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Wearable magnetic 
induction‑based approach 
toward 3D motion tracking
Negar Golestani* & Mahta Moghaddam

Activity recognition using wearable sensors has gained popularity due to its wide range of 
applications, including healthcare, rehabilitation, sports, and senior monitoring. Tracking the body 
movement in 3D space facilitates behavior recognition in different scenarios. Wearable systems 
have limited battery capacity, and many critical challenges have to be addressed to gain a trade‑off 
among power consumption, computational complexity, minimizing the effects of environmental 
interference, and achieving higher tracking accuracy. This work presents a motion tracking system 
based on magnetic induction (MI) to tackle the challenges and limitations inherent in designing 
a wireless monitoring system. We integrated a realistic prototype of an MI sensor with machine 
learning techniques and investigated one‑sensor and two‑sensor configuration setups for motion 
reconstruction. This approach is successfully evaluated using measured and synthesized datasets 
generated by the analytical model of the MI system. The system has an average distance root‑mean‑
squared error (RMSE) error of 3 cm compared to the ground‑truth real‑world measured data with 
Kinect.

Over the past decade, monitoring and recognition of human activities have embraced a growing number of 
practical usages in a broad range of domains such as healthcare, rehabilitation, sports training, virtual reality 
(VR) gaming, human-computer interface (HCI) systems, finger tracking, daily life-logging, child and elderly 
care, and assistance for people with cognitive disorders or chronic  conditions1–6. Tracking and reconstructing 
limb movements in 3D space facilitates more detailed evaluation, and it is crucial for the analysis and clinical 
understanding of complex functional movements. Studying biomechanics of human motion has applications in 
human performance assessment, gesture/posture monitoring, behavioral recognition, gait analysis, and patients’ 
functionality and improvement evaluation during the rehabilitation  period7–9.

There are many solutions for tracking body movement using different monitoring  sources10. Computer vision-
based methods, such as Kinect or optical motion capture (MoCap) systems, are the most commonly used tech-
niques that allow users to interact with them and collect data on the user’s motion using depth sensors, color, 
and infrared  cameras11,12. However, they inherit computer vision restrictions such as light dependency, coverage 
limitation, and high computational  cost13,14. The MoCap systems require an expensive setup of infrared cameras 
for tracking reflective markers on an individual’s body, which makes them only applicable to the laboratory 
environment and restricted in physical space. Besides, the markers placement and soft tissue artifacts have a 
considerable effect on the system  accuracy15,16. The RF-based solutions are another motion tracking method 
capturing data based on wireless signal changes (e.g., Doppler frequency shift and signal amplitude fluctua-
tion)17. These methods also suffer from environmental dependency and limitation in the number of detectable 
gestures due to the high cost of training data collection and the lack of multi-user identification  capabilities18.

Wearable-based solutions are an alternative, cost-effective solution for applications where the optical-based 
methods are unsuitable. This approach tracks the user’s movement based on the sensors readings placed around 
the human  body19. The advancement of sensing technologies, miniaturization, embedded systems, and wireless 
communication systems combined with predictive models for data analysis and detection have made it pos-
sible to develop wearable devices working around the human body for continuous physical activity monitor-
ing. Smart devices like smartphones, smartwatches, and fitness bands are becoming widespread for providing 
valuable insights about an individual’s performance and health status. These wearables have multiple embedded 
physiological, inertial, and ambient sensors that enable multi-modal  sensing20. Many studies have exploited 
commercial inertial measurement unit (IMU) devices comprised of accelerometers, gyroscopes, and magnetic 
sensors, for motion tracking based on wearable sensors. An IMU can be attached to a body segment to estimate 
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its movement in space. By combining multiple of them on adjacent body segments, the kinematics of activi-
ties can be  determined19. For  example21, presents the development of a smart wearable jumpsuit with multiple 
built-in IMU sensors for automatic posture and movement tracking of infants. The work  in22 investigates the 
reliability and validity of IMUs for clinical movement analysis,  and23 presents a single wrist-worn IMU sensor 
for high-resolution motor state detection in Parkinson’s disease. Inertial sensing can track limb movements by 
integrating over sensor measurements, though it is subject to drift since the estimation errors caused by the 
intrinsic noise can grow unbounded with  time20.

In some applications, it is possible to achieve improved accuracy and more specific inferences by fusing the 
subsets of data collected from those sensors compared to single sensor  modalities24,25. Although these devices 
provide a solution for physiological health monitoring, condition assessment, and medical diagnosis, they still 
might face challenges. These single-node devices restrict biosensors’ placement, while optimizing their position 
can increase the system’s accuracy and robustness in monitoring vital signs (e.g., body temperature and heart 
rate)20,26. Furthermore, in systems relying on data from a single device, variations in position can significantly 
affect the performance. In motion tracking applications, a single node wearable is not able to cover the entire 
body. Therefore it cannot get detailed information about the mobility of an individual’s limbs. For example, a 
smartwatch’s inertial sensor cannot capture the movement of the user’s legs, limiting the system’s ability in clas-
sifying  activities20. A network of distributed wearable devices operating around the human body is an approach 
that can address these issues.

One of the biggest challenges in wearable-based motion tracking systems is to find the optimum type and 
number of non-invasive sensors with minimal power consumption to achieve acceptable accuracy and satisfy 
guidelines and constraints.  In20, we introduced magnetic induction-based human activity recognition (MI-
HAR), a wireless system based on magnetic induction combined with classification techniques to detect human 
activities. The proof-of-concept for the proposed system is also provided by considering a conceptual system 
with eight on-body sensors distributed on a user’s body. We synthesized sensors data for several activities using 
a calibrated magnetic induction (MI) system  model20,27 and two publicly available MoCap datasets. The accuracy 
of the analytical MI model in generating time-series MI data using 3D motion data is verified by experimental 
measurements. Furthermore, the system performance is evaluated using several machine learning algorithms 
and deep learning frameworks classifying human actions based on recorded MI data. We showed that this system 
can address challenges in terms of power consumption, accuracy, coverage, privacy, and cost. In this work, we 
extend the MI-HAR system and investigate the capability of the MI system in 3D motion tracking instead of 
identifying human activity. Moreover, we build and integrate a realistic prototype of an MI sensor with regres-
sion models and study one-sensor and two-sensors configuration setups for motion reconstruction. The MI 
model and Variational Auto-Encoder (VAE) are also employed to generate synthetic data for training regressors 
without the need for measured data. The trained model is then evaluated on real-world measurements to show 
that the system has an acceptable dynamic spatial resolution in tracking sensor movements compared to the 
ground truth motion captured by Kinect.

Results
Operating principle. The MI-based communication system is a short-range wireless physical layer that 
transmits signals by inductive coupling between the wire coils rather than radiating as is done in conventional 
 methods27,28. The transmitter node uses a coil to produce an oscillating magnetic field at a specific frequency. 
Due to the small radiation resistance of the coil, a negligible amount of energy propagates to the far-field. It 
removes the multipath fading effect resulting in a better quality of service (QoS) compared to conventional prop-
agating wave  systems29. Each sensor node’s (receiver) main component is a coil, which is lightweight, portable, 
inexpensive, simple, and wearable to capture the transmitter’s generated magnetic field. An MI sensor module 
can be manufactured for less than $20, compared to expensive sensors such as Bluetooth IMU with an average 
cost of $10020. The MI system experiences much less energy absorption in lossy dielectric media (e.g., human 
body) compared to conventional radio-wave propagation technologies, and therefore can transmit a signal with 
much less power for the same range. The signal also remains in a ‘bubble’ around the coil, which minimizes the 
leakage outside the targeted coverage range, reduces interference, increases security, and provides a personal-
ized space for the user. These characteristics make the MI system power-efficient compared to other short-range 
communication systems such as  Bluetooth20,30–32.

According to Faraday’s law, the time-varying magnetic field induces a voltage in sensor nodes proportional 
to the rate of magnetic flux change through their coils. For a predefined coil geometry and operating frequency 
below 30 MHz, where the environmental effects are negligible, the flux change rate is a function of the sensor 
coils’ position, and orientation relative to the  transmitter20,27. The relationship function from spatial data into 
induced voltage is non-linear and surjective, and the tracking problem objective is to estimate the sensors’ posi-
tions given the induced voltage measurements.

System architecture. We used an analytical model of the MI system presented  in20,27,33 to calculate the 
induced voltage at each sensor coil given its position and orientation. This forms the basis of the data-driven 
backward estimation algorithm that retrieves a node’s position using its observed data. It helps assess the system 
performance under different configurations, such as changing the number or arrangement of sensor coils to find 
the near-optimal setup with acceptable tracking accuracy. Since the model is a function of relative distance and 
alignment of coils to the transmitter, we transform the coordinate system to locate the new coordinate system’s 
origin at the center of the transmitter coil, with the coil’s surface normal oriented in the Z direction. Given the 
sensors’ spatial data, we compute the coordinate transformation matrix and calculate each coil’s position and 
orientation in the new coordinate frame. We explored the node’s position p = (x, y, z) with the resolution of 1 
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cm, and alignment n̂ = (sin θ cosφ, sin θ sin φ, cos θ) with the resolution of 5° as these resolutions are expected 
to satisfy the accuracy requirements for motion tracking  applications34,35. It also provides enough data points 
within the search domain for comprehensive performance analysis of the system with different configuration 
settings. The possible solutions, which are a unique single-point in an optimal configuration, are retrieved for a 
given set of observed data. The domain of search space for both the center of a coil and its surface normal align-
ment is defined as follows. The search domains for the xyz parameters are set such as to represent the average 
ranges of distances where sensors can be placed for both male and female subjects relative to an on-body central 
node on their torso. The θ and φ parameters generate the coil’s alignment, and therefore their search domains are 
defined such that it is possible to describe rotations for the coil that do not result in values close to zero.

We studied the performance of an MI sensor (single sensor setting), where the coil can be aligned in any 
direction. We also adopted two-sensor configurations and investigated different alignment setups. Among these 
setups, we present the performance analysis of setups where coils’ surface normal are aligned in the same direc-
tion (parallel setting) or perpendicular to each other (orthogonal setting). Figure 1 depicts the configuration of 
sensors in each described setting. In these experiments, the induced voltage measured at the coils is used as input 
for location estimation. Figure 2 shows an example result of the data-driven backward estimation algorithm. As 
the results display, there are many possible solutions for a single sensor setup, and this number reduces by adding 
another sensor. The sensor voltage data are assumed to be measured with 1 mv accuracy and given as inputs to 
the algorithm. A comparison between the two-sensor configurations shows that the parallel setting outperforms 
the orthogonal setting. Although a unique solution cannot be returned as an output, results suggest that the 
regression methods with proper constraints can meet the minimum required accuracy for position tracking.

Data collection. We designed and built an MI sensor for 3D motion tracking (see “Methods” section), 
representing the movements by variation in the MI signals received from the transmitter instead of measuring 
spatial data via conventional sensors such as IMUs. To evaluate the capability of the proposed MI sensor, we 
employed regression algorithms and investigated their performance on the  MI sensor’s data. Validating and 
testing machine learning methods is critical and challenging due to the difficulty of collecting realistic valid data 
and the lack of labeled data. One solution is to create synthetic data for training the model, and here, we used a 
VAE model to produce time-series motion data. The MI data corresponding to the synthetic movements are then 
generated using an analytical MI system  model20,27. The regressors are then trained on these synthesized data, 
which removes the need for supervised training measured data. A point to consider is that the MI system model 
must be calibrated only once to scale the synthetic training data to sensor measurements and tune the regression 

(1)
x ∈ [−20 cm, 20 cm ]
y ∈ [−20 cm, 20 cm ]
z ∈ [−60 cm, −10 cm ]

θ ∈ [ 0◦, 60◦ ]
φ ∈ [ 0◦, 360◦ ]

Figure 1.  Configuration Settings. Schematic representation of configuration settings employed in the 
experiments.

Figure 2.  Data-driven location tracking. Estimation of a predefined target point across all settings, where each 
point represents a possible node’s position with at least one alignment that can produce the given set of inputs 
for the defined setting.
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algorithm (see “Methods” section). The trained machine learning regressors on the synthetic data are then tested 
on real-world measurements and reported for comparison.

Evaluation. We deployed machine learning regression algorithms to solve the inverse problem of estimating 
a node’s 3D position (x,y,z) from its sensors’ measurements in meters. The performance of several regression 
models, including extra trees (ET), random forest (RF), K-nearest neighbors (KNN), , light gradient boosting 
machine (LightGBM), multi-layer perceptrons (MLP), decision trees (DT), and linear regression (LR) is com-
pared using  PyCaret36, an open-source machine learning library in Python. The models are trained on 70% of 
synthetic data and then scored on the remaining data using the 10-fold cross-validation method. The metrics 
used for comparison are RMSE, mean absolute percentage error (MAPE), and R-squared  (R2). Before fetching 
data into the regressors, each feature is standardized individually, and the missing values are substituted with 
previous non-missing values. The processed data are then divided into fixed-length segments of 2 s using the 
sliding window technique with a 0.1 s step size.

Table 1 summarizes the performance results of all models on the synthetic data for different settings. As the 
results show, the moving node’s distance and position in the Z-direction with respect to the transmitter coordi-
nate frame can be tracked with competing accuracy compared to other methods using wearable sensors (e.g., 
accelerometer) for motion  tracking19,35. All of the results and metrics on motion tracking are reported in units 
of meters, and the best scores are denoted in bold. It is worth mentioning that the mutual inductance between 
two coils varies as their distance, lateral alignment, or angular alignment changes. As we assume that the trans-
mitter coil is centered at the origin and aligned in the Z direction, any movement in the X or Y direction results 
in a similar lateral misalignment and consequently the same path loss. This characteristic makes it challenging 
for the regression model to estimate MI sensors’ location accurately and differentiate between motion in the X 
and Y directions. Because the method is able to estimate the distance and location in the Z direction with good 
accuracy, adding another transmitter with an antenna surface orthogonal to the primary antenna enables the 
node’s motion tracking in the new direction (e.g., X), resulting in 3D positional tracking. However, the dual-
transmitter setup can drain power at twice the rate of a single-transmitter system, which can be addressed with 
proper design modifications. For example, time-division multiplexing (TDM) or frequency-division multiplexing 
(FDM) approaches can be adopted as low complexity hardware techniques using a single transmitter to reduce 
the power, area, and cost of a dual-antenna system instead of using two separate transmitters. Then the receiver 
sensor can record transmitted signals from two perpendicularly aligned antennas, which provides adequate data 
for tracking its location in 3D. This system keeps power consumption the same as a single-antenna system, while 
increasing tracking accuracy in all three dimensions.

Among the research studies on 3D motion tracking, the work  in37, for example, has reported results on 
tracking subjects’ arm motion using smartwatch IMU data. The results show that the system can achieve the 
highest accuracy when the torso is static, with a median error of 8.8 cm. Moreover,38 presents a framework for 

Table 1.  Performance summary. Results of motion tracking algorithms on the synthetic data for different 
settings.

Model

Distance X Y Z

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

Single Sensor

ET 0.028 0.043 0.898 0.05 6.548 0.232 0.035 3.877 0.102 0.031 0.05 0.868

RF 0.028 0.042 0.9 0.05 6.872 0.25 0.035 3.88 0.125 0.031 0.049 0.871

KNN 0.029 0.044 0.89 0.052 6.155 0.161 0.037 3.923 0.017 0.033 0.052 0.856

LightGBM 0.028 0.042 0.9 0.048 6.873 0.29 0.034 3.931 0.173 0.031 0.049 0.872

MLP 0.03 0.045 0.883 0.049 6.806 0.278 0.034 3.999 0.147 0.034 0.053 0.846

DT 0.039 0.057 0.807 0.069 10.529 − 0.45 0.049 4.05 − 0.708 0.043 0.067 0.753

LR 0.04 0.066 0.796 0.052 8.079 0.177 0.035 4.095 0.138 0.041 0.069 0.769

Orthogonal

ET 0.022 0.029 0.879 0.04 4.897 0.537 0.011 0.851 0.18 0.005 0.007 0.169

RF 0.023 0.031 0.863 0.043 5.266 0.47 0.031 2.53 0.362 0.026 0.037 0.827

KNN 0.022 0.029 0.875 0.042 5.749 0.487 0.03 2.137 0.387 0.025 0.034 0.84

LightGBM 0.026 0.036 0.826 0.05 5.989 0.294 0.035 3.018 0.158 0.029 0.043 0.779

MLP 0.026 0.037 0.823 0.05 5.239 0.277 0.036 3.191 0.134 0.03 0.043 0.774

DT 0.033 0.041 0.718 0.062 7.04 − 0.096 0.044 2.71 − 0.313 0.037 0.049 0.642

LR 0.035 0.05 0.688 0.053 6.829 0.184 0.037 3.2 0.103 0.038 0.057 0.625

Parallel

ET 0.011 0.018 0.947 0.037 7.539 0.365 0.028 5.184 0.23 0.014 0.025 0.917

RF 0.011 0.019 0.94 0.037 9.49 0.334 0.028 5.471 0.193 0.014 0.026 0.908

KNN 0.012 0.021 0.932 0.037 10.543 0.352 0.028 4.855 0.196 0.015 0.027 0.9

LightGBM 0.012 0.021 0.932 0.04 10.004 0.261 0.03 5.827 0.075 0.015 0.028 0.897

MLP 0.013 0.022 0.924 0.04 9.251 0.231 0.031 6.268 0.022 0.016 0.03 0.881

DT 0.016 0.026 0.882 0.053 14.302 − 0.338 0.04 5.478 − 0.636 0.02 0.035 0.818

LR 0.021 0.037 0.804 0.041 11.848 0.185 0.031 6.015 0.048 0.023 0.043 0.762
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reconstructing human motion with the highest accuracy of 6 cm using four 3D accelerometers attached to the 
user. The work  in39 has proposed the utilization of spinning linearly polarized antennas to track translation of an 
object attached to a passive radio frequency identification (RFID) tag array in 3D and has reported an average 
error of 13.6 cm. To provide a realistic assessment of real-world performance, we evaluated each of the optimal 
models’ tracking accuracies on measured data as well. According to the score measures reported on synthetic 
data, the LightGBM regressor in the single-sensor setting and the ET regressor in the two-sensor (orthogonal and 
parallel) settings outperform other models. Figure 3 presents the evaluation measures of optimal models using 
the measured data for each setting. Representative samples of motion tracking in all settings are also displayed in 
Fig. 4. Our results indicate that the parallel setting with the optimal regression model outperforms other settings 
on both measured and synthetic MI data.

Discussion
We proposed a 3D motion tracking system based on magnetic induction and provided a proof of concept by 
experimental measurements conducted using off-the-shelf devices and prototypes. We employed an HF RFID 
transmitter module equipped with a loop antenna and an MI sensor as the central node and receiver, respectively. 
The designed sensor is a simple integrated circuit equipped with an Arduino to record the samples of received 
signals from the transmitter. To implement the proposed system for real-world applications, proper modifica-
tions should be taken into account. For example, the MI coils should be designed to be suitable for wearing on 
the human wrist, arm, and ankle. Furthermore, a wearable custom-designed central node capable of driving a 
controlled amount of current at the operating frequency through its coil is required. The receivers should cover 
the range of about 0.5 m to 1 m with minimum power consumption.

The RF output power of the reader used in this work is 1 Watt, which can be reduced by designing a custom-
ized MI system capable of communication and data transmission with high accuracy. The reader sends con-
tinuous sine waves while the sensor records samples of received power. However, a customized MI transmitter 
(central node) operating with pulsed shape sine wave signals can achieve similar accuracy within the targeted 
coverage range at significantly lower power. Determining optimal pulse rate and sampling rate plays a critical 
role in designing a power-efficient high-accuracy MI-based motion tracking system. Hardware development at 
the sensor side is another factor that affects system performance. For example, impedance matching reduces 
power losses and consequently enhances the system transfer efficiency and gain. There are research studies 
focused on details of designing low-power MI-based communication systems. The research work presented  in40 
proposes a transceiver design exploiting the low path loss of Magnetic Human Body Communication (mHBC) 
communication channels toward ultra-efficient body area networking. The transmitter and receiver, respectively, 

Figure 3.  Performance on measured data. Results of motion tracking methods in the 3D space domain using 
real-world data for different settings.

Figure 4.  Measurement versus estimation. The measured ground-truth and estimated distance and Z-direction 
displacement of MI sensors relative to the central node over time.
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require only 7.15 and 4.7 pJ/bit for communication within the range close to the required coverage range in our 
application. Their design is a helpful reference for implementing MI transceivers.

Another approach for realizing the system with lower power requirements is reducing the number of nodes 
with batteries. One implementation strategy is to make the central node serve as both transmitter and receiver. It 
means that the central unit can broadcast the signal and listen back to the responses reflected from the sensors, 
similar to an RFID system based on passive (battery-less) tags. In an RFID system, the reader sends an inter-
rogation signal to the transponders, which is also used to energize the tag. The tag activates and sends back its 
unique identifier (UID) if the received power is higher than its  sensitivity41. A modulation resistance connected 
in parallel with the tag antenna switches between two different (usually conjugate matching and a short circuit) 
load impedances at the clock rate of the signal transmitted from the reader to modulate the backscattered  signal42. 
Therefore, the central node can communicate with the tags via a secure near-field link backscattering from them. 
The amplitude of the demodulated signal is calculated and reported at the reader side by a value proportional to 
the received signal’s power level, known as the received signal strength indicator (RSSI). A point to consider is 
that load modulation is not a practical solution for data transmission in an MI-based motion tracking system. 
The reason is that the backscattered field, and consequently, the voltage signal received by the reader, switches 
over two  values12. The average power returned to the reader is no longer a direct function of distance and mis-
alignment between coils since it varies by the number of zeros and ones in the data stream. Therefore, proper 
modulation and modifications are required to be able to employ existing RFID protocols.

Here we have compared the relationship between RSSI and MI signals with motion data by recording RSSI 
data of RFID tags in addition to the MI-sensor data. The experiments are performed using a framework similar 
to the setup explained for MI measurements (see “Methods” section) using HF RFID tags instead of MI sensors. 
We employed custom air-cored, three-layer copper coils with a 5 cm radius and 34 American wire gauge (AWG) 
wire diameter as the tag antenna attached to STMicroelectronics ST25DV04K RFID tag. We measured motion 
and RSSI data of RFID tags reported from the reader for 112 experiments. The best calculated average  R2 and the 
correlation between RSSI and the distance of the tag from the reader are respectively 0.11 and 0.33. For an MI 
sensor, the calculated  R2 and correlation over 220 samples are 0.61 and 0.78, respectively. These results indicate 
that the MI signal has a stronger relationship with its motion compared to a passive tag (see Supplementary 
Information).

Methods
Hardware design. The system consists of a transmitter (central) node generating an oscillating signal at 
13.56 MHz. We used ISC.LRM1002 long-range RFID reader  module43 attached to ISC.ANT310/310 long-range 
HF  antenna43 to generate the RF signal. Since we used this setup for RFID measurements presented in the dis-
cussion, we used the same transmitter for a better comparison. The receiver node consists of MI sensors. Each 
sensor includes an air-cored, single-layer copper coil with a 5 cm radius and 10 AWG wire diameter to capture 
the transmitter’s signal and measure the induced voltage. Resistance and self-inductance of the coil measured by 
vector network analyzer (VNA) at the resonance frequency are 101 m� , and 241 nH, respectively. To improve 
the system efficiency, we have employed resonant inductive coupling attached to the coil. The tuning circuit can 
be as simple as a capacitor to tune the frequency or be a � or T matching circuit to tune the frequency, control 
Q-factor, and match input and output impedances for higher power  transfer44. Here, we used a 560 pF capacitor 
parallel to a trimmable capacitor with an adjustable range of 3–10 pF to accurately tune the circuit to resonance.

The transmitted AC signal attenuates as a function of distance and alignment of the node with respect to 
the transmitter antenna. To track the signal’s amplitude changes, we used an envelope detector consisting of an 
IN5817 Schottky diode, a resistor of 1 K � , and a capacitor of 1 nF. The envelope detector’s output, which is the 
resistor’s voltage, is measured by an Arduino Nano (ATmega168) microcontroller. The resolution of ADC (analog 
pin A1) is 10 bits for a defined measurement range. Figure 5 depicts MI sensor components.

Measurements. We employed a Microsoft Kinect v2 to capture the 3D position and alignment of the trans-
mitter and the MI sensor node. The Kinect sensor consists of a depth camera, an RGB camera, and a microphone 

Figure 5.  MI sensor prototype hardware. The prototype consists of three main parts: (1) Variable capacitor for 
frequency tuning, (2) Envelope detector, (3) Arduino microcontroller for measurement.
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array sensor. The RGB camera and depth camera respectively provide 1920 × 1080 color image and 512 × 424 
depth image at 30 frames per second with a resolution of a few millimeters in measure range between 0.5 m to 
4.5  m45. The depth stream provides the sensor’s distance to every point within its area of coverage. As the cameras 
have different pixel resolutions and are not perfectly aligned, three coordinate spaces and types are defined: color 
space point (xc , yc) , depth space point (xd , yd) , and camera space point (xw , yw , zw) , representing a point in the 
color images, depth images, and real-world, respectively. The software development kit (SDK)’s mapping func-
tion can be used to map a point from one coordinate space to another.

We used colored markers to facilitate motion tracking of the devices and developed a video processing algo-
rithm analyzing the color frames to locate pixels corresponding to the target color. The transmitter antenna and 
the MI node are labeled with distinct colored markers and placed in front of a white background. A threshold 
range is set for each color to extract pixels with the color value within the defined range. The detected pixels 
are classified to Nm clusters, where Nm is the number of markers, using K-means clustering methods. Then, the 
connected neighboring pixels of each cluster are grouped. Since the markers are colored foam balls, the circle 
with the minimum area enclosing each set is calculated, and the largest region is given as the target circle. The 
next step is mapping color to camera space to find the corresponding spatial location of each extracted color 
pixel. The result is a list of 3D real-world points mapped from the target circle’s pixels, and each marker’s loca-
tion is computed by taking the median over all the calculated values. This process repeats for each new color 
frame that Kinect captures.

The analytical model requires the center and alignment of the transmitter and receiver coils/anten-
nas as inputs to estimate the induced voltage. To determine a coil’s surface normal, at least three markers 
( Mi : i ∈ {1, . . . ,Nm} with Nm >= 2 ) are required. Hence, we used four red and three blue markers to track 
the transmitter antenna and the MI sensor node. The center of each device is calculated by averaging over its 
markers’ location c =

∑Nm
i=1 Mi , and its surface normal is also calculated by the cross product of vectors pass-

ing through the markers: n̂ = v1 × v2 where v1 = M1 −M2, v2 = M1 −M3 . We applied the median filter, a 
non-linear digital filtering technique, to remove noise and spikes in the extracted location and alignment data.

The induced voltage, Vind , at the MI sensors is measured for 30 s via Arduino by using a Python script that 
controls the recording in order to synchronize Kinect’s motion data and Arduino’s measurements. The sampling 
frequency is 100 Hz, and the reference voltage range is 0 V to 5 V, which results in the quantization interval of 
5/1024 V. The data streams of the node’s MI sensors are recorded and used as inputs for the regression model 
to estimate the device’s location. The sampling rate of motion data recorded by Kinect and the sensors’ data are 
different. Therefore, all recordings are resampled with a sampling interval of 100 ms, which also handles the 
missing sample values. The measurement setup of experimental measurements is presented in Fig. 6.

Synthetic data. A VAE is based on the auto-encoder architecture and is composed of encoder and decoder 
networks. The encoder compresses the data into a lower-dimensional space called the latent space representa-
tion. The decoder decompresses the reduced representation code to reconstruct the original data. The VAE 
learns the probabilistic interpretation of these networks and generates new samples using different latent vari-
ables as input. Consider dataset { x(i) }Ni=1 that consists of N i.i.d. samples of some variable x . VAEs assume 
that the data are generated by a random process with continuous latent variable, and each latent variable z is 
related to its corresponding observation x through likelihood pθ (x|z) , where pθ is a probability distribution with 
parameters θ . This probabilistic interpretation of the decoder can decode a latent (hidden) representation code 
into a distribution over the observation. Similarly, the encoder network returns a latent code sampled from the 
posterior density distribution pθ (z|x) given a sample from the data  space46. While both prior p(z) and likeli-
hood p(x|z) can be formulated exactly, the posterior p(z|x) requires an intractable integral over the latent space. 
Hence, an approximate posterior qφ(z|x) closest in Kullback-Leibler (KL) divergence to the actual, intractable 

Figure 6.  Measurements. Schematic representation of measurement setup, including motion capture and 
sensor data collection.
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posterior distribution is considered. The approximate posterior is parameterized by variational parameters φ , 
and the training objective is a tractable lower bound to the log-likelihood47:

and can be equivalently written as:

On the right-hand side of equation (3), the first term, reconstruction error, represents the likelihood of the model 
reconstructing the input data. The second term, variational regularization term, is the KL divergence and makes 
the approximate posterior qφ(z|x) to be close to pθ (z) . The L (x; θ ,φ) is a lower bound on the log probability of 
data pθ (x) , evidence lower bound (ELBO). Maximizing ELBO with respect to the model parameters θ and vari-
ational parameters φ respectively maximizes the marginal probability pθ (x) and minimizes the KL  divergence46.

We trained the VAE model using the sensors’ motion data tracked by the Kinect to produce synthetic time-
series samples. After training the model, new time-series data can be generated by sampling from latent space z 
with normal distribution parametrized by the mean and the  variance47. The generated data include the motion of 
the coils’ center and alignment in 3D space for a predefined sensor setting. We synthesized angular variables θ and 
φ to calculate the corresponding coil’s surface normal n̂ that can be defined as n̂ = (sin θ cosφ, sin θ sinφ, cos θ) , 
where the variables θ and φ can take values in the range of 0-90 and 0-360 degrees, respectively.

We have performed the experiment for 220 motions, including spatial translation and rotation ( Ns=220). The 
measured motion data samples of these experiments are used for training VAE to generate synthetic motion data. 
Then their corresponding MI signal is estimated using the two-port network model of the MI  system20,27 given 
node motion data. To evaluate the performance of the analytical model, we fetched the captured motion data by 
the Kinect system as input and estimated the corresponding induced voltage at the MI sensors for each measure-
ment experiment. The circuit model is calibrated by finding the scale and bias of the synthesized data with respect 
to the measurements. Considering si and mi as the generated synthetic data and measurements corresponding 
to a motion sample, the scale a = 1

Ns

∑Ns
i=1

σmi
σsi

 and bias b = 1
Ns

∑Ns
i=1 µmi −

σmi
σsi

µsi can be calculated, where 
µsi , σsi , µmi , σmi represent the mean and standard deviation of synthetic data and measurements correspond-
ing to the ith motion sample from Ns samples. Figure 7 shows the measured and simulated sensors’ data during 
their movement, taken from the evaluation dataset after calibrating the model.

The average normalized root-mean-squared error (NRMSE) and cross-correlation of the synthesized and 
measured data for all experiments are 12% and 0.91, respectively. It should be noted that the reported metrics 
consider not only the MI system model inaccuracy but also the error associated with the Kinect-based marker 
tracking algorithm and Arduino measurements. The variation between the real-world and synthetic samples 
affects the performance of the motion tracking algorithm that trains on the synthetic MI data. We re-assessed 
the performance of the regression model trained on noisy synthetic datasets to provide an evaluation of errors 
caused by the analytical MI system model in motion tracking. We considered the single sensor setting and its 
corresponding optimal regression model LightGBM for the analysis. Gaussian noise with zero mean and standard 
deviation of σ varying between 0 to 1 is added to the data generated by the MI model. The resulting datasets are 
separately given to a pre-trained regression model for training and then evaluated on the measured samples. The 
NRMSE value for each noisy dataset is calculated by comparing measured data and their corresponding noisy 
synthetic data. Figure 8 displays the performance of a machine learning regressor in motion tracking trained 
on these datasets with different NRMSE values (noise levels). The results show the effect of the MI model in 
generating realistic samples on the performance of the motion tracking algorithm.

(2)log p(x) ≥ Eqφ(z|x)

[

log
pθ (x, z)

qφ(z|x)

]

= L (x; θ ,φ)

(3)L (x; θ ,φ) = E qφ(z|x)

[

log pθ (x|z)
]

−DKL

(

qφ(z|x) || Pθ (z)
)

Figure 7.  Measurement versus synthetic data. The measured and simulated induced voltage at the MI sensor 
during two different arbitrary movements, such that both relative alignment and location of the coil vary relative 
to the central node.
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Data availibility
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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