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A first principles investigation 
on the structural, mechanical, 
electronic, and catalytic properties 
of biphenylene
Yi Luo1, Chongdan Ren2, Yujing Xu1, Jin Yu1*, Sake Wang3* & Minglei Sun1*

Recently, a new two-dimensional allotrope of carbon (biphenylene) was experimentally synthesized. 
Using first-principles calculations, we systematically investigated the structural, mechanical, 
electronic, and HER properties of biphenylene. A large cohesive energy, absence of imaginary 
phonon frequencies, and an ultrahigh melting point up to 4500 K demonstrate its high stability. 
Biphenylene exhibits a maximum Young’s modulus of 259.7 N/m, manifesting its robust mechanical 
performance. Furthermore, biphenylene was found to be metallic with a n-type Dirac cone, and it 
exhibited improved HER performance over that of graphene. Our findings suggest that biphenylene is 
a promising material with potential applications in many important fields, such as chemical catalysis.

Carbon exists in different hybridisation states and forms various crystalline materials. Graphene, a two-dimen-
sional (2D) allotrope of carbon, has attracted considerable attention owing to its peculiar properties and prom-
ising applications in various  fields1–6. Since the discovery of graphene, research on graphene analogues has 
also gained significant interest, and various 2D materials have been theoretically predicted. The predicted 2D 
carbon materials reportedly exhibit many intriguing properties such as massless Dirac  cones7–9, semiconduct-
ing properties with a sizeable  bandgap10,11, and even topological  properties12. In addition to graphene, rare 2D 
carbon materials, such as  graphdiyne13,  graphtetrayne14,  naphyne15, and  phagraphene16 have been experimentally 
synthesised. Recently, a novel carbon allotrope named biphenylene was successfully  fabricated17; however, its 
mechanical properties and potential applications are still not completely understood.

In this paper, we report the structural, mechanical, electronic, and catalytic properties of biphenylene obtained 
by first-principles calculations. This paper is organised as follows: in Sec. 2, we introduce the methods employed; 
in Sec. 3.1, we discuss the structural features and stability; in Sec. 3.2, the mechanical properties including Young’s 
moduli, Poisson’s ratio, and fracture strain (strength) are described; in Sec. 3.3, the electronic properties are dis-
cussed; in Sec. 3.4, we investigate the catalytic performance of biphenylene for the hydrogen evolution reaction 
(HER); and in Sec. 4, we summarise the results and draw conclusions.

Method
First-principles calculations were implemented in the Vienna ab initio simulation  package18, using the Perdew-
Burke-Ernzerhof exchange–correlation functional within the projector-augmented wave method (cut-off energy 
800 eV)19,20. A Γ-centred 8 × 8 × 1 k-mesh was used to sample the first Brillouin zone. To eliminate the interac-
tions between adjacent layers, a 25 Å thick vacuum space was added perpendicular to the biphenylene network. 
The energy and ionic force convergence were set to  10–8 eV and  10–4 eV/Å, respectively. The phonon dispersion 
calculations were performed using density functional perturbation theory in the Phonopy  code21. Ab initio 
molecular dynamics (AIMD) simulations were performed using the canonical ensemble with the temperature 
regulated by the Nosé−Hoover  thermostat22. The LOBSTER code is employed to calculate the crystal orbital 
Hamilton  population23,24.
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Results and discussion
Structure and stability. To establish a reference benchmark, we systematically investigated the structural 
properties and stabilities of monolayer biphenylene. Figure 1a shows the atomic structure of biphenylene. The 
unit cell has a rectangular geometry (space group Pmmm; group no. 47) with six carbon atoms. The lattice con-
stants of monolayer biphenylene are a = 3.76 Å and b = 4.52 Å. The b/a ratio of 1.20 and the presence of different 
atomic arrangements along the x and y directions suggest an anisotropic structure. As a non-benzenoid carbon 
allotrope, biphenylene is constructed from octagonal, tetragonal, and hexagonal rings, which causes slight vari-
ations in the carbon–carbon bond lengths. As shown in Fig. 1a, the carbon − carbon bond lengths l1, l2, and l3 
are 1.45, 1.46, and 1.41 Å, respectively, which are similar to those of graphene (1.42 Å), indicating the robust 
structure of biphenylene. The electron localisation function (ELF) from the aspect of the (0 0 1) plane is shown 
in Fig. 1a to illustrate the bonding behaviour. A value of 1 for the ELF, denoted by red colour, corresponds to 
perfect localization. We find the highest ELF value in the middle of the carbon−carbon bond is 0.93, indicating 
that strong covalent bonds exist between the carbon atoms. Noteworthily, the values of integrated crystal orbital 
Hamilton population at the Fermi level are − 9.35, − 9.03, − 10.07 for the l1, l2, l3, respectively, the smallest value 
of − 10.07 implies the l3 bonding is the strongest one.

We demonstrate the stability of biphenylene by means of cohesive energy, phonon spectrum, and AIMD 
simulations. The cohesive energy EC is calculated as (6Ecarbon − Etotal)/6, where Ecarbon and Etotal represent the 
total energies of a carbon atom and a unit cell, respectively. The EC value obtained for biphenylene is 7.40 eV/
atom, which is higher than that of  MoS2 (5.02 eV/atom) and boron nitride (7.07 eV/atom) and close to that of 
graphene (7.85 eV/atom). The phonon dispersion and phonon density of states are shown in Fig. 1b. There are 
18 branches (3 acoustic and 15 optical) in the phonon dispersion of biphenylene, and no imaginary frequencies 
are observed. The maximum frequency is as high as 1657  cm−1, indicating good dynamic stability. The phonon 
states contributed by the  C1 and  C2 carbon atoms are coupled in the entire range. The results of AIMD simula-
tions at various temperature are shown in Fig. 1c. No structural distortion, bond breaking, or phase transition is 
observed at 300 K. Even heat up to 4500 K, the structure is still intact, and finally melt at 4600 K, demonstrating 
the excellent thermal stability of biphenylene. Overall, our simulation results confirm the excellent stabilities of 
biphenylene, that is why the biphenylene monolayer can be successfully fabricated  experimentally17.

Mechanical properties. The elastic constants were calculated to be  C11 = 294  N/m,  C22 = 240  N/m, 
 C12 =  C21 = 91 N/m, and  C66 = 83 N/m. These values satisfy Born–Huang stability  criteria25,  C11C22–C12

2 > 0 and 
 C66 > 0, suggesting that the biphenylene structure is mechanically stable. We further evaluated the Young’s modu-
lus and Poisson’s ratio of biphenylene. The orientation-dependent Young’s modulus E(θ) and Poisson’s ratio ν(θ) 
were determined using the following equations:

Figure 1.  (a) Top and side views of the crystal structure of biphenylene; the inset shows the ELF. The primitive 
cell is marked by red dashed lines; (b) phonon dispersion (6 × 5 × 1 supercell); (c) results of AIMD simulation at 
various temperatures.
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To elucidate the anisotropic mechanical properties of biphenylene, the polar 2D Young’s moduli and Poisson’s 
ratio diagrams were calculated. As shown in Fig. 2a,b, the mechanical properties of biphenylene are anisotropic 
in the plane. For both E(θ) and ν(θ), the largest value is along the x direction, and the smallest value is along the 
y direction. The Young’s moduli of biphenylene along the x (Ex) and y directions (Ey) are 259.7 and 212.4 N/m 
(corresponds to 764 and 625 GPa), respectively. The Poisson’s ratio is 0.38 along the x direction and 0.31 along 
the y direction. The Young’s modulus of biphenylene is much higher than that of black phosphorene (83 N/m)26 
and  MoS2 (123 N/m)27, close to that of BN (Ex = Ey = 275 N/m)28, and slightly smaller than that of graphene 
(Ex = Ey = 340 N/m)29. These results indicate the robust mechanical properties of biphenylene.

The strain−stress curves under uniaxial (tensile strain from 0 to 30%) and biaxial strains (tensile strain 
from 0 to 20%) are displayed in Fig. 2c,d, respectively. Figure 2c shows that the fracture strain (strength) is 22% 
(28.81 N/m) along the x direction and 16% (23.13 N/m) along the y direction. The phonon dispersions were 
also employed to confirm the determined fracture strains, and the results are shown in Fig. S1. There are no 
imaginary frequencies in the phonon spectra until the fracture strains are reduced to 21% along the x direction 
and 14% along the y direction under uniaxial strain. Hence, we corrected the fracture strain (strength) to 21% 
(28.69 N/m) along the x direction and 14% (22.34 N/m) along the y direction. The fracture strain for biaxial 
strain (strength) was reduced to 16% (23.50 N/m). After the correction using the phonon spectra (Fig. S1), it 
was further reduced to 11% (21.07 N/m). Notably, the predicted fracture strengths of biphenylene are larger 
than those of black phosphorene, which has a fracture strength limit of 10 N/m along the x direction and 4 N/m 
along the y  direction30. Thus, biphenylene exhibits robust mechanical properties.

Electronic properties. The band structure in Fig. 3 shows several bands across the Fermi level, indicating 
that biphenylene is metallic; this agrees well with the experimental dI/dV spectra reported  previously17. The total 
density of states shown in Fig. 3 indicates several peaks across the Fermi level, for example, at 0.22 and 0.58 eV. 
We further analysed the projected density of states and found that the states near the Fermi level are mainly 
contributed by the  pz orbitals of the carbon atoms. As the  sp2-hybridized allotrope of carbon, the formed n-type 
Dirac cone approaches (0.64 eV above) the Fermi energy level along the Y − Γ line. Such tilted Dirac cones have 
been reported in other 2D materials such as  Be5C2

31, Pmmn  boron32, and  FeB3
33. The origin of the Dirac cone can 

be attributed to the out-of-plane  pz orbitals, as shown in Fig. 3b.
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Figure 2.  (a) Young’s moduli and (b) Poisson’s ratio of biphenylene; strain−stress relations along x and y 
directions under (c) uniaxial and (d) biaxial strains.
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Catalysis of HER. As biphenylene shows good metallic properties, it can be potentially used as a cata-
lyst. Hence, we probed the catalytic performance of biphenylene by the HER. The Gibbs free energy change 
(ΔGH = ΔE + ΔEzpe + TΔS, standard conditions) of the intermediate  (H*) in the following two reactions is consid-
ered for evaluating the HER performance of the catalyst.

where ΔE is the adsorption energy of  H* species, ΔEzpe is the change in the zero-point energies, T is 298.15 K, 
ΔS is the difference in the entropy before and after adsorption, and * is the active site. We considered all possible 
adsorption sites for a single H atom on a 3 × 3 biphenylene supercell. Figure 4a shows the most stable adsorption 
configuration. According to Fig. 4b, the Gibbs free energy for HER is 0.29 eV at U = 0 eV, which is much smaller 
than that of 2H-MoS2 (2 eV)34, better than that of g-C3N4 (0.54 eV)35 and WSSe (0.58 eV)36, and comparable to 
that of recently reported  Pd4S3Te3 (0.18 eV)37. The Gibbs free energy change of pristine graphene for HER is also 
shown in Fig. 4b. Notably, biphenylene exhibits a significantly higher catalytic activity than pristine graphene 
(ΔGH = 1.41 eV). To further reveal the improved catalytic performance of biphenylene, we introduced the σ centre 
theory ( εs =

∫

∞

−∞
ns(ε)εdε

∫

∞

−∞
ns(ε)dε

 ). According to the results shown in Fig. 4c, biphenylene has a higher σ centre position 
(− 7.49 eV) than graphene (− 8.09 eV), which indicates stronger hydrogen bonding ability (a strong correlation 
between σ centre and ΔGH values is shown in Fig. S2). These results indicate that biphenylene has significant 
potential for catalysing HER.

Conclusion
Based on first-principles calculations, we systematically explored the structural, mechanical, electronic, and HER 
properties of biphenylene. Our results show that monolayer biphenylene is stable with a large cohesive energy 
(7.40 eV/atom) and is characterised by a phonon spectrum with no imaginary frequencies and an ultrahigh melt-
ing point up to 4500 K. In addition, a maximum Young’s modulus of 259.7 N/m reveals its robust mechanical 
properties. The determined fracture strains (strengths) are 21% (28.69 N/m) and 14% (22.34 N/m) along the x 
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Figure 3.  (a) Band structure (left panel), density of states (middle), and projected density of states (right panel) 
of biphenylene; (b) the partial charge density of biphenylene, the value of the isosurface is set to 0.01 e Å-3.

Figure 4.  (a) Top and side views of the most stable adsorption configuration; (b) Gibbs free energy for HER; (c) 
projected density of states for H atom adsorption on biphenylene and pristine graphene.
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and y directions under uniaxial strain, respectively. Under biaxial strain, the fracture strain (strength) is reduced 
to 11% (21.07 N/m). The metallic nature with a n-type Dirac cone of biphenylene along with its outstanding 
performance in HER (ΔGH = 0.29 eV) demonstrate the potential of biphenylene as a catalyst.
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