast enhancement, a 0.1 mmol/kg bolus of gadobutrol (Gadovist; Bayer 
HealthCare Pharmaceuticals, Berlin, Germany) was injected, followed by a 20 mL saline flush.

We applied MR image preprocessing as follows: (1) interpolating different voxel dimensions of MR images to 
isotropic spacing (1.2 × 1.2 × 1.2  mm3) using nearest neighbor  interpolation34; (2) normalizing various intensity 
of MR images, DCE T1W and T2W, using histogram-matching  algorithm35; and (3) converting normalized MR 
images from 12-bit to 8-bit grayscale (pixel values ranging from 0 to 255). We conducted all abovementioned 
preprocessing algorithms using the SimpleITK Python package (version 1.2.0)36.

For comparison of the performance between the models trained with uncropped versus cropped images, 
cropped images of 56 × 56 × 12 voxel sizes containing lesions were obtained from the original DCE T1W sub-
traction images. The location of lesions was manually drawn slice-by-slice on the DCE T1W subtraction images 
by a breast radiologist with 14 years’ experience of reading breast MR images. From the center point measured 
from the lesion boundary, 3D cropped images were obtained.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18800  | https://doi.org/10.1038/s41598-021-98408-8

www.nature.com/scientificreports/

Clinicopathologic characteristics of patients. Pretreatment core biopsies were used to determine the 
receptor status of the tumor. pCR was defined as no residual invasive tumor in the breast and ipsilateral axilla 
(pT0/is N0). Patients were divided into pCR or non-pCR based on pathological report after final surgery. We col-
lected the following clinicopathologic characteristics: age, body mass index (BMI), menopausal status, histologic 
subtypes, T stage, N stage, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 
receptor 2 (HER2), Ki-67, cancer antigen (CA) 15-3, and NAC regimen. ER, PR score were defined according to 
the Allred score. HER2 status was evaluated by immunohistochemical (IHC) staining using antibody with grade 
3 + being positive, 0 and 1 + being negative, and 2 + requiring further evaluation by silver in-situ hybridization. 
CA 15-3 levels before NAC were reviewed from the medical records. Clinical T and N stages were determined 
according to TNM staging system by the American Joint Committee on Cancer 7th  edition35. For convenience, 
histologic subtypes of breast cancer were divided into two groups: invasive ductal carcinoma (IDC) and others.

For clinical information preprocessing, we normalized numeric features, such as age, BMI, ER score, PR score, 
T stage, N stage, and CA 15-3 level, to the range between 0 and 1 via min–max normalization. Additionally, we 
converted categorical features, such as HER2, Ki-67, histologic subtype, and NAC regimen, into one-hot vectors.

Model architecture and training. We applied a multimodal fusion method in the deep neural network to 
combine different types of data. We choose the 3D-ResNet architecture for extracting features from 3D-bilateral 
whole MR images. The 3D-ResNet has the skip-connection between layers in a network and tends to benefit 
from a reduced number of  parameters37. It enables the trainable deeper structure and adds nonlinearity to the 
model for achieving adequate performance in classification. The proposed model consists of three parts: (1) 
3D volumetric CNNs for feature extraction from MR images; (2) FC layers for clinical information and fea-
ture concatenation; and (3) final FC layer to allow prediction of pCR (Fig.  2). To achieve feature extraction 
from volumetric MR images, we modified the bottleneck 3D-ResNet-50 architecture designed by Hara et al.37 
(Supplementary Table S2). In our study, contrast-enhanced T1W subtraction and T2W images with shapes of 
224 × 224 × 64 voxels were separately entered into the 3D-ResNet-50. The outputs passed a FC layer consisting 
of six neurons. Finally, two 6D vectors from T1W subtraction and T2W images were extracted. Twelve clini-
cal information passed through one FC layer consisting of six nodes with dropout rate of 0.1 (Fig. 2B). To fuse 
multimodal features, the two 6D vectors from T1W subtraction and T2W images and the 6D vector from clini-
cal information were concatenated into an 18D vector. Finally, the concatenated output was passed through the 
final sigmoid layer, allowing a binary classification output. From the experiment, six dimensions were selected as 
feature vector size to achieve the best model performance.

We elaborate here about the training procedure of our model. Dropout with a probability of 0.1 was performed 
in the FC layers after feature extraction layer for MR images and clinical information to prevent overfitting 
during training. We divided 536 patients into 8:2 (429 for training, 107 for validation) using stratified random 
sampling, which ensures that subsets’ proportions are the same as the original set. We applied several data aug-
mentation methods in the training phase as random cropping, rotating, and flipping to improve generalization 
of the model. The random cropping was parameterized to minimize the background in axial views in the crops 

Figure 2.  Deep learning architectures for the multimodal pCR prediction model. (A) The feature extractors for 
contrast-enhanced T1W subtraction MR images and T2W MR images were used in two 3D ResNet-50. The MR 
images for the input were subjected to isotropic transformation and cropped to a 3D form of 224 × 224 × 64. (B) 
FC layer was used for clinical information inputs. The outputs of each 3D ResNet-50 and FC layer for clinical 
information were concatenated. The final FC layer with sigmoid activation function was used in the prediction 
of pCR.
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(224 × 224 × 64 voxels). Axial MR images were randomly rotated at an angle ranging from − 10° to 10° and flipped 
left and right with probability of 50%. To address the concern of class imbalance issue, focal  loss38 was used. We 
use the  PyTorch39 (version 1.1.0) open-source deep learning framework as the main tool for generating the soft-
ware implementation of the presented architecture. The training was conducted for 12 h on a DGX Station with 
a Tesla V100 GPU with the Rectified Adam  optimizer40. The model also trained with a learning rate of 0.0354, 
weight decay of 0.00001, batch size of 8, and early stopping to avoid  overtraining41.

Statistical Analysis. We compared the difference between training and validation dataset with the t-test for 
mean of numeric variables and chi-square test or Fisher’s exact test for categorical variables (Python SciPy pack-
age). A P value < 0.05 indicated a statistically significant difference. We evaluated seven types of deep learning 
models trained on different combinations of clinical information, T1W subtraction images, and T2W images to 
analyze the effects of each dataset. The seven datasets to train each model consisted of the following: (1) dataset 
containing clinical information; (2) dataset containing T1W subtraction images; (3) dataset containing T2W 
images; (4) dataset containing cropped image for lesions in T1W subtraction images; (5) combined dataset 
containing T1W subtraction and T2W images; (6) combined dataset containing T1W subtraction images and 
clinical information; and (7) combined dataset containing T1W subtraction images, T2W images, and clinical 
information. The performance of each model was evaluated using AUC and confusion matrix. The significance 
of the AUC differences was tested using the method described by Hanley and  McNeil42.
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