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Integration and gene co‑expression 
network analysis of scRNA‑seq 
transcriptomes reveal 
heterogeneity and key functional 
genes in human spermatogenesis
Najmeh Salehi1,2, Mohammad Hossein Karimi‑Jafari3, Mehdi Totonchi1,2* & 
Amir Amiri‑Yekta1*

Spermatogenesis is a complex process of cellular division and differentiation that begins with 
spermatogonia stem cells and leads to functional spermatozoa production. However, many of 
the molecular mechanisms underlying this process remain unclear. Single‑cell RNA sequencing 
(scRNA‑seq) is used to sequence the entire transcriptome at the single‑cell level to assess cell‑to‑
cell variability. In this study, more than 33,000 testicular cells from different scRNA‑seq datasets 
with normal spermatogenesis were integrated to identify single‑cell heterogeneity on a more 
comprehensive scale. Clustering, cell type assignments, differential expressed genes and pseudotime 
analysis characterized 5 spermatogonia, 4 spermatocyte, and 4 spermatid cell types during the 
spermatogenesis process. The UTF1 and ID4 genes were introduced as the most specific markers 
that can differentiate two undifferentiated spermatogonia stem cell sub‑cellules. The C7orf61 and 
TNP can differentiate two round spermatid sub‑cellules. The topological analysis of the weighted 
gene co‑expression network along with the integrated scRNA‑seq data revealed some bridge genes 
between spermatogenesis’s main stages such as DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, 
CRISP2, PTMS, NFKBIA, CDKN3, and HLA‑DRA. The importance of these key genes is confirmed 
by their role in male infertility in previous studies. It can be stated that, this integrated scRNA‑seq 
of spermatogenic cells offers novel insights into cell‑to‑cell heterogeneity and suggests a list of key 
players with a pivotal role in male infertility from the fertile spermatogenesis datasets. These key 
functional genes can be introduced as candidates for filtering and prioritizing genotype‑to‑phenotype 
association in male infertility.
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DEG  Differentially expressed gene
Diff.ed SPG  Differentiated spermatogonia cell
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GEO  Gene expression omnibus
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PCA  Principal component analysis
RNA-seq  RNA-sequencing
scRNA-seq  Single-cell RNA sequencing
SPC  Spermatocyte
SPT  Spermatid
SSC  Spermatogonia stem cells
TOM  Topological overlap measure
Undiff. SPG  Undifferentiated spermatogonia cell
WGCN  Weighted gene co-expression network

Spermatogenesis is a highly organized and complex process of differentiation events that produces sperm from 
the primordial germ  cells1. Sperm production occurs in the seminiferous tubules, is a continuous process that 
begins at puberty and continues throughout  life2. This productivity depends on the activity of the spermatogonia 
stem cells (SSC), which are the stem cells of adult testicular  tissue3. The SSCs are capable of perpetual self-renewal 
and differentiation division, which preserves the stem cell pool and spermatogenesis fuel,  respectively3,4. Then, 
differentiating spermatogonia cells divide mitotically and produce two diploid spermatocytes, followed by two 
meiosis and the spermiogenesis process to produce haploid spermatids and sperm,  respectively1,4. Between 1500 
and 2000 genes are thought to play a role in controlling spermatogenesis and genetic changes in these genes are 
expected to impair male  fertility5,6. Currently, the genetic diagnosis for male infertility includes screening a short 
list of candidate genes that should be  expanded7–9. Hence, a high-resolution profile of gene expression signatures 
in the process of spermatogenesis can be a starting point for solving male  infertility10.

Gene expression profiling assays, such as typical microarray or RNA-sequencing (RNA-seq) have been widely 
used to investigate the changes in testicular gene expression from birth to  adulthood11–14, and in the molecular 
mechanisms involved in male  infertility15,16. These studies rely on the bulk RNA analysis of mixed aggregates of 
spermatogenic cells, that provide the average expression signal for a pool of different cell  types17,18. Therefore, 
they lose within and between cell type diversity or rare cell  phenotypes17. To isolate spermatogenic cell types, 
some common approaches such as fluorescence-activated cell sorting (FACS), magnetic activated cell sorting 
(MACS), and STA-PUT are  used17,19. However, these methods can only separate some types of spermatogenic 
cells and cannot isolate high-purity homogeneous spermatogenic cells from all  types10,20.

Single-cell RNA sequencing (scRNA-seq) provides the transcriptome profiles of individual cells that can 
investigate the variation within and between cell types and reveal rare cell  types17. In the last few years, some 
studies have examined the transcriptome profiles of different cell types in human testicular tissue using scRNA-
seq. Most of these studies have investigated spermatogenesis single-cell transcriptome in only fertile individu-
als or obstructive azoospermia (OA)  patients21–28. A few number of studies in non-obstructive azoospermia 
(NOA) patients have been  reported29,30. FACS, MACS, and STA-PUT were used to sort individual cell types 
before scRNA-seq in some  studies21–23,29. However, scRNA-seq can examine thousands of individual cells in the 
steady-state of spermatogenesis without the need for prior  sorting22,23,25–27,29. Also, single-cell transcriptomes 
of infants, juvenile and adult males were profiled to investigate the changes in the spermatogenesis cell types at 
birth, during puberty, and  adulthood23,25,27. The common idea in all of these studies was to identify cell types 
based on the key markers expressions, find differentially expressed genes (DEGs) in each cell type, and enrich 
their biological functions which showed significant heterogeneity within and between spermatogenesis cell types.

In this study, we integrated the scRNA-seq data of human spermatogonia, spermatocyte, spermatid sorted 
 cells22, and steady-state spermatogenic  cells22,29. The integrated analysis of these datasets provides a more com-
prehensive profile of spermatogenesis  prossess31. Then clustering, cell type assignments, DEGs, enrichment, and 
pseudotime trajectory analysis were performed to characterize cell heterogeneity. Furthermore, a related gene 
co-expression network was generated, and its topological analysis revealed bridge genes in this process. The 
role of these bridge genes in male infertility makes them candidates for filtering and prioritizing genotype-to-
phenotype association and gene expression alterations in male infertility.

Results
Clustering of integrated spermatogenesis dataset. The diverse human spermatogenesis scRNA-seq 
datasets, including spermatogonia, spermatocyte, spermatid sorted cells, and steady-state spermatogenic cells 
were collected from the GEO database. The cell types, sorting methods, scRNA-seq methods, GEO ID, and the 
initial number of genes and cells in each dataset were summarized in Fig. 1A. After pre-processing, 33,011 sper-
matogenic cells were gathered. The integrated datasets in the UMAP low dimensional space showed that similar 
cells in different datasets were placed together in the UMAP space (Fig. 1B). Each dataset in the UMAP space 
of integrated data was presented in detail in Figure S1. The Spermatogenesis1 dataset which belongs to steady-
state spermatogenic  cells22, depicted the greatest similarity with the integrated data in the UMAP space (Fig. 1B, 
Fig. S1A). On the other hand, some of the Spermatocyte and Spermatid dataset cells, that were isolated using 
the STA-PUT method, are mixed in the UMAP space of integrated data (Fig. 1B, Fig. S1D,E). The unsupervised, 
graph-based clustering revealed 16 clusters of testicular cells in this integrated data which is shown in the UMAP 
plot (Fig. 1C).

Cell type assignment shows heterogeneity among testicular cells. Due to the importance of cell-
type assignment to the clusters, the expression of some known markers of testicular germ and somatic cells were 
evaluated (Fig. 2A). The NANOS2 and PIWIL4 are major genes for SSC maintenance and are expressed in self-
renewing  SSC25,29,32–34. These marker genes were specifically expressed in cluster-1 and -2 which were named 
Undiff. SPG1 and Undiff. SPG2, respectively (Fig. 2B,C, Fig. S2). GFRA1 and SALL4 are well-known markers 
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for both undifferentiated and differentiating  SSCs35 which were expressed in cluster-1, -2, -10, and -13. So, clus-
ter-10 and -13 were assigned to differentiating cells and termed as Diff.ing SPG1 and Diff.ing SPG2, respectively 
(Fig. 2B,C, Fig. S2). Cluster-12 was identified as a differentiated spermatogonia cell cluster (Diff.ed SPG) due to 
the MAGEA4 and HMGA1 expression in cluster-1, -2, -10, -12, and -13 for all spermatogonia cells (Fig. 2B,C, 
Fig. S2)29,35,36. DMC1 and RAD51AP2 are mitotic genes expressed at the leptotene  stage37. Accordingly, cluster-9 
with the highest expression level of these genes belonged to leptotene cells, denoted as the Leptotene SPC cluster 
(Fig. 2B,C, Fig. S3). PIWIL1 expression is initiated from spermatocyte to spermatid cells with the highest expres-
sion level in zygotene and  pachytene38. Also, SYCP3 was upregulated from differentiated spermatogonia cells to 
the early round spermatid  stage39. OVOL2 is expressed from zygotene to diplotene, relating to the presence of 
the sex body during mammalian male  meiosis40. Accordingly, cluster-6, -5, -8, and -7 were recognized as the 
zygotene, pachytene, diplotene stages of spermatocytes and the early round spermatids, respectively, that were 
named as Zygotene SPC, Pachytene SPC, Diplotene SPC and Early round SPT (Fig. 2B,C, Figs. S3, S4). TEX29 
and SUN5 genes can be observed in the round  spermatids29, which were expressed in cluster-3 and -4 (denoted 
as Round SPT1 and Round SPT2). Furthermore, ACR and PGK2 presented in zygotene to round spermatids and 
elongating spermatids,  respectively22,41,42. SPEM1 is expressed in the late stages of  spermatid43. Thus, cluster-11 
corresponded to the last stage of spermatid, which was named as Elongating SPT (Fig. 2B,C, Fig. S4). To detect 
somatic cells clusters, the expression pattern of CYP26B1 as  Sertoli44, INSL3 as  Leydig45, MYH11 as  myoid46, and 
ALDH1A1 as Sertoli, Leydig and myoid  markers47,48, were evaluated. Also, CD68 and CD163 are known markers 
of macrophages. These investigations showed cluster-13, -14, -15 as somatic cell clusters. On the other hand, the 
DDX4 gene expression pattern, as germ cells marker, confirmed the somatic cell clusters assignment. All of these 
cell clustering analyses on datasets and cell-type assignments are summarized in Table 1.

The expression patterns of DEGs were compared among all cell-type clusters (Table S1). The number of up 
and down-regulated genes (or positive and negative DEGs) in all germ cell types (13 clusters) were measured 
and compared with each other. Among all spermatogenic cell clusters, Round SPT2 and Round SPT1 displayed 
the most up-regulated genes with 415 and 284 genes, respectively (Fig. 2D). On the other hand, Pachytene SPC 
and Zygotene SPC presented the most down-regulated genes with 370 and 345 genes (Fig. 2E).

The cell assignment results demonstrated five spermatogonia cells. Among them, the Undiff. SPG1, Undiff. 
SPG2 and Diff.ing SPG1 positive DEGs were enriched especially for biological processes (BPs) related to transla-
tion (Fig. 2E). Translation in undifferentiated stem cells is usually kept low and must be strictly  regulated49. Nev-
ertheless, stem cells need to maintain the proper expression level of the main stem factors to keep their specific 
properties and  characteristics49. Also, a higher RNA production in mouse spermatogonia cells was reported in 

Figure 1.  Profiling and integrating testicular datasets. (A) Datasets information of adult human testicular cells 
that were integrated and analyzed, such as sorting methods, scRNA-seq methods, GEO ID, and the number 
of genes and cells for each data set were listed. (B,C) UMAP plot of integrated human testicular cells. Cells are 
colored based on (B) the original datasets, (C) clustering results.
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Figure 2.  Cell type assignment of clusters. (A) Gene markers of testicular cells were categorized based on 
different somatic, spermatogonia, spermatocyte, and spermatid cells, (B) gene expression patterns of these 
markers on the UMAP space which were colored based on the A part categorization, (C) cell type assignment 
of clusters based on gene markers expression patterns, (D) the number of up- and down-regulated genes in 
different germ cell types, (E) the biological processes enrichment for up-regulated genes of different germ cell 
type clusters.
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earlier  studies50. The Diff.ing SPG2 and Diff.ed SPG cells were enriched with terms of the cell cycle, chromosome 
organization, DNA metabolic process, and cellular macromolecular complex subunit organization (Fig. 2E). 
The cell cycle or cell-division cycle is started in differentiating spermatogonia cells with mitotic division and 
continued in spermatocyte cells with meiosis  division51. During mitosis, extensive chromosome organization is 
needed to transport genetic material to the daughter  cells52. In the Leptotene SPC cells, BPs of spermatogenesis 
and meiosis were enriched in addition to Diff.ed SPG BPs (Fig. 2E). The meiosis process was the main BP in the 
spermatocyte cells. The cell wall macromolecule catabolic process genes were highly expressed in Round SPT1 
and Round SPT2 (Fig. 2E). Furthermore, spermatid development and sperm motility were up-regulated in Round 
SPT2 and Elongating SPT. Finally, in Elongating SPT cells, spermatogenesis, spermatid development, sperm 
motility, nucleus organization, and spermatid nucleus differentiation were enriched (Fig. 2E). The BP enrich-
ment seems reasonable since the closer cells in the differentiation process, the more similar BPs are enriched.

Developmental ordering of spermatogenesis cells. The developmental order of these cells and clus-
ters on the UMAP space were in agreement with spermatogenesis cell order (Fig. 3A). The PTGDS and ZNF428 
were the top up-regulated genes in somatic and Undiff. SPG1, which were expressed at the same time (Fig. 3B). 
Then ID4, TKTL1, HIST1H4C, HIST1H4C, TEX101 CETN3, PPP3R2, GLIPR1L1, LINC00643, LINC00919, 
GOLGA6L2, PRM2 were expressed sequentially which were the top up-regulated genes in Undiff. SPG2, Diff.ing 
SPG1, Diff.ing SPG2, Diff.ed SPG, Leptotene SPC, Zygotene SPC, Pachytene SPC, Diplotene SPC, Early round 
SPT, Round SPT1, Round SPT2, and Elongating SPT cell clusters, respectively (Fig. 3B).

Weighted gene co‑expression network indicates bridge genes between testicular cells. The 
clustering dendrogram of genes in the weighted gene co-expression network (WGCN) resulted in 6 modules 
(Fig. 4A). The eigengene dendrogram and eigengene adjacency heatmap displayed the inter-modular relation-
ships which revealed a high correlation between turquoise and yellow modules (Fig. 4B). Also, there was a cor-
relation between the red and the green modules and between these modules with the brown one. The brown 
module eigengenes location on the UMAP space and its higher values in cluster-1, -2, -10, -12, and -13 indi-
cated that this module related to the co-expressed genes in spermatogonia cells (Fig. 4C,D). The blue module 
eigengenes fitted to the location of the spermatocyte cells on the UMAP and cluster-5, -6, -8, and -9 (Fig. 4C,D). 
These results for turquoise and yellow modules displayed that these modules were related to co-expressed genes 
in spermatid cells. The co-expressed genes in the somatic cells were presented in red and green modules which 
revealed higher expression in cluster-14, -15, and -16 (Fig. 4C,D).

The WGCN of the integrated data was constructed and shown with Cytoscape (Fig. 5A). The gene co-expres-
sion network is colored based on the betweenness centrality (BC) value for each node (Table S2) and its top ten 
nodes, DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA 

Table 1.  Characteristics of clusters. The numbers of cells for each dataset, cluster, and cell type assignment for 
each cluster were specified. The rows are colored based on the cell types.

Cluster

Number of cells

Cell Type
Spermatogenesis2Spermatogenesis1spermatogoniaSpermatocytes Sperma�ds

1 78 541 4620 158 171 Undiff. SPG1

2 76 482 3842 271 246 Undiff. SPG2

3 326 1067 1 402 1605 Round SPT2

4 297 789 1 540 1109 Round SPT1

5 192 384 0 873 730 Pachytene SPC

6 269 433 0 1246 163 Zygotene SPC

7 243 484 1 354 917 Early round SPT

8 187 443 0 290 872 Diplotene SPC

9 594 698 2 216 86 Leptotene SPC

10 72 206 1081 93 62 Diff.ing SPG1

11 138 715 0 60 556 Elonga�ng SPT

12 176 503 303 112 75 Diff.ed SPG

13 16 102 921 73 46 Diff.ing SPG2

14 93 104 17 17 631 Soma�c cells

15 24 64 208 89 98 Soma�c cells

16 190 22 1 3 15 Soma�c cells
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with the highest p-values were highlighted (Fig. 5B). The results demonstrated all these genes were expressed in 
all cell-type clusters with different levels. BST2, EEF1A1, PTMS, NFKBIA, and HLA-DRA revealed higher expres-
sion at the beginning of the pseudotime trajectory in somatic cells (Fig. 5C,D). HSP90AB1 was one other bridge 
gene in this network that was particularly expressed in spermatogonia cells. C1orf194 and CDKN3 were specially 
expressed in the middle of the pseudotime trajectory and spermatocyte cell clusters (Fig. 5C,D). DNAJC5B (with 
the highest BC value) and CRISP2 were other bridge genes that were expressed in the spermatid cell clusters 
especially the Elongating SPT cluster (Fig. 5C,D). Then these analyses were performed between brown and blue 
modules in the WGCN to find bridge genes between the spermatogonia and spermatocyte cells as sequential cell 
types in spermatogenesis. The mentioned BCs and p-values were presented in Table S3. C1orf194, HSP90AB1, 
MFSD6L, TPD52L3, PTMA, PHF7, BOLL, TEX40, C6orf48, and NDUFAF3 were detected as the bridge genes 
between the brown and blue modules in the WGCN (Fig. S6A,B). The gene expression along the time trajectory 
and clusters (Fig. S6C,D) showed most of these genes expressed in the middle of time and spermatocyte cells. 
Then, the bridge genes between spermatocyte and spermatid cells were evaluated, using BC between related 
modules (Fig. S7A, Table S4). The centrality analysis identified DNAJC5B, C1orf194, CDKN3, CRISP2, MFSD6L, 
CCDC89, CALM2, TPD52L3, SPACA7, and RCN2 as bridge genes (Fig. S7B). These genes expressions were 
well-distributed between both cell type clusters and along the pseudotime trajectory (Fig. S7C,D).

Discussion
In this study, we integrated diverse scRNA-seq datasets of more than 33,000 testicular cells, to identify pure and 
comprehensive cell profiles for spermatogenesis. Some of these datasets were retrieved from Hermann et al.
study22, which contains the steady-state of spermatogenesis and three sorted spermatogenic cell types that are 
not integrated. One other steady-state dataset was retrieved from Wang et al.  study29. The value of integrating 
and re-analyzing these datasets is due to genetic diversity and different developmental timing between differ-
ent individuals. Furthermore, in each study, only a few samples were evaluated that tissues were available due 
to a disease or trauma other than  infertility10. Our data integration led to the coverage of similar cell types in 
different datasets. However, sorted spermatocyte and spermatid data overlapped which can be a drawback of 
the STA-PUT method to isolate pure  cells10,53. The integration, in our study, led to 16 clusters within the sper-
matogenesis complex process. The goal of scRNA-seq datasets integration is to improve cell classifications and 
identify differences in cell type dependent gene  expression31.

The evaluation of marker gene expression identified two, two, and one clusters for undifferentiating, differen-
tiating, and differentiated spermatogonia cells, respectively. While, the number of spermatogonia clusters in the 
 Spermatogenesis122 and  Spermatogenesis229 datasets were four and three,  respectively22,29. The spermatogonia 
cells presented fewer up-regulated genes than down-regulated ones that were engaged in the translational process 
and started the cell cycle. The UTF1 and ID4 genes are known marker genes for  SSC54,55 that were differentially 
expressed in Undiff. SPG1 and Undiff. SPG2 clusters, respectively. A similar result showed these genes marked 
distinctly with a partial overlap in the undifferentiated spermatogonia cells, which proved the heterogeneity in 
these  cells55. ASB9 gene was detected as a top DEG in Diff.ing SPG1 cluster which is consistent with its expression 
in early differentiating spermatogonia  cells25. Diff.ing SPG2 belongs to the late differentiating spermatogonia 
cells, due to the similarities in top DEGs with Diff.ed SPG cells. All results insist on heterogeneity within the sper-
matogonia cell population which was declared in some previous  studies56–59. The four cell types of spermatocytes 
(leptotene, zygotene, pachytene, and diplotene) were identified distinctly which their DEGs significantly enrich 
meiosis BP. These different stages of meiotic prophase I associated with genes down-regulation that is consistent 

Figure 3.  Developmental ordering of spermatogenesis cells. (A) The pseudotime analysis of testicular cells on 
the UMAP space, purple cells represent the beginning of the path and yellow cells represent the end of the path 
(B) the expression of top positive DEGs in each cluster along the pseudotime.
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Figure 4.  Weighted gene co-expression network analysis. (A) The clustering dendrogram of the weighted gene 
co-expression network. The resulted modules are depicted in different colors of blue, turquoise, yellow, brown, 
green, red, and gray. The gray modules gene lacked similar co-expression to other genes which were removed 
from more analysis. (B) the eigengene dendrogram and eigengene adjacency heatmap of modules, (C) the gene 
expression patterns on the UMAP space for each module with their corresponding colors, (D) the eigengene of 
each module in each cluster.
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Figure 5.  Betweenness centrality analysis of the weighted gene co-expression network. (A) The presentation of 
the weighted gene co-expression network. The relation between colored modules and cell types were shown in 
the inset figure. (B) The co-expression network was colored based on the betweenness centralities from yellow 
to purple. The top ten genes with the highest betweenness centralities are highlighted. (C,D) The expressions of 
these top betweenness centrality genes along (C) the pseudotime and (D) the cell-types clusters.
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with low RNA production during early meiosis in  humans60 and  mice50. Whereas the  Spermatogenesis122 and 
 Spermatogenesis229 datasets alone revealed four and seven spermatocyte clusters,  respectively22,29. The seven 
spermatocyte clusters in Spermatogenesis2 were divided into three leptotene, one zygotene, one pachytene, one 
diplotene, and one mixture of spermatocyte cell  clusters29. Four spermatid clusters demonstrated the hetero-
geneity in spermatid cells with one cluster for early-round, two for round, and one for elongating spermatid 
cells. In addition to spermatocytes, the Early round SPT cluster also enriched meiosis BP which produces round 
 spermatids61. The C7orf61 and TNP1 are two known round spermatids markers that belonged to top DEGs of 
Round SPT1 and Round SPT2, respectively. These results indicate the presence of heterogeneous spermatid 
cells during the spermatogenesis process which presented many up- and down-regulated genes compared to 
other spermatogenesis cells. On the other hand, the  Spermatogenesis122 and  Spermatogenesis229 datasets pre-
sented seven and four spermatid cell clusters,  respectively22,29. The expression of the top DEG of each cluster in 
pseudotime proved another confirmation on the cell type assignment and ordering. Based on these results the 
clustering of the integrated scRNA-seq of the spermatogenic cells led to more comprehensive clustering than 
each of those datasets separately.

The "Guilt by Association" is one of the concepts that provide the use of gene co-expression networks to iden-
tify gene functions and molecular mechanisms in biological  processes62. Gene co-expression network on scRNA-
seq data can find functional modules related to a specific  state63,64. In this regard, the WGCN analysis detected 
six modules. Adaptation of these six modules expression patterns with cell clusters and eigengene dendrograms 
led to the attribution of these co-expressed gene modules to the main stages of testicular cells, including somatic, 
spermatogonia, spermatocyte, and spermatid cells. Topological analysis of a cell-type-specific gene co-expression 
network can be useful to find the main functional genes between  modules63. Among the network topological 
analysis, BC represents the influence of a node on its neighbors and the spread of information, in other words, 
a node with a high value of BC can be the bridge point between network  modules65,66. The BC investigation 
of WGCN of these integrated testicular scRNA-seq datasets showed DNAJC5B, C1orf194, HSP90AB1, BST2, 
EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA were the top ten genes with the highest BC and 
p-values. Interestingly, studies have shown that most of these genes have played a role in infertility disorders. 
C1orf194 was differentially expressed in the asthenozoospermic infertile group in comparison to the normozoo-
spermic infertile  group67. HSP90AB1 interacted with the catalytic domain of Kdm3a, that mutant Kdm3a can 
cause male infertility in  mice68. Furthermore, the Hsp90ab1 gene lacking was reported to cause embryo death 
during implantation in  mice69. The EEF1A1 heterozygous mutation led to spermatogenesis arrest phenotype and 
male infertility in  tilapia70. The low CRISP2 expressions in  asthenozoospermic71,72 and  teratoasthenozoospermic73 
patients were reported. An association was identified between NFKBIA gene polymorphisms and idiopathic male 
infertility  risk74. The expression of the CDKN3 gene was reduced in teratozoospermic  men75. GWAS studies 
showed HLA-DRA gene-related SNPs were significantly related to Nonobstructive  Azoospermia76,77. Interestingly, 
five of these genes are highly expressed in the somatic cells which is consistent with the high effects of somatic 
cells on the different stages of  spermatogenesis78. Then to find specific bridge genes between the main stages of 
spermatogenesis, we zoomed in sequential stages of testicular cell genes in the WGCN. The top ten BC genes 
between spermatogonia and spermatocyte modules were C1orf194, HSP90AB1, MFSD6L, TPD52L3, PTMA, 
PHF7, BOLL, TEX40, C6orf48, and NDUFAF3. The top two BC genes between these modules, C1orf194, and 
HSP90AB1, were similar to the top BC genes of the global WGCN. A down-regulation of TPD52L3 was reported 
in  oligozoospermia79. Disruption of Phf7 caused infertility in male mice by decreasing sperm count and increas-
ing abnormal sperm  ratio80. The relation of BOLL deletion or mutation with unfunctional sperm production that 
led to infertility has been reported in different  studies81–84. The expression of TEX40, a calcium entry protein, 
is reduced in asthenozoospermic  males85 and targeted disruption of TEX40 led to severe male subfertility in 
 mice86. In the next step, the top ten BC genes between spermatocyte and spermatid modules were examined as 
two sequential modules to find the bridge genes between them. The DNAJC5B, C1orf194, CDKN3, CRISP2, 
MFSD6L, CCDC89, CALM2, TPD52L3, SPACA7, and RCN2 genes were identified as the top ten BC genes. 
The four (DNAJC5B, C1orf194, CDKN3, and CRISP2) and three (C1orf194, MFSD6L and TPD52L3) genes 
between these modules were similar to the top BC genes of the global, and spermatogonial-spermatocyte part of 
the WGCN, respectively. C1orf194 was detected as the top BC gene in all global, spermatogonial-spermatocyte, 
and spermatocyte-spermatid parts of the WGCN.

In summary, different testicular scRNA-seq datasets were integrated to construct comprehensive spermato-
genesis transcriptome-wide data. The clustering, cell type assignments, DEGs, and pseudotime analysis revealed 
heterogeneity in spermatogenesis’s main stages. Then, the WGCN along with the integrated scRNA-seq data 
identified functional modules associated with the main stages of spermatogenesis. The BC analysis on this cell-
type-specific WGCN discovered some bridge genes between the spermatogenesis main stages such as DNAJC5B, 
C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA. Some of these bridge 
genes are highly expressed in the somatic cells, emphasizing the role of somatic cells in spermatogenesis. Avail-
able studies about these genes showed that perturbation of these genes led to male infertility disorders, which 
confirms the functional role of top betweenness genes in this cell-type-specific WGCN. These functional bridge 
genes can be suggested as candidates for filtering and prioritizing genetic variants and gene expression alterations 
with the goal of introducing a male infertility panel. So, our study not only offers knowledge about cell-to-cell 
heterogeneity in spermatogenesis but also introduces key genes between the functional modules of normal 
spermatogenesis that may play important roles in male infertility disorders. These results can be a starting point 
for experimental research to investigate the function of these genes in male infertility.
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Methods
The scRNA‑seq datasets and preprocessing. The scRNA-seq datasets related to human spermato-
gonia, spermatocyte, spermatid sorted cells (GEO: GSE109037)22 and steady-state spermatogenic cells (GEO: 
GSE109037 and GSE106487)22,29 with normal spermatogenesis were retrieved from the gene expression omni-
bus (GEO)  repository87. The FACS and STA-PUT were used to sort spermatogonia, spermatocyte, and spermatid 
cells in the library of  GSE10903722. They extract more than 33,000 sorted and unselected steady-state sper-
matogenic cells from thirty individuals with normal spermatogenesis and used 10 × Genomics Chromium to 
perform scRNA-seq (Fig. 1A)22. In the study of GSE106487, 2854 testicular cells from nine donors with normal 
spermatogenesis were analyzed with SMART-seq2  protocol29. They used random- and FACS-based cell picking 
to explore all the cell types in the adult human testis (Fig. 1A)29. The Seurat3.2 R  package88 was used for data 
analysis. To filter out low-quality cells, at first, cells with less than 200 expressed genes and genes expressed in less 
than 3 cells were removed. Then, cells with a very low or high number of genes and cells with a high percentage 
of mitochondrial genes were filtered. Standard preprocessing, normalizing, and identifying 2000 highly variable 
features were performed individually for each dataset. Finally, 33,011 cells were collected for integration.

Data integration and analysis. Anchor  strategy89 was used to integrate these datasets, which were pro-
duced across multiple technologies. Finding an accurate set of anchors is the basis for subsequent integration 
analyses. Thus, these datasets were integrated with 2000 anchors, resulting in a batch corrected expression 
matrix for all cells. The new integrated matrix was used for scaling and the principal component analysis (PCA). 
The first 35 principal components (PCs) were selected based on the variance percentage of each PC to perform 
UMAP non-linear dimension  reduction90 to visualize, explore and separate cells. The graph-based clustering 
approach of the Seurat3.2 R package was used to find clusters with a dimensionality of 35 and a resolution of 
0.2. The cell type of each cluster was assigned based on the expression of specific markers of spermatogenic cells 
obtained from the literature.

Differentially expressed genes and enrichment analysis. To find differentially expressed genes 
(DEG), the non-parametric Wilcoxon rank sum  test91 was used. The minimum percentage in both cell groups 
(min.pct) and the log fold-change of the average expression between the two cell groups (logfc.threshold) were 
set to 0.25 and 0.5, respectively. The up and down-regulated genes in each cluster in comparison to all other clus-
ters were quantified based on positive and negative averaged log fold-change values, respectively. Up-regulated 
genes with averaged log fold-change higher than 0.7 and adjusted p-value (based on Bonferroni correction) less 
than 0.05 were selected for enrichment analysis. The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) v6.792 was used for gene enrichment analysis. The biological processes (BPs) terms with the 
lowest Benjamini correction score (adjusted p-value) were used to plot the heat map.

Pseudotime analysis. For pseudotime analysis, the Monocle3 R package was  used93. The integrated data, 
dimension reduction, and clustering information were imported from Seurat to the Monocle3 package. To order 
the cells in pseudotime, Monocle3 learns a trajectory that reconstructs the progress of a cell in a cell differentia-
tion process. After the graph learning, the cells were ordered according to their progress.

Co‑expression network construction and analysis. To reveal correlations between gene expression of 
these integrated cells, a weighted gene co-expression network (WGCN) was created by the WGCNA R  package94. 
To construct the WGCN with scale-free topology, different values of soft thresholding power β were assessed 
for the network topology analysis, and the value of 6 was selected. The Pearson correlation coefficient and the 
signed network options were used to measure the correlation between the expression of each pair of genes and 
to maintain only positive correlations, respectively. The topological overlap measure (TOM), which investigates 
the similarities between gene pairs based on the number of shared neighbors in the resulting co-expression 
network, was used to identify modules. Modules in the WGCN were depicted in different colors. Genes that 
lacked similar co-expression to other genes in the network, were assigned to the gray module. So, the gray 
module was removed from more analysis. The relationships between the detected modules were depicted by 
module eigengenes that are the first principal component of the expressions in modules. Constructed WGCN 
was exported to  Cytoscape95. To find essential genes in this network, the betweenness centrality (BC) of each 
node was measured. A node with the highest BC value indicates the bridge node in that  network66. To measure 
the p-value for each gene, the random gene label permuting was used for 100,000 steps. Cytoscape and its plugin 
 CytoNCA65, were used for network visualization and centralities measurements, respectively.

Codes are available  at https:// github. com/ nasal ehi/ scRNA seq_ sperm atoge nesis.
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